当前位置:文档之家› 3C领域的锂电池应用~3

3C领域的锂电池应用~3

3C领域的锂电池应用~3
3C领域的锂电池应用~3

专题:3C领域对锂电池的需求

主要结论:

1,到2015年,3C领域对锂的需求平均增速18%

2,长期来看锂电池被新技术替代是必然,但是在近3-5年内不必过分担心

一、锂电池简介

一个典型的锂离子电池主要由正极、负极、隔膜和电解液四部分组成。锂离子二次电池的正极为钴酸锂、锰酸锂等锂化合物的粉体,涂覆在铝箔上;负极为石墨或其它材料(钛酸锂等),涂覆在铜箔上;正负极之间用一层多孔塑料膜隔开,通常采用微孔聚丙烯(PP)和聚乙烯(PE)或两者的复合膜(PE-PP-PE);正负极和隔膜一般浸在溶有LiPF6或者LiAsF6电解质的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶剂形成的电解液中。

图1 锂离子电池的构成

数据来源:天弘基金

(一)锂电池正极

最早的商业化应用的锂电池正极材料是钴酸锂,由于其比容量高、循环次数长,被广泛应用于对比容量要求较高的消费类电子品中(目前的固态锂电池的正极大多也是用钴酸锂

的)。但是,随着钴酸锂的使用和锂电需求领域的扩展,钴酸锂的问题也就暴露出来:首先是其安全性比较差,在高温工作、隔膜破损等情况下,甚至会发生爆炸;其次,钴资源稀缺,导致钴酸锂造价昂贵,应用于大型电池领域的成本太高。为此,后来市场中又出现了许多其他锂化合物正极。

其中,具有橄榄石结构的磷酸铁锂是较早出现的材料,不仅价格便宜,而且安全性和稳定性好,隔膜穿刺也不会发生爆炸。但是磷酸铁锂的问题在于其比容量低、正极材料振实密度低(只有0.8-1.3,钴酸锂的一般会在2.5以上),所以体积是限制其未来发展的最大问题。

另一个致力于解决钴酸锂成本问题的方案是发展镍酸锂。镍酸锂的晶体构造与钴酸锂类似,理论比容量与钴酸锂相当,但是镍的价格只有钴的一半,是理想的替代钴酸锂的材料。但是目前技术水平下很难制得理想的层状结构的镍酸锂,而是混杂着二价镍、三价镍和锂离子的混合体,导致最终产品稳定性差,因此目前镍酸锂并没有实际商用。

目前结合众多锂正极材料优点的三元材料成为新的发展方向。三元材料简单地理解是锰酸锂和钴酸锂的平均化产物,其能量密度虽然不及钴酸锂,但是仍然比较高,且安全性较好、价格相对便宜。其中镍钴铝材料最早由日本开发,是在全球发展比较成熟的三元正极材料,目前已经普遍应用于笔记本电脑电池,特斯拉轿车使用的INR18650电池就是镍钴铝三元材料。但是镍钴铝电池的问题在于其高温状态下的安全性较差(因此特斯拉轿车才使用了复杂的电控系统来精确控制每块电池的温度);与此相对地,镍钴锰酸锂电池的安全性较好,但是问题是比容量相对于镍钴铝电池明显要低,目前小型电池领域应用较多。

表1 钴酸锂各类锂离子电池正极材料对比

钴酸锂镍酸锂锰酸锂磷酸铁锂镍钴锰镍钴铝

主要应用的晶格结构层状层状尖晶石橄榄石层状层状

开路电压 3.7V 3.3V 3.8V 3.2V 3.7V 3.7V

理论比容量(mAh/g)274 274 148 170 - -

实际比容量(mAh/g)160 200 110 135 160 190

循环寿命(次)>500 >500 >500 >2000 >800 >800

工作温度(摄氏度)-20~50 -20~50 -20~50 -20~75 -20~55 -20~55

资源丰富程度稀缺丰富丰富丰富较丰富较丰富

安全性低低较高高较高较高

环保性低较低好好较低较低

应用领域电子设备电子、动力动力用动力用电子、动力电子、动力

最新进展提高安全性试验阶段,

提高稳定性部分汽车

动力

比亚迪汽

车动力

丰田普锐斯

汽车动力

特斯拉汽

车动力

最主要有点能量密度高性价比高便宜热稳定性

好、便宜安全性和性

价比较好

比容量较

高、便宜

最主要缺点钴稀缺难制备高温性能

差、比容

量低比容量

低、品质

控制较难

低温性能差高温安全

性差

数据来源:天弘基金

表2 三元材料中各元素对应的性能(简单总结,实际情况要更复杂)

三元材料中的元素对应电池的性能典型产品

镍高比容量、低安全性、成本折中81515NCA

钴较高比容量、安全性折中、高成本111镍钴锰

锰低比容量、高安全性、低成本

数据来源:天弘基金

不过,虽然近年来随着更多的锂正极材料被开发出来,钴酸锂的市场占比正在逐年下降,但是钴酸锂依然是全球使用最多的锂电池正极材料。这主要是因为目前锂电池最大的下游是电子类产品,这类产品对电池的比容量要求远高于对其安全性的要求。

至于使用不同的正极材料是否会造成单位材料用锂量的变动,通过对比可以发现,目前主流的钴酸锂和三元材料在用锂量方面的差异很小,用料的差异对全球锂需求的影响不大。

图2 全球各类锂电池使用量图3 各类锂电池正极材料消耗碳酸锂的量

(二)锂电池负极

锂离子电池的负极主要使用电势位低的石墨材料。由于目前石墨负极的理论比容量已经

基本上普遍超过了300mAh/g (部分材料可以超过700mAh/g ),跟正极材料普遍不足300mAh/g 的理论比容量相比,负极材料在目前阶段并不是锂电池性能提升的瓶颈所在。

不过,除了石墨材料以外,目前还有一种技术路线是使用钛酸锂作为负极(这类电池通常用三元材料做正极),不仅可以明显提高理论比容量,并且由于其具有非常优秀的

“零应变性”(所谓“零应变性”是指其晶体在嵌入或脱出锂离子时晶格常数和体积变化都很小,小于1%),还可以有效提高锂电池的安全性;不过钛酸锂负极电池的造价昂贵、且自放电比较严重、对电压平台要求高,所以目前没有大规模商用,若未来可以克服这些问题,钛酸锂负极电池将有可能成为未来大容量锂电池的一个新的解决方案。

图4 各类负极材料的市场占有率

图5 各类负极材料的比容量

数据来源:天弘基金

(三)锂电池电解液

锂电池电解液主要使用碳酸乙烯酯(EC )和碳酸二乙酯(DEC )溶解六氟磷酸锂(LiPF6)

或者六氟砷酸锂(LiAsF6)。电解液中使用的锂也很少,通常六氟磷酸锂的浓度只有1mol/L,一只典型的18650电池(电解液大概5.2-5.8g)中只有大约0.6g六氟磷酸锂,合0.03g 金属锂。聚合物锂电池跟液态锂电池类似,只是电解液为凝胶态。

(四)隔膜

隔膜主要用作可隔离电池正负极,以防止出现短路;高性能的隔膜还可以在电池过热时,通过闭孔功能来阻隔电池中的电流传导。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能以及安全性能等特性。目前,锂离子电池主要使用多孔聚乙烯或者聚丙烯类聚合物材质,隔膜本身不含锂。

二、3C领域锂电池的需求现状:过去十年稳定增长

(一)总量:3C产品领域在锂和锂电池消费中的比重是最大的

1,3C产品是锂和锂电池最大的下游

锂电池对锂的消费占锂总消费量的40%,而其中,3C产品对锂电池的消费又占锂电池消费量的60%,从整条锂产业链上看,3C产品是锂和锂电池最大的终端需求,在产业链上有非常重要的地位。

2,锂电池在3C产品中的渗透率接近100%

另一方面,锂电池在3C领域中的渗透率也已经非常高。经过短短二十年的发展,目前锂电池在手机和笔记本电脑领域(包括平板电脑)的渗透率已经达到100%,即便在消费类电子领域,数码相机使用锂电池的比例也已经迅速上升至90%以上。2011年,全球消耗的锂电池数量高达44.89亿只,其中手机和笔记本电脑分别消耗的锂电池量就高达16.9亿只和14.4亿只。

而按照目前电子类消费品的普通规格来计算,仅手机、笔记本电脑和数码相机三类,对锂电池的年需求量就高达8.5万MWH!

