当前位置:文档之家› 初中数学竞赛辅导讲义:几何的定值与最值

初中数学竞赛辅导讲义:几何的定值与最值

初中数学竞赛辅导讲义:几何的定值与最值
初中数学竞赛辅导讲义:几何的定值与最值

初中数学竞赛辅导讲义:几何的定值与最值

几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.

几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:

1.特殊位置与极端位置法;

2.几何定理(公理)法;

3.数形结合法等.

注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、

逻辑推理与合情想象相结合等思想方法.

【例题就解】

【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.

1AB一常思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,DQ⊥CC′,CD2=DQ2+CQ2,DQ=

2

数,当CQ越小,CD越小,本例也可设AP=x,则PB=x

10,从代数角度探求CD的最小值.

注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:

(1)中点处、垂直位置关系等;

(2)端点处、临界位置等.

【例2】如图,圆的半径等于正三角形ABC的高,此圆在沿底边AB滚动,切点为T,圆交AC、

BC于M、N,则对于所有可能的圆的位置而言, MTN为的度数()

A.从30°到60°变动B.从60°到90°变动

C.保持30°不变D.保持60°不变

思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.

注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.

【例3】 如图,已知平行四边形ABCD,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q,求AP+BQ 的最小值.

思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当

b a =时取等号)来求最小值.

【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M,设直线AC 与BM 相交于K,直线CB 与AM 相交于点N,证明:线段AK 和BN 的乘积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.

注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.

【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.

思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.

注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:

(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;

(2)构造二次函数求几何最值.

学力训练

1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.

2.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR 的周长的最小值为.

3.如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P 在直线MN上运动,则PB

PA 的最大值等于.

4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( ) A .1 B .

2

2

C .2

D .13-

5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )

A .212π+

B .2412π+

C .214π+

D .242π+

6.如图、已知矩形ABCD,R,P 户分别是DC 、BC 上的点,E,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小

C .线段EF 的长不改变

D .线段EF 的长不能确定

7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE,AE 与CD 相交于点M,BD 与CE 相交于点N . (1)求证:MN ∥AB ;

(2)若AB 的长为l0cm,当点C 在线段AB 上移动时,是否存在这样的一点C,使线段MN 的长度

最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.

(2002年云南省中考题)

8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.

9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.

(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;

(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.

10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )

25D.14

A.8 B.12 C.

2

11.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )

A.2

3+

3+D.2

2+B.2

1+C.2

12.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC 分成面积相等的两部分,试求这样线段的最小长度.

13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.

14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?

15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.

(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.

(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.

①设该工程的总造价为S(元),求S关于工的函数关系式.

②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列

出设计方案;若不能,请说明理由.

③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若

能,请列出所有可能的设计方案;若不能,请说明理由.

16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).

参考答案

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

几何定值问题-第6讲几何中的学生版

第六讲 几何中的定值问题 一、基础知识 定值问题一般包括两类:一类是定量问题(如定长、定角、定和、定差、定积、定比、平方和或倒数 和为定值等); 一类是定形问题(如定点、定线、定圆或弧、定方向等); 求解此类问题主要是抓住数学问题中的动与静、变与不变、特殊与一般间的相互关系,从中寻找不变 的量来联立求解. 二、例题部分 第一部分 隐含的定值问题 例1. 如图,△ABC 是⊙0的内接正三角形,弦PQ 同时平分AB 、AC ,则PQ BC 等于 ( ) A . 45 B .62 C .312+ D .52 例2. 如图,OA 、OB 为任意两条半径,从B 作BE ⊥OA 于E ,过E 作EP ⊥AB 于P ,若⊙O 的半径为R ,则2OP +2EP 等于 ( ) A .2R B .2R C .42R D .14 2R 例3. 如图,AB 是⊙0的直径,C 为圆上一点,过C 点作CD ⊥AB 于D ,且∠COB=θ,则 AD BD ·2tan 2 θ= .

例4. 如图,⊙O 的半径为2,A 、B 两点在⊙O 上,切线AQ 与BQ 相交于Q ,P 是AB 的延长线上任意一点, QS ⊥OP 于S ,则OP·OS= . 例5. 如图,⊙0与⊙O '内切于点A ,以大⊙0上一点P 向小⊙O '引切线PT ,连结PA 与 小⊙O '交于点B , 若⊙0与⊙O '的半径分别为R 和r ,则2 2PT PA = . 第二部分 变化量定值问题 例6. 如图,在△A BC 中,AB=AC ,若P 为BC 边上任意一点,则点P 到两边AB 、AC 距离之和为 ( ) A .随点 P 的变化而变化 B . 12 (AB+AC) C .定值 D .12(AB+BC) 例7. △A BC 是边长固定的正三角形。D 为BC 边上的动点,1O 和2O 分别为△ABD 和△ACD 的外心,1O 1E ⊥ BC 于1E ,2O 2E ⊥BC 于2E .则1O 2E +2O 2E 的值为 .