表3 各类3C产品的锂电池规格

代表产品安时电压(V)瓦时

智能手机三星Galaxy SIII 2.1 3.8 7.8

笔记本电脑Macbook pro 5.5 10.8 60

超极本Yoga 11S 2.84 14.8 42

数码相机佳能SX240 1.12 3.7 4.1

平板电脑Ipad 6.6 3.75 24.8

数据来源:天弘基金

(二)结构:3C产品使用什么样的锂电池

1,性能:高比容量

3C产品的使用特性决定了其对锂电池的要求,更看重锂电池的高比容量。因为3C产品的使用寿命通常都不长(1-2年),工作环境温度要求也不高(-15到40摄氏度),对安全和循环性的要求相对较低;3C产品消费的锂电池容量不大,成本因素也不是那么重要;不过,由于3C产品普遍讲究轻薄的便携性,以及较长的续航时间,因此对于比容量的要求是非常高的。

而前文也说过,虽然在比容量的提升方面,负极、隔膜和电解液同样重要,但是目前的技术水平,电池正极是限制比容量的关键因素。因此,在3C领域,具有高比容量的钴酸锂电池就成为了长久以来行业的第一选择。从1991年索尼推出首款商用钴酸锂电池以来,到近几年三元材料进入市场之前,3C市场几乎就是钴酸锂的天下。

不过,近年来,三元材料的技术不断突破,也为3C产品的电池市场带来了一些新的选择。因为三元材料本质上跟钴酸锂材料的晶体结构是一致的,意味着两种材料的性能也比较相近,不过三元材料由于使用了更加便宜且活性相对较小的镍、锰金属,使得其在保证比容量较高的同时,可以降低成本和提高安全性。此外,三元材料由于配方可以灵活变动,也为电池厂商提供更多的便利,来生产更符合特定需求的电池。

图10 各类主要电池材料的性能对比图11 中国三元和钴酸锂材料的产量

数据来源:天弘基金数据来源:天弘基金

近年来,随着大耗电量的智能手机的迅速发展,以及对待机时间要求越来越高的移动PC市场的不断扩展,锂电池面临再次提高比容量的局面。而从目前的技术来看,依靠提高压实密度的方法提高钴酸锂的比容量已经接近极限,而三元材料在应用方面尚需与其匹配的电解液等材料的发展,因此从2008年以后,对高电压技术的研究开始推动3C锂电的进一步升级。从iphone5首次使用4.35V充电限制电压的锂电池以来(此前充电限制电压是

4.2V),三星、华为等手机企业已经陆续推出了使用4.35V高电压锂电池的手机,以提高锂

电池的比容量。

表4 近年来各主要3C产品的锂电池使用情况

产品发行时间电池类型正极材料充电限制电压电压容量Iphone 2007 聚合物电池改性钴酸锂 4.2 3.7 4.51wh

Iphone4S 2011 聚合物电池改性钴酸锂 4.2 3.7 5.25wh

Iphone5 2012 聚合物电池改性钴酸锂,三元材料 4.35 3.8 5.45wh

Galaxy SIII 2012 软包液体锂电池钴酸锂,三元材料 4.35 3.8 7.8wh

Lumia 920 2012 聚合物电池钴酸锂 4.2 3.7 7.4wh

小米2011 聚合物电池钴酸锂 4.2 3.7 7wh

2013 聚合物电池 4.35 3.8 15.39wh 华为Ascend

Mate

小米2 2012 锂聚合物电池钴酸锂 4.2 3.7 7.4wh

Ipad 2010 聚合物电池改性钴酸锂 4.3 3.75 24.8wh

Macbook Pro 2006 软包电池钴酸锂10.8 60wh

Yoga 11S 2013 聚合物电池14.8 42wh 数据来源:天弘基金

2,外形:尽可能减小体积和提高安全性

由于3C领域由于消费息息相关,因此便携性一直以来都是3C产品致力于追求的极致目标。从笔记本电脑、手机到各类消费品的发展趋势不难看出,在追求高性能的同时,产品的体积也是在不断缩小的。这就对电池提出了新的要求:即便在相同的容量下,也需要更小的体积和相应的安全性。也正是因为如此,当3C产品进入锂电池时代之后,除了笔记本电脑在很长时期内一直是引用圆柱电池芯之外,手机和消费类电子品领域,软包锂电池迅速普及化,因为软包锂电池可以按照产品的外形灵活设计外形,这也成为减小电子品体积的非常重要的手段。而现在,所有的手机、平板电脑、数码相机和超极本产品都使用软包电池,大容量的手机电池已经开始使用聚合物电解液。可见在3C领域,对电芯制造和电池封装的要求也是非常高的。

图12 Iphone4的软包聚合物电池图13 普通笔记本电脑的六芯电池

数据来源:电池论坛数据来源:电池论坛

三、3C产品的稳定发展将持续支撑锂电池的需求

(一)3C产品及其电池的发展历程:产品升级换代的平均周期只有2-3年这一部分,我们将简单回顾一下3C产品的发展历程,以及在这个过程中对应的电池的发展历程,从这里可以看出,3C产品从其诞生之日起,就在以超乎想象的速度飞快发展和更新换代,并且带动电池需求不断扩张。

1,笔记本领域

最早的便携式电脑在上世纪80年代初就出现了,不过外形更倾向于计算器,而且基本上都使用AA电池或者镍镉电池供电,但是运行时间则长达几十甚至数百小时,性能比较低端。世界上第一台笔记本电脑是1985年的东芝T1100,当时的笔记本电脑还是又大又笨重的奢侈品,而且由于电池性能限制,并没有采用内置电池;1989年开始东芝再次引领行业先锋推出内置电池的轻薄型笔记本电脑。之后,随着技术的不断发展,笔记本的体积在逐渐下降、性能在逐渐提升,对电池电量的需求非常大,于是1993年,在索尼推出商用化的锂电池2年后,东芝再次推出了全球第一款配备锂电池的笔记本电脑Portege T3400CT,续航时间高达6小时,不过体积比较小。在之后的十几年的时间内,随着彩色显示屏屏、高性能CPU、独立显卡等一系列耗能较高的组件被加入笔记本电脑中,笔记本锂电池的容量在不断增加,但是直到苹果推出macbook系列笔记本电脑之前,笔记本电脑领域基本上都在使用传统的18650钢壳锂离子电池芯。2006年苹果推出的Macbook pro,为了使其体积更轻薄,使用了软包液体锂离子电池;而随后在2008年推出的新版pro和革命级产品macbook air时,改用了锂聚合物电池。此后,从2011年Intel主导超极本以来,更加轻薄的超极本普遍采用了锂聚合物电池。

时间段历史阶段电池代表产品图例

1979-198 4 笔记本电脑雏

AA电池,

镍铬电池

惠普HP-110(1984年发

布,镍镉电池,重达4公

斤)

1985-199 4 笔记本电脑诞

各类电池东芝T1100(1985年,全

球第一台真正意义的笔记

本电脑,无内置电池)

1995-200 6 笔记本电脑进

入锂电池时代

锂圆柱电

池逐渐成

为主流

东芝Portege T3400CT

(1995年,全球第一台配

备锂电池和TFT屏的笔记

本,待机时间6小时)

2007-200 8 苹果引领高性

能潮流

出现软包

电池

Macbook pro(2006年,

第一次在笔记本中使用软

包液态锂离子电池)

2008-201 0 超极本诞生出现聚合

物电池

Macbook Pro(2008年,

第一次在笔记本电脑中使

用聚合物锂离子电池)

Macbook air(2008年,

全球第一台超极本)

2011-今超极本爆发聚合物电

池爆发联想Yoga 13(2012年,独创360度双转轴设计)

2,数码相机领域:

全球第一台数码相机是1975年柯达的一个实验室产物,真正意义上的数码相机是1981年索尼的Mavica,之后的几款都是概念机的类型,外形也千奇百怪,基本上都使用圆柱电池;真正商用化的数码相机上市1995年卡西欧推出的QV -10,作为一款无内置闪光灯、CCD像素只有25万的相机,使用2节AA电池已经基本足够了。但是随后几年,随着闪光灯逐渐成为数码相机的标配、且数码相机的CCD像素分辨率呈指数增长,对电池电量的要求也在不断提高。1998年,单反相机开始进入人们的视野,定位更高端的单反机有相当一部分采用镍镉、镍氢电池(比如早期单反机的代表佳能D2000使用镍镉电池、最早的现代化单反机尼康D1采用镍氢电池)。之后,随着数码相机的功能不断丰富、体积不断减小,锂电池在数码相机中的使用规模越来越大(早期比较典型的使用锂电池的型号是2000年的佳能D30)。到目前为止,虽然也有新型号的数码相机使用圆柱电池,但是绝大多数的数码相机都是使用锂电池了。

时间段历史阶段电池代表产品图例

1975-1995 数码相机试验

期各种电池都有Mavica(1981,最早的

数码相机)

1995-1998 数码相机商用

化碱性电池为主卡西欧QV-10(1995,

第一台商用化数码相机)

1998-2000 单反机诞生镍镉电池、镍氢

电池、碱性电池佳能D2000(1998,使用镍镉电池)

2000-今普及期锂电池、镍氢电

池、碱性电池佳能D30(2000,也是第一台使用CMOS传感器的单反相机)

3,手机领域

最早的手机是在1983年摩托罗拉的DynaTac 8000X,也就是早期的“大哥大”的形态,这部手机使用了一块镍镉电池,通话时间仅有20分钟,但是充电却需需要10小时的时间。随后摩托罗拉一直引领整个手机行业的发展,这期间,包括IBM在1993年推出全球第一款智能手机Simon、诺基亚1992年转型并在1994年推出标志性的智能手机9000,但是一直到1995年摩托罗拉推出世界上第一款翻盖手机8900时,手机仍然普遍使用镍镉电池;1997年的166C开始,摩托罗拉开始使用镍氢电池,电池容量也从此前的500-700mah 增加到1300mah。从1998年开始,摩托罗拉开始生产使用锂电池的手机(比如GC87C,使用1200mah的锂电池),1998年到2000年基本上可以看做是镍氢电池锂电池的过渡时间,由于镍氢电池价格比较便宜且安全性好、技术成熟,其在手机领域曾经还是比较主流的;但是2001年之后,随着越来越多的性能被加入到手机中,且锂电池的成本在迅速下降,导致锂电池迅速替代镍氢电池,2002年以后的手机基本上都是以锂电池为主的型号了。2007年开始,随着苹果推出iphone,手机步入新型智能机时代,而由于手机功能强大导致耗电量直线增加,体积轻便、比容量大的锂聚合物电池开始得到大规模的推广。

时间段历史阶段电池代表产品图例

1983-19 93 大哥大阶段镍镉电池摩托罗拉DynaTac 8000X

(1983年,全球第一台手机)

1993-19 95 小型化和智能化镍镉电池IBM Simon(1993年,全球

第一台智能手机)

1995-19 97 镍氢电池时代镍氢电池摩托罗拉166C(1997年,使

用镍氢电池)

1998-20 07 手机普及时代锂电池摩托罗拉GC87C(1998年,

使用锂电池)

2007-今新型智能手机时代锂电池Iphone(2007年)

(二)从历史到未来:3C产品会维持较高的发展增速

1,推陈出新是必然规律

从前文总结的主要的3C产品的发展历史来看,推陈出新是3C领域的必然规律,而且对于3C产品来说,这个速度是非常惊人的。Intel的创始人之一戈登·摩尔就有著名的摩尔定律来诠释信息技术惊人的进步速度(摩尔定律:当价格不变时,集成电路上可容纳的晶体管数量每个18个月就会增加1倍,晶体管的性能也会增加一倍)。

比如苹果2007年推出iphone智能手机之后,智能手机成为接替传统功能手机的另一个新的增长点,手机的增速虽然在近几年保持稳定,但是从结构上来看,智能手机的占比从2007年开始就在迅速增加,到2013年,整个市场大约有一半的手机都已经是智能手机。图14 手机和智能手机出货量图15 全球手机出货量增速

再如,传统笔记本电脑的增速虽然已经很低,但是随着新型的平板电脑诞生并在市场中

迅速发展,平板电脑近几年呈现爆发式增长,从2010年年出货20万台、到2011年出货68万台,2012年的出货量更是达到了127万台。

即使是在已经逐渐被带有照相功能的智能手机和平板电脑取代的数码相机市场,高像素、

多功能的专业级单反相机也在保持正增长。

图16 数码相机出货量

图17 便携式电脑出货量

2,已有产品的市场普及程度会继续增加

除了推出新品以外,已有产品的市场普及程度增加也是支撑3C 市场增速的重要因素。 一方面,已经推出的新产品,在市场渗透率未达到饱和之前,都会保持较高的增速,这主要是因为除了要维持更新需求以外,还要扩大市场的渗透率。这是任何一种消费品市场发

展的必经之路。从目前来看,近几年推出的智能手机、平板电脑等新产品,市场还远未达到饱和,比如目前传统笔记本市场,在欧美地区的增长率几乎为0,甚至出现负增长,而此时美国的人均笔记本电脑持有量已经达到了0.96台;然而智能手机的全球人均持有量才仅仅0.16台,可以预计未来几年仍然是只能手机的市场扩张期。

另一方面,除了产品自身的市场扩张以外,由于人均收入水平的变化,也会导致3C产品的需求增加。因为各地的人均收入水平有差别,目前3C产品的市场分布并不均匀;而今后随着低收入水平地区的经济增长和人均消费水平的改善,也会为3C产品在当地的普及提供力量。

(三)3C产品的发展不断提升对电池的需求

正是由于新的3C产品不断推出、以及已有产品的市场渗透率不断扩大,导致3C产品对电池的需求基本保持15%-30%的增速区间。

1,随着对消费者需求的不断开发,新产品的更新速度非常快

图24 3C新产品推出时间

5000mah

数据来源:天弘基金

从1991年第一块商用锂电池诞生以来,基于锂电池的3C产品不断涌现,从手机、到笔记本电脑、数码相机、随身听、MP3,到近年来开始流行的平板电脑,以及未来将要流行的可穿戴设备,随着人们对信息获取和信息处理能力的需求不断提高,新的3C产品还将不断涌现,并给锂电池带来源源不断的需求。

2,对旧产品的更新换代使得产品性能对耗电量的要求越来越高

另一方面,旧产品的更新换代并非原地踏步,随着同一类型产品的性能不断调,对锂电池的需求量也在不断提升。从1993年大哥大诞生以来,手机平均每两年就会更新一代,新产品的推出速度非常迅速,手机锂电池从早期的500Mah发展到现在的2000mah的级别;而笔记本电脑的CPU和显卡性能平均每一年半就会更新一代,对电池电量的需求也随之提高,从早期的30-40wh的容量,发展到目前的60wh的级别甚至更高。而由于锂电池的比容量增速远没有对电量需求的增高(从1995年到2010年,钴酸锂的比容量提升了11.5%,而手机的电池容量提升了300%),与之相伴随的,便是锂电池的需求量在不断提升。