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

专题10 最优化 例1. 4 提示:原式=1 12 - 62 -+)(x . 例2. B 提示:由-1≤y ≤1有0≤≤1,则=22 +16+3y 2 =142 +4+3是开口向上,对称轴为7 1 -=x 的抛物线. 例3. 分三种情况讨论:①0≤a +?)(,∴f (a )=2a ,即2a =2132-2+a ,则?? ? ??=--=413 172b a 综上,(a ,b )=(1,3)或(17-2-, 4 13 ) 例4. (1) 121≤≤x ,y 2 = 21+216143-2+-)( x .当=4 3时,y 2 取得最大值1,a =1; 当21= x 或=1时,y 2取得最小值21,b =22.故a 2+b 2=2 3. (2) 如图,AB =8,设AC =,则BC =8- ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2. 10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x 当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有 22 4 ===DA EB CA BC , 从而=AC = 3831=AB .故原式取最小值时,=3 8. (3)如图, 原式= [] 22222 2 2)24()13()32()01(032--0y x y x -+-+-+-+-+)()(

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

九年级数学平面几何中的定值问题例题讲解

九年级数学平面几何中的定值问题例题讲解 知识点,重点,难点 所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的某种几何量却始终保持不变(或几何元素间的某种几何性质或位置关系不变)。 平面几何定值一般可分为两类:一类是定量问题(如定长度、定角、定比、平方和或倒数和为定值等);一类是定形问题(如定点、定线、定圆或弧、定方向等),它们有共同的基本特点,即给定条件中一般由固定条件和变动条件两部分组成。 一般来说,求解定值问题的方法有: 图形分析法。画出符合条件的图形后,分析图中几何元素的数量关系及位置关系,直接寻求出定值并证明。 特殊位置法。不论图形如何变动,定值这一共性始终不变,因此可选择图形的特殊位置(如极限位置、临界位置)加以探求。 参数计算法。图形运动中,选取其中的变量(如线段长、角度、面积等)作为参数,将要求的定值用参数表出,然后消去参数即得定值。 例题精讲 例1:如图,已知⊙O 及弦AB ,P 为⊙O 上任一点,PA 、PB 分别交AB 中垂线于E 、F ,求证:OE ·OF 为定值。 分析 若在⊙O 上的点P 运动到特殊位置点Q ,则点E ,点F 都和Q 点重合,于是得到OE ·OF =OQ 2,由此可推 想,该定值可能为⊙O 半径的平方。 证明 因为OE 是弦AB 的中垂线,所以 AQ BQ =,所以∠AOE=∠BOE , 所以 1.2m AOE AB ∠=又因为 1,2m PAB BP ∠= 1,2 m PBA AP ∠=∠EPB =∠PAB +∠ABP ,所以∠AOE = ∠EPB ,所以A 、O 、F 、P 四点共圆,所以∠OFB =∠OAE .又因为∠FOB =∠AOE ,所以△FOB ∽△OAE ,所以,OF OB OA OE =即OE ·OF =OA ·OB .因为OA =OB ,所以OE ·OF =OA 2(定值)。 例2:如图,设AB 、CD 是圆O 的两条定直径,P 是圆周上的任一点, 过P 作AB 垂线,过P 作CD 的垂线,其垂足分别为Q 、 R ,DT ⊥AB ,垂足为T ,求证:QR 是定长。 分析 把点P 沿⊙O 运动到特殊的点D 的位置,不难发现QR =DT ,那么当P 是圆周上的任一点时,只要证明QR =DT . 证明 设圆的半径为r ,作RS ⊥AB ,连结OP .因为PQ ⊥AB ,PR ⊥CD ,所以P 、O 、Q 、R 四点共圆,所以∠RQS =QR RS RS

八年级几何之动点问题

中考数学动点几何问题 ※动点求最值: 两定一动型(“两个定点,一个动点”的条件下求最值。例如上图中直线l的同侧有两个定点A、B,在直线l上有一动点) 例1、以正方形为载体如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是 例2、以直角梯形为载体如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P 在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为 一定两动型(“一个定点”+“两个动点”) 例3、以三角形为载体如图,在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是 例4、以正方形、圆、角为载体正方形ABCD的边长为2,E为AB的中点,P是AC上的一动点.连接BP,EP,则PB+PE的最小值是