3,增速预测:即使不考虑新产品的爆发,增速仍然有15%以上

根据前文的分析,由于3C产品的市场渗透率不断提高、新产品的不断推广,即使不考虑未来会出现新的3C产品,按照目前已有的3C 产品来看,其对锂需求的平均增速大约在18%左右,到2015年为止,年增速都会维持在15%以上。

表8 消费类电子锂需求预测

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 笔记本电脑

出货量(百万台)176.50 202.98 193.77 184.08 178.55 174.98 173.23 173.23 173.23 173.23 173.23 增速15.00% -4.54% -5% -3% -2% -1% 0% 0% 0% 0% 锂电池容量(mAh)4400 4400 4400 4400 4400 4400 4400 4400 4400 4400 4400 锂需求量(吨)358.43 412.20 393.49 373.82 362.60 355.35 351.80 351.80 351.80 351.80 351.80 锂需求增速15.00% -4.54% -5.00% -3.00% -2.00% -1.00% 0.00% 0.00% 0.00% 0.00% 数码相机

出货量(百万台) 118.41 115.17 60.33 72.39 76.01 79.81 82.21 83.03 83.03 83.03 83.03 增速-2.73% -47.62% 20% 5% 5% 3% 1% 0% 0% 0% 锂电池容量(mAh)900 1000 1200 1400 1600 1600 1600 1600 1600 1600 1600 锂需求量(吨)49.19 53.16 33.41 46.78 56.13 58.94 60.71 61.31 61.31 61.31 61.31 锂需求增速8.07% -37.14% 40.00% 20.00% 5.00% 3.00% 1.00% 0.00% 0.00% 0.00% 平板电脑

出货量(百万台) 19.60 68.40 126.60 227.88 341.82 410.18 471.71 542.47 623.84 717.41 825.03

增速248.98

%

85.09% 80% 50% 20% 15% 15% 15% 15% 15%

锂电池容量(mAh)2800 3000 3500 4000 4500 5000 5000 5000 5000 5000 5000 锂需求量(吨)25.33 94.71 204.51 420.70 709.93 946.58 1088.57 1251.85 1439.63 1655.57 1903.91

锂需求增速273.91

%

115.94

%

105.71

%

68.75% 33.33% 15.00% 15.00% 15.00% 15.00% 15.00%

手机

出货量(百万台) 1596.80 1755.71 1746.18 1833.48 1925.16 2021.42 2122.49 2228.61 2340.04 2457.04 2579.90 增速9.95% -0.54% 5% 5% 5% 5% 5% 5% 5% 5% 锂电池容量(mAh)2000 2500 3500 4000 4500 5200 6000 6800 7000 7000 7000 锂需求量(吨)1473.97 2025.82 2820.75 3384.89 3998.41 4851.40 5877.66 6994.41 7560.14 7938.14 8335.05 锂需求增速37.44% 39.24% 20.00% 18.13% 21.33% 21.15% 19.00% 8.09% 5.00% 5.00% 其他移动设备

锂需求量767.52 1013.81 1196.00 1315.60 1447.16 1591.88 1751.06 1926.17 2118.79 2330.66 2563.73 需求增速32.09% 17.97% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

锂需求总量(吨)2674.44 3599.69 4648.16 5541.79 6574.23 7804.14 9129.79 10585.5

4

11531.6

6

12337.4

9

13215.8

增速34.60% 29.13% 19.23% 18.63% 18.71% 16.99% 15.95% 8.94% 6.99% 7.12%

折合碳酸锂(吨)14136.3

1

19026.9

2

24568.8

3

29292.3

1

34749.5

2

41250.4

7

48257.4

6

55952.1

5

60953.0

7

65212.4

5

69854.9

4

数据来源:天弘基金

四、随着科技的发展,锂电池会遇到对手吗?

(一)哪些电池可能会成为对手?

1,无限天然能源:太阳能电池

太阳能电池技术一直是3C领域非常热衷的新能源技术。与传统锂电池相比,太阳能电池可以极大地减少充电的麻烦,即使出门旅行找不到电源也可以随时给自己的电子设备充电,而且是绝对的节能环保。从21世纪初开始,不少厂商就在研制可以商用化的太阳能手机,目前三星、LG、中兴等都已经推出相关的概念设备;而苹果早在2008年就申请了一项可以把太阳能电池应用于笔记本电脑、Ipad和其他便携设备中的专利技术。

不过,目前太阳能电池仍然面临一系列的问题。除了成本因素以外,更重要的是,一块太阳能电池板只能产生0.5V的电压,而便携设备通常需要3.5V以上的电压,太阳能电池的升压技术室目前制约其应用大的一个难点;而且,如何提高太阳能电池的转换效率、降低充电时间,也是在不断研发中的课题。

虽然目前,太阳能电池技术还基本是实验室产物,但是,未来的某一天,太阳能电池的3C产品确实有望成为主流。

图27 太阳能手机图28 太阳能笔记本电脑(富士概念图)

数据来源:天弘基金数据来源:天弘基金

锂电池行业发展现状及未来发展前景预测

锂电池行业发展现状及未来发展前景预测 Revised by Chen Zhen in 2021

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量

新能源汽车动力电池应用现状及发展趋势

新能源汽车动力电池应用现状及发展趋势 发表时间:2019-03-12T16:17:31.607Z 来源:《电力设备》2018年第27期作者:张玉良 [导读] 摘要:新能源汽车的三大核心技术包括电池、电控、电机,其中电池相关技术是人们最为关注、研究投入最大的问题.从上世纪研发出铅酸电池开始,到如今锂离子电池广泛应用于各方各面,在超过一个多世纪的时间里,科研工作者一直在不断地探索试图改进电池的性能.在对传统电池进行改良的同时,科研人员不断尝试新的技术和材料,创造出新型的电池.种种迹象表明,电池技术大改革的时代即将到来,各种新型的、性能优良的电池会渐渐出现在 (北京昌平 102206) 摘要:新能源汽车的三大核心技术包括电池、电控、电机,其中电池相关技术是人们最为关注、研究投入最大的问题.从上世纪研发出铅酸电池开始,到如今锂离子电池广泛应用于各方各面,在超过一个多世纪的时间里,科研工作者一直在不断地探索试图改进电池的性能.在对传统电池进行改良的同时,科研人员不断尝试新的技术和材料,创造出新型的电池.种种迹象表明,电池技术大改革的时代即将到来,各种新型的、性能优良的电池会渐渐出现在人们的生产生活之中。 关键词:新能源汽车;电池应用;发展趋势 一、国内动力电池产业发展现状 我国的锂离子电池研究项目一直是“863”的重点项目,经过二十多年的持续支持,大部分材料实现了国产化,由追赶期开始向同步发展期过渡,本土总产能居世界第一,支撑了我国新能源汽车的示范推广。 1、正极采用磷酸铁锂材料,负极采用石墨材料,研发的50Ah能量型电池,能量密度达到136.6Wh/kg,功率密度达到1101W/kg;研发的20Ah能量功率兼顾型电池,能量密度达到106.5h/kg,功率密度达到1119W/kg。 2、正极采用尖晶石锰酸锂、镍钴锰三元混合材料,负极采用人造石墨材料,研发的25Ah软包装能量型电池,能量密度达到 162Wh/kg;研发的35Ah能量功率兼顾型电池,能量密度达到135Wh/kg。 3、正极采用镍钴锰三元材料,负极采用天然石墨/人造石墨/中间相碳微球等材料,开发的10、15、20、28、30、45Ah的动力电池,能量密度达到180Wh/kg;开发的2.6Ah18650圆柱形电池,能量密度达到200Wh/kg。 在系统集成技术及能力方面取得较大进展和突破。采用磷酸铁锂材料的动力电池系统的能量密度达到90Wh/kg,采用三元材料(18650圆柱形动力电池)的动力电池系统的能量密度达到110Wh/kg。 在前瞻性技术研究方面,中科院先导计划支持相关研究所研制出能量密度超过300Wh/kg的锂离子电池样品和能量密度超过500Wh/kg的锂硫电池样品,但循环寿命及安全性等性能指标还需进一步提升。 目前,我国已形成了包括关键原材料(正极、负极、隔膜、电解液等)、动力电池、系统集成、示范应用、回收利用、生产装备、基础研发等在内的完善的锂离子动力电池产业链体系,掌握了动力电池的配方设计、结构设计和制造工艺技术,生产线逐步从半自动中试向全自动大规模制造技术过渡。 在产业布局方面,中国形成了珠江三角洲、长江三角洲、中原地区和京津冀区域为主的四大动力电池产业化聚集区域。据统计,目前有近100家动力电池企业开展动力电池的研发及产业化工作,有近1000亿元产业资金投入,形成近40GWh年产能,技术研发、产业化进展显著,有力地支撑了新能源汽车产业的快速发展。 二、发展新能源汽车的意义 1、新能源汽车可使中国实现从汽车大国到汽车强国的转变。 虽然当前世界各主要发达国家和有关汽车公司均在加紧研发此种新型汽车技术并取得长足进展,但总体而言,中国仍基本上与之处在同一个起跑线上,差距不过只有3—5 年,并不像传统内燃机技术一样存在20年的巨大差距。在商用化和产业化方面更是如此,某些方面我们还有一定优势。 2、新能源汽车可继续开辟中国的汽车市场。 中国的汽车产业刚刚发展起来,汽车普及率低,因而在汽车动力系统发展战略选择上有更大的自由度,在新能源汽车研发和产业化方面具有比较优势,推广应用新能源汽车的阻力也会小得多。 三、动力电池的应用现状 1、铅酸电池 铅酸电池是一个多世纪前诞生的电池技术,人们普遍认为其技术落后、性能低下,污染环境,在电池技术快速发展的当下,是应当全面淘汰的电池技术。而实际情况却是,在电动车及小型电动汽车领域,铅酸电池的市场占有率达到了惊人的90%,虽然不被看好却被普遍使用。其实,近年来铅酸电池的性能已经得到了提升,能量由20Wh/kg以下提升到了目前的40Wh/kg左右,循环次数由原来的350次左右,提高到了最高4000多次。另外,铅酸电池还有一大优势,就是可以回收循环利用,在美国,目前的铅酸电池回收率高达98.5%,我国的铅酸电池回收率也达到了90%。总的来说,铅酸电池虽然是上个世纪产生的技术,但随着科技的发展,铅酸电池不断得到改良,所以才能够在市场上如此活跃。 2、镍氢、镍镉电池 镍镉电池作为动力电池的一种,具有良好的大功率放电性能,大多应用于电动工具领域。镍氢电池与镍镉电池相比较,体积比、能量比更高,记忆效应较小。在新能源汽车的研发应用中,锂离子电池的性能明显优于镍镉电池,发展前景也更为广阔,所以大部分厂家都不再使用镍氢、镍镉电池作为汽车能源。就目前的发展趋势来看,镍氢、镍镉电池在新能源汽车领域已经失去了市场。 3、锂离子电池 目前市面上使用最多的新能源汽车电池就是锂离子电池。现在,其比能量达到了150Wh/kg,比功率达到了1 600W/kg,并且,随着科研的进行,其各项性能指标参数还会不断地提高。锂离子电池的电解液可以分为两种,聚合物电解质及液体电解质。目前,聚合物电解质的锂离子电池是研发和市场应用的主流。聚合物成分可以是三元锂、锰酸锂、磷酸铁锂、钴酸锂等,不同聚合物成分的各类电池在性能、安全性、寿命、生产成本方面各有优势,总体性能不相上下。市面上的电动汽车,厂家根据需求不同选择不同的聚合物电池,例如,比亚迪E6主打安全稳定、寿命长,所以选用了磷酸铁锂电池;日产聆风为了在各项性能均衡的前提下降低生产成本,所以选用了锰酸锂电池。

燃料电池的应用及发展状况

简述燃料电池的应用及发展状况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。目前燃料电池在宇宙飞船、航天飞机及潜艇动力能源方面已得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍是商业化面临的瓶颈问题。而且我国在燃料电池方面的研究与外国还有一定差距,需要科研工作者更多的努力。 关键字:燃料电池分类应用发展状况 1. 燃料电池的概念 燃料电池(Fuel Cell)是一种电化学设备,它直接、高效地将持续供给的燃料和氧化剂中的化学能连续不断地转化为电能。燃料电池的基本物理结构由一个 电解质层组成,它的一边与一个多孔渗透 的阳极相连,另一边与一个多孔渗透的阴 极相连,气态燃料电池连续不断地输入阳 极(负电极),同时氧化剂连续不断地输 入阴极(正电极),在两个电极上发生电 化学反应,产生电流[1]。其基本结构如图 所示: 2. 燃料电池的分类及其优点 随着现代文明发展,人们逐渐认识到传统的能源利用方式存在两大弊病:一是储存于燃料中的化学能要首先转变成热能后才能被转变成电能或机械能,受卡诺循环及现代材料的限制,转化效率低(33~35%),造成严重的能源浪费;二是传统的能源利用方式造成了大量的废水、废气、废渣、废热和噪声污染,严重威胁着人类的生存环境。现代社会所建立起来的庞大的能源系统已无法适应未来社会对高效、清洁、经济、安全的能源体系的要求,能源发展正面临着巨大的挑战:能源短缺与环境污染,因此探索新能源以及新的能源利用方式,是全球可持续发展迫切需要解决的重大课题。 燃料电池是一种电化学发电装置,等温地按电化学方式将化学能转化为电

锂离子电池产业发展白皮书(2017版)

锂离子电池产业发展白皮书(2017版) 2016年,在电动汽车产量高速增长的带动下,全球及我国锂离子电池产业继续保持快速增长态势,行业创新加速,新产品、新技术不断涌现,各种新电池技术相继问世。作为最大的生产国以及最重要的应用市场,我国在全球锂离子电池产业的地位进一步提升。受益于我国新能源汽车推广应用步伐加快,一批骨干企业快速成长,比亚迪公司锂离子电池产量目前已位居至全球第四。在此形势下,赛迪智库电子信息产业研究所编写了《锂离子电池产业发展白皮书(2017版)》,全面梳理了2016年国内外锂离子电池产业创新进展,介绍了国际巨头和我国骨干企业的发展情况,分析了2016 年我国锂离子电池行业发生的重大事件,并对2017年锂离子电池产业发展趋势进行了研判。全球锂离子电池产业发展状况一、市场规模2016年,全球锂离子电池产业规模预计达到378亿美元,同比增长16%,增速较2015年下滑了15个百分点,原因主要在于全球电动汽车市场增速明显下滑。按容量计算,全球锂离子电池市场规模将首次超过90GWh,同比增长18%。容量增速高于产值增速,原因在于锂离子电池产品价格不断下滑。二、产业结构近两年,电动汽车市场开始爆发性增长,电动自行车占比稳步提升,而全球手机出货量平稳增长,便携式电脑、数码相机等消费电子产品逐步

退出市场,全球锂离子电池市场结构发生显著变化。按容量计算,2016年,消费型锂离子电池占比44.7%,比2015年的50%下降了5个百分点,占比首次跌破50%。动力型锂离子电池占比达到44.8%,首次超过消费型,而2015年动力型锂离子电池占比还只有40%。其他(储能&工业型)锂离子电池占比为10.5%,基本与2015年持平。三、区域分布全球锂离子电池产业主要集中在中、日、韩三国,三者占据了全球97%左右的市场份额。从2015年开始,在中国大力发展新能源汽车的带动下,中国锂离子电池产业规模开始迅猛增长,2015年已经超过韩国、日本跃居至全球首位,2016年领先优势继续扩大。在新能源汽车带动下日本锂离子电池产量加快增长,韩国仍保持稳步增长,但增速放缓导致其占比持续下滑。1、日本:加速增长在全球电动汽车热销的带动下,以松下、汤浅等为代表的日本锂离子电池生产企业继续向动力电池转型,带动日本锂离子电池产业呈现加速增长势头。根据日本经济产业省的统计数据显示,2016年日本国内锂离子电池产量达到12.4亿只,创2010年以来的新高,同比2015年增长了27%。其中,动力型锂离子电池产量占比已经接近2/3,创历年来新高。从产值看,2016年日本国内锂离子电池行业销售产值达到3799亿日元(约230亿元人民币),同比增长11%。2、韩国:平稳增长在经历了2015年的快速增长之后,2016年韩国锂离子电池产业保持稳步增

静止式锂电池储能系统安全要求示范文本

静止式锂电池储能系统安全要求示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

静止式锂电池储能系统安全要求示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 锂离子储能大概是什么样的组成和框架,简单介绍一 下。目前典型的锂离子储能单元配置基本都是用18650型 锂离子电池,圆柱型的,它可能是几十个,甚至几百个组 合在一起变成一个电池模块,这个电池模块再加上电池管 理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类, 不是一个非常标准化的分类。从应用规模大小来看,通常 情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用跟系 统的配置大概不大于10个千瓦的范围,当然电池储能是按 照容量来定,这里我们只是简单的粗略来分一下,按照功

率,按照装置和发电功率的大小。 这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有光了才能发电,没光了就没有,太阳好了发的就多一点,太阳少了就发的少一点,那么这个时候就要有一个类似水库的东西进行消纳,

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

《锂离子电池应用》word版

国海军对其使用的所有锂电池都要根据NA VSEA指南9310.1b和技术手册S9310-AQ-SAF-010进行安全性评估。描述了对战场准备自主水下航行体(BPAUV)上锂离子电池进行的安全性测试试验;也给出了由海军水面战中心(NSWC)Carderock实验室所做的

LiNi x Co(1-x)O2由LiNiO2材料改性得到,是一种高容量的锂离子正极材料,比容量比LiCoO2高30%左右,具有很好的比功率特性,价格相对低廉。但是由于这种材料的合成相对困难、吸水性较强、与电解液的相容性较差、安全性较差等原因,并未得到广泛的推广。目前世界上应用最好的是SAFT公司,其利用LiNi x Co(1-x)O2正极材料制造的各种型号的锂离子电池已广泛应用于卫星、UUV以及各类便携式电子设备上。 LiNi1/3Co1/3Mn1/3O2是另一种高容量的正极材料,集合LiNiO2、LiCoO2和LiMnO2的优点,可逆比容量可以达到160mAh/g以上,是非常有前途的正极材料。此材料不仅有比容量高的优势,而且安全性也相对较好,价格相对较低,与电解液的相容性好,循环性能优异,是最有可能在小型通讯和小型动力领域同时应用的电池正极材料,甚至有在大型动力领域应用的可能。 LiMn2O4是LiCoO2外研究最早的正极材料,它具有较高的电压平台,较高的安全性和低廉的价格,在大容量动力电池领域有广阔的应用前景;但是其较低的比容量(110mAh/g),较差的循环性能(300次),特别是高温循环性能差使得其应用受到了较大的限制。尽管经过这几年的研究,LiMn2O4的性能得到了较大的提高,但高温循环性能依然是使用的一个瓶颈。目前国内以锰酸锂为正极材料制造锂动力电池最成功的厂家为北京中信国安盟固利公司。其生产的大容量动力型锰酸锂电池经过了两到三年的示范运行,成为配套2008年北京奥运会电动汽车的唯一电池。 LiFePO4是最近两年才快速发展起来的正极材料,其较高的安全性能,良好的耐高温特性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景。但是其也存在一些缺点,特别是其电压平台较低(3.2V),振实密度低,使其制成的电池比能量较低,而且由于磷酸铁锂制备工艺要求控制严格,批次生产质量一致性差,导致其成本居高不下。同时磷酸铁锂材料的电导率低,低温放电性能差,倍率放电差等问题也需要继续研究和改进。但是近年来在世界范围内的广泛研究已经使这些问题得到了改善,特别是低温放电性能及功率特性。日本三井造船生产的磷酸铁锂动力锂电池能够以20C的

车用锂电池市场现状及未来发展趋势(精)

车用锂电池市场现状及未来发展趋势锂电池指的是具有各种特性的可充电(二次充电电池种类,这些特性会影响电池的能量密度,功率密度,预期寿命以及安全性。这些特性会因材料不同而有所不同——比如电解质以及电极(阳极和阴极——通常被用作为电池的各类组件。 从 2009年至 2010年,混合动力汽车,电动汽车以及插电式混合动力汽车的锂电池市场增长了 5倍之多,营收达到 5.018亿美元。 2011年锂离子电池市场销售额为20亿美元, 2012年电动车用锂电池总销售额为 160亿美元。 其中,大部分的增长源于人们对诸如雪弗兰伏特、尼桑 LEAF 等汽车上市的急切盼望,这些都是环保、经济型家用车的代表;这些汽车的产量都高于之前的汽车。混合动力汽车之前使用的是镍金属氢化物技术,而现在很大部分已转为使用锂电池技术。 未来一段时期内, 预计锂电池市场会经历一次显著的增长。美国派克研究公司(Pike Research 日前发布报告称, 到 2017年底锂离子电池成本将削减超过三分之一,下降为每千瓦时能量成本 523美元,同时车用锂离子电池销售额将增至当前的700%以上,有望达到 146亿美元, 到 2020年,锂离子电池造价还将进一步下降至每千瓦时 447美元,而用于电动车的锂离子电池全球年销售额则将达到 220亿美元。另据赛迪信息产业 (集团发布的报告显示, 2013年中国锂电池整体市场规模将达到741.7亿元,同比增长 33.2%,并且未来三年市场规模增速将会保持在 30%以上。到2015年, 整个中国锂电池的市场规模将突破 1000亿 元,达到 1251.5亿元。 尽管如此,目前,锂离子电池的价格和安全性仍然是制约当前电动汽车发展的主要因素。这是由于有限的生产水平以及各大公司开展的研发理想电池(阳极,阴极以及电解质的结合配置工作所共同造成的。在没有标准的情况下, 原本可行性较高的电池交换和二次应用的实践操作就变得十分复杂困难了。除此以外,电池能量密度、充电设施等也成为了限制电动车市场增长的因素。

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

燃料电池的应用和发展现状

收稿日期:2005-11-03 作者简介:杨润红(1974-),女,北京交通大学机械与电子控制工程学院工程热物理专业硕士研究生,研究方向为能量转换与工质热物性. 燃料电池的应用和发展现状 杨润红,陈允轩,陈 庚,陈梅倩,李国岫 (北京交通大学,北京100044) 摘 要:能源和环境是全人类面临的重要课题,考虑可持续发展的要求,燃料电池技术正引起能源工作者的极大关注.主要在介绍燃料电池的工作原理、发展简史、分类及特性的基础上,详细分析和论述了燃料电池的应用和研发现状,并对其发展前景作了展望. 关 键 词:燃料电池;工作原理;特性;研发现状 中图分类号:TM911.4 文献标识码:A 文章编号:1673-1670(2006)02-0079-05 1839年,英国的William Grove 首次发现了水解过程逆反应的发电现象[1],燃料电池的概念从此开始.100多年后,英国人Francis T.Bacon 使燃料电池走出实验室,应用于人们的生产活动[2].20世纪60年代,燃料电池成功应用于航天飞行器并逐步发展到地面应用[3].今天,随着社会经济的飞速发展,随之而来的不仅是人类文明的进步,更有能源危机,生态恶化.寻求高效、清洁的替代能源成为摆在全人类面前的重要课题.继火力发电、原子能发电之后,燃料电池发电技术以其效率高、排放少、质量轻、无污染,燃料多样化等优点,正进一步引起世界各国的关注. 1 燃料电池的工作原理 人们常用的普通电池有碱性干电池、铅酸蓄电池、镍氢电池和锂离子电池等.燃料电池和普通电池相比,既有相似,又有很大的差异.它们有着相似的发电原理,在结构上都具有电解质,电极和正负极连接端子.二者的不同之处在于,燃料电池不是一个储存电能的装置,实际上是一种发电装置,它所需的化学燃料也不储存于电池内部,而是从外部供应.在燃料电池中,反应物燃料及氧化剂可以源源不断地供给电极,只要使电极在电解质中处于分隔状态,那么反应产物可同时连续不断地从电池排出,同时相应连续不断地输出电能和热能,这便利了燃料的补充,从而电池可以长时间甚至不间断地工作.人们之所以称它为燃料电池,只是由于在结构形式上与电池有某种类似:外特性像电池,随负荷的增加,它的输出电压下降[4]. 燃料电池实际上是一个化学反应器[5],它把燃料同氧化剂反应的化学能直接转化为电能.它没有传统发电装置上的原动机驱动发电装置,也没有直接的燃烧过程.燃料和氧化剂从外部不断输入,它就能不断地输出电能.它的反应物通常是氢和氧等燃料,它的副产品一般是无害的水和二氧化碳.燃料电池的工作不只靠电池本身,还需要燃料和氧化剂供应及反应产物排放等子系统与电池堆一起构成完整 的燃料电池系统.燃料电池可以使用多种燃料,包括氢气、碳、一氧化碳以及比较轻的碳氢化合物,氧化剂通常使用纯氧或空气.它的基本原理相当于电解反应的逆向反应,即水的合成反应.燃料及氧化剂在电池的阴极和阳极上借助催化剂的作用,电离成离子,由于离子能够通过二电极中间的电解质在电极间迁移,在阴电极、阳电极间形成电压.当电极同外部负载构成回路时,就可向外供电(发电).图1是燃料电池的工作原理图[6]. 2 燃料电池的发展简史、分类及各自特性 1839年,William Grove 提出了氢和氧反应可以发电的 原理,并发明了第一个燃料电池.他把封有铂电极的玻璃管浸入稀硫酸中,电解产生氢和氧,连接外部装置,氢和氧就发生电池反应,产生电流. 1896年,W.W.Jacques 提出了用煤作为燃料电池的燃 料,但由于无法解决环境污染的问题,没有取得满意的效果. 1897年,W.Nernst 用氧化钇和氧化锆的混合物作为电 解质,制作成了固体氧化物燃料电池. 1900年,E.Baur 研究小组发明了熔融碳酸盐型燃料 电池(MCFC ).此后,I.Taitelbaum 等人就此进行了一些拓展性的研究. 1902年,J.H.Reid 等人先后开始研究碱质型燃料电 池(AFC ). 1906年,F.Haber 等人用一个两面覆盖铂或金的玻璃 圆片作为电解质,与供气的管子相连,做出了固体聚合物燃料电池(SPFC )的雏形. 1952年,英国学者F.T.Bacon 在借鉴前人研究经验 的基础上研制出具有实用性的培根电池并获得专利.它的研制思路是避免采用贵金属并设法获得尽可能高的输出功率.采用双层孔径烧结镍做电极,氢氧化钾水溶液做电解质,以纯氢和纯氧为燃料及氧化剂.副产物是纯水.培根电 第21卷第2期2006年4月 平顶山学院学报Journal of Pingdingshan University Vol.21No.2 Apr.2006

锂离子电池简介及主要应用

锂离子电池简介 使用煤炭,石油和天然气的很长一段时间以来,都是以化石燃料为主要能源,这样的能源结构,使得环境污染严重,并且由此导致的全球变暖问题和生态环境恶化问题受到越来越多的关注。所以,可再生能源和新能源的发展成为在未来技术领域和未来经济世界的一个最具有决定性的影响。锂离子电池作为一种新的二次清洁,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。 锂离子电池的发展历史 第二十世纪六十、七十年代,几乎在锂电池是发明的同时,研究发现许多插层化合物可以与金属锂的可逆反应,构成锂电池[1]。早在第二十世纪七十年代提出了分层组织作为阴极的斯梯尔最有代表性的一种,金属锂作为阳极的Li-TiS2系统。 1976年Whittingham证实了系统的可靠性。随后,埃克森公司的Li-TiS2系统进行深入研究,并希望其商业化。但是,系统很快就暴露出许多致命的缺陷。首先,活性金属锂容易导致有机电解液的分解,导致电池内部压力。由于锂电极表面的表面电位分布不均匀,在锂金属的电荷将在锂沉积的阴极,产生锂“枝晶”。一方面会造成可逆嵌锂容量损失,另一方面,枝晶可以穿透隔膜和负极连接,造成电池内部短路,瞬间吸收大量的热,发生爆炸,导致严重的安全隐患。这一系列因素导致金属锂电池的循环性能和安全两差异,所以Li-TiS2系统未能实现商业化。 1980,阿尔芒首次提出摇椅电池的想法。使用低锂嵌入化合物锂化合物代替金属锂作为阳极,采用高嵌锂电位嵌锂化合物作正极。同年,在美国德州大学Goodenough教授的国家提出了一系列的锂过渡金属氧化物LixMO2(M=Co 、Ni 或Mn)为两电池正极材料锂。1987,奥邦成功组装了浓差电池MO2 (WO2)/LiPF6-PC/LiCoO2和证明“摇椅电池”的想法的可行性,但由于负电极材料形成LiMoO2 CLiWO2嵌入电位高(0.7-2.0 V vs.Li/Li+)嵌锂容量较低,并没有显示高电压的锂离子二次电池的优点,比容量高。

电动汽车用动力电池系统安全性设计-0901..

电动汽车用动力锂离子电池系统 安全性设计 拟稿:张建华 2014、7、31

目录 1、序言 2、锂离子电芯安全特性 3、几种锂离子电芯安全特性分析 4、由锂离子电芯组成的电池PACK的安全性特性分析 5、锂离子电池PACK安全性设计 6、结论

一、序言 1、特斯拉电动汽车六次碰触起火事件 7月4日,在一起离奇的盗窃事件中,特斯拉意外成为了主角。一名身份未明的男子7月4日早间盗窃ModelS汽车后,引发警方的高速追逐。该男子随后在西好莱坞撞上多辆汽车,并在撞击路灯后解体成两半,引发电池着火。7月7日,特斯拉表示,该公司将调查在高速追逐中因碰撞而解体成两半,并着火的ModelS汽车残骸。 从2013年下半年开始,特斯拉已经发生了六起起火事件。其中两起是行驶中车辆自燃,两起是碰撞起火,原因是车主驶过路面上的残骸致使电池箱被刺穿后起火,有一起在充电时发生,还有一起原因不明。 1)11月6日,据海外网站报道,一辆特斯拉Model S电动车在美国田纳西州纳什维尔附近再度遭遇起火事故,车头几乎全部烧毁。 2)10月1日,一辆Model S撞上了路中的金属残片引发事故着火燃烧,车辆前部的一块电池包起火。 3)10月18日中旬,在墨西哥,一辆高速行驶特斯拉Model S撞到了一堵混凝土墙,紧接着又撞上了一棵大树,随后起火燃烧。 结论:汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

2、比亚迪e6着火事件 2012年5月26日凌晨3时08分,深圳滨海大道西行侨城东路段发生的一起重大交通事故,让电动汽车的安全问题成为了全世界关注的焦点。当时,一男子载三女驾驶一辆红色日产GT-R跑车,高速撞上两辆同方向行驶的出租车。其中一辆比亚迪E6电动出租车起火燃烧,一名男性出租车司机连同两名女性乘客被困火中当场死亡。 涉及各领域的13名知名专家,包括电动汽车整车及动力系统、部件安全、结构安全、汽车碰撞、电子电气安全、动力电池、汽车交通事故鉴定、火灾调查、材料燃烧特性等专业领域。专家分别来自中国汽车技术研究中心、交通运输部、科学研究院、公安部天津消防研究所、广东省消防总队、北方车辆研究所、S MG等,进行为期70天的调查。 专家组得到的结论是:电池没爆炸,着火起因是e6受到两次严重碰撞,车身后部及电池托盘严重变形、动力电池组和高压配电箱受到严重挤压,导致部分动力电池破损短路、高压配电箱内的高压线路与车体之间形成短路,产生电弧,引燃内饰材料及部分动力电池等可燃物质。e6的动力电池系统在整车上的安装布局、绝缘防护及高压系统等方面设计合理,“整车安全未见设计缺陷”。 结论: 汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

2017中国锂电行业前景及政策分析

2017中国锂电行业前景及政策分析 在国家新能源政策的大力推动下,新能源汽车市场从2015年开始大幅上量,以锂电为主的动力电池市场也随之呈现爆发趋势。保守统计2016年动力电池出货总量达28GWh,同比增长78.06%。2015年、2016年动力电池出货量CAGR高达202.22%,锂电行业处于放量上升期。 动力电池出货量高速增长 1、新能源汽车热度不减,动力锂电池需求旺盛 限购政策助推新能源乘用车市场持续火爆。为缓解交通压力,部分城市施行汽车限购政策,但普遍对新能源车不限购或者放低限购门槛,为新能源车的快速放量创造了条件。 以北京为例,从北京市小客车示范应用新能源车指标配置情况来看,2016年全年6批次新能源车指标个人申请平均满足率(配置数/为申请数)仅为62.49%,单位申请平均满足率仅为23.16%,处于供不应求的状态。2017年北京小客车示范应用新能源指标总额度为6万个。其他受限购政策影响的城市新能源车需求同样强劲,预计市场火爆程度将会延续。

新能源乘用车1月销量颓势不影响后续热度。从新能源乘用车销量来看,从2015年开始大幅上量,全年销量176814台,同比增长了2倍;2016年全年销量327864台,同比增长85%。虽然2017年1月销量仅5423台,同比大幅下降了60%,但主要是由于春节提早,节前旺销期同比缩短所致,对市场后续趋势影响不大。根据最新数据,2月新能源乘用车销量已实现反弹,售出16521台,同比增长64%。认为未来几年内新能源汽车产销将延续高增长的趋势。 新能源乘用车销量从2015年开始进入增长快车道 2、需求端热度向上游传导,锂电设备供应商业绩高增长 锂电池生产商大力扩产能。新能源车热销带来动力电池企业积极扩大产能抢占市场。根据统计数据,2016年一年内,国内锂电池企业投产产能翻倍,达到68.55GWh,其中,沃特玛、比亚迪、CATL、国轩高科国能等企业扩产力度最大,2016年产能扩张规模均翻倍。

锂电池行业发展现状及未来发展前景预测精编版

锂电池行业发展现状及未来发展前景预测 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到 51.7 万辆,带动我国动力电池产量达到 33.0GWh,同比增长 65.83%。随着储能电站建设步伐加快,锂

离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 4.94%。 2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量 90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸 2016 年全球份额提升至 10.5%,国内份额提升至 14.8%,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。

燃料电池发展现状与应用前景

燃料电池发展现状与应用前景 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 质子交换膜燃料电池 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC) 及质子交换膜燃料电池( PEMFC) 等。 1 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期成功地用于Apollo 登月飞行。AFC 的优点在于除贵金属外, 银、镍以及一些金属氧化物都可以作电极催化剂, 它的阴极性能也比酸性体系要好, 而且电池的结构材料也较便宜。缺点在于对CO2 和N2 十分敏感, 故不适用于地面。在国外, 将AFC 用于潜艇及汽车的尝试已不再继续, 目前AFC 主要用作短期飞船和航天飞机的电源。 中科院长春应用化学研究所1958 年就开始研究培根型燃料电池。60 年代初开展碱性石棉膜型燃料电池的研究, 1968 年承担航天用碱性石棉膜型燃料电池的研制。中科院大连化学物理研究所在60 年代初也开始研究碱性石棉膜型燃料电池。70年代初承担了航天用碱性石棉膜型燃料电池的研制, 研制成两种类型的电池。80 年代初, 研制了潜艇用20kW的大功率碱性石棉模型燃料电池样机。 1. 2 熔融碳酸盐燃料电池( MCFC) MCFC 的电解质由Li2CO3 和K2CO3 组成, 工作温度在650 e 左右, 阴极、阳极电化学反应快, 无需贵金属催化剂。由于在较高温度工作, 可以对天然气、煤炭气化燃料进行内部重整, 直接加以利用。不需要复杂昂贵的外重整设备。另外, 燃料转换效率高, 余热利用效率也较高。但MCFC 在高温下长期工作时电解质损失造成的电池失效、隔板腐蚀对电池寿命的影响, 以及镍电极缓慢溶解所造成的性能下降都是有待解决的课题。 由美国能源研究公司(ERC) 建造, 使用内部重整的2MWMCFC 装置已经安装在加利福尼亚并入电网运行了720h, 供电1710MWh, 1997 年3 月停运,为建造和运行这类电站提供了宝贵经验。日本熔融碳酸盐研究协会在日本月光计划和新日光计划的支持下, 一个1000kW系统正在组装以评价此技术。 长春应用化学研究所于90 年代初开始研究MCFC, 在LiAlO2 微粉的制备方法和利用金属间化合物作MCFC 的阳极材料等方面取得了很大的进展。大连化学物理所从1993 年起在中科院资助下开始研制, 自制LiAlO2 微粉制造的MCFC 单体电池性能已达国际80 年代初的水平。 1. 3 固体氧化物燃料电池( SOFC) SOFC 工作温度高达1000 e , 反应速度快, 不需要贵重金属做催化剂, 不存在电解质腐蚀金属问题。碳氢化合物燃料可自动在燃料电池内部重整, 并迅速地在电极上被氧化, 燃料中杂质对电池的性能、寿命影响均很小。其燃料转换效率高, 高温余热可很好利用, 从而提高燃料的总利用效率。SOFC 可以与燃气轮机相结合, 即用燃料电池的动力代替燃气轮机的燃烧段, 总效率可望达到60%~ 70% 。SOFC 的主要问题是固体氧化物电解质所用的陶瓷材料脆性大, 目前仍很难制造出大面积的固体电解质膜, 这严重制约了建造大功率SOFC。另外, SOFC 还存在诸如电流密度小、电压降高、制造工艺复杂、成膜设备昂贵等问题。

动力电池系统的安全性与可靠性-普莱德

Asia-Pacific Lithium Battery Congress 2014, 26th -28th March The Shenzhen Kylin Villa China Polaris Consulting Company Presented 2014 ? All Rights Reserved Huai YANG Chief Technology Officer Beijing Pride Power System Technology Limited Huai YANG, chief technology officer of Beijing Pride Power System Technology Limited, is responsible for research and development of power battery systems for new energy vehicles and related projects. He mainly engages in research on power battery assembly, lightening the battery system, thermal management, and cell grouping technology as well as development of related products. 杨槐 技术总监 北京普莱德新能源电池科技有限公司 杨槐,北京普莱德新能源电池科技有限公司技术总监,负责新能源汽车动力电池系统的产品研发及项目工程;主要从事动力电池总成,电池系统轻量化,热管理及电池成组技术的研究与新产品开发工作。

相关主题
文本预览
相关文档 最新文档