例5、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上的一动点,PA+PC 的最小值是 例6、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是 . 例7:在△ABC中,∠B=60°,BA=24CM,BC=16CM,(1)求△ABC的面积; (2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半? (3)在第(2)问题前提下,P,Q两点之间的距离是多少?A C B

初中八年级数学竞赛培优讲义全套专题25 配方法-精编

专题 25 配方法 阅读与思考 把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧. 配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有: 1、222 2()a ab b a b ±+=± 2、2 a b ±= 3、2222 222()a b c ab bc ca a b c +++++=++ 4、2 2 2 2221 [()()()]2 a b c ab bc ac a b b c a c ++---= -+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于: (1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2 a = 能 联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 例题与求解 【例1】 已知实数x ,y ,z 满足2 5,z 9x y xy y +==+- ,那么23x y z ++=_____ (“祖冲之杯”邀请赛试题) 解题思路:对题设条件实施变形,设法确定x , y 的值. 【例2】 若实数a ,b , c 满足222 9a b c ++= ,则代数式2 2 2 ()()()a b b c c a -+-+- 的 最大值是 ( ) A 、27 B 、18 C 、15 D 、12 (全国初中数学联赛试题) 解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.

数学初中竞赛大题训练:几何专题(包含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

解析几何中的定点、定值问题(含答案)

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出. 令4400x y -=??=? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 220001222 000y y y y y y k k x x x x x x -+-?=?=-+-, 又由A 、P 均在椭圆上,故有:22 0022 21 21 x y x y ?+=??+=??,

两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122 2 02y y k k x x -?==-- 3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-, 与椭圆方程联立消去y 整理可得() 22223424361080k x k x k +-+-=, 则22121222 2436108 ,3434k k x x x x k k -+== ++, 所以122 1834k y y k -+= +, 则AB 中点为222129,3434k k k k ?? - ?++?? . 所以AB 中垂线方程为22291123434k k y x k k k ?? +=-- ?++??, 令0y =,则2 2334k x k =+,即22 3,034k N k ?? ?+?? , 所以2222 39(1) 33434k k NF k k +=-=++. () 22 36134k AB k += =+,所以14 NF AB =. F A ,是其左顶点和左焦点,P 是圆222b y x =+ 上的动点,若PA PF =常数,则此椭圆的离心率是

初中七年级数学竞赛培优讲义全套专题16 不等式

专题16 不等式(组) 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值. (江苏省竞赛试题) 解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国初中数学竟赛辅导讲义修订(2) 三角形的边角性质 内容提要 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线 段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其 他两边和。用式子表示如下: a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-??? ????????>+>+>+?< 推广到任意多边形:任意一边都小于其他各边的和 2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个 内角和。 推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180 六边形内角和=4×180 n 边形内角和=(n -2) 180 3. 边与角的关系 ① 在一个三角形中,等边对等角,等角对等边; 大边对大角,大角对大边。 ② 在直角三角形中, △ABC 中∠C=Rt ∠2 22c b a =+?(勾股定理及逆定理) △ABC 中?? ??=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中?? ??=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题 例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。 (1988年泉州市初二数 学双基赛题) 解:根据三角形任意两边和大于第三边,得不等式组 ?????+>-+-->-++->++-141312131214121413a a a a a a a a a 解得?? ???<->>51135.1a a ∴1.5

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题

解析几何中定点定值问题 2 例1已知椭圆 —=1(2)的上顶点为M( 0, 1),过M a 的两条动弦MA MB 满足MAL MB 对于给定的实数a(a 1), 证明:直线AB 过定点。 解:由MA MB =0知MA_MB ,从而直线MA 与坐标轴不垂直, 故可 设直线MA 的方程为y 二kx 1,直线MB 的方程为 1 y x 1 k 将y 二kx1代入椭圆C 的方程,整理得 (1 a 2 k 2 )x 2 2a 2 k=x 0 例3已知椭圆的中心为坐标原点 O ,焦点在x 轴上, 斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点, OA OB 与 a =(3,-1) 共线. (1) 求椭圆的离心率; 解得x=0或 -2a 2 k 1 a 2k 2 故点A 的坐标为 -2a 2 k 1 a 2k 2 2 2 1-a k ) 1 a k 同理,点B 的坐标为 2 2 2 (2a k k -a ) k a k a 知直线l 的斜率为 k 2 - a 2 1 -a 2k 2 k 2 a 2 1 a 2k 2 = k _1 2a k _ -2a k (a 2 1)k ~T2 2 ^~2 k a 1 a k 直线l 的方程为 k 2 -1 2 (a 2 - (x- 2a 2k k 2 a 2 k 2 a 2 k 2 -1 a 2 -1 2 (a 2 - a 2 1 -直线l 过定点0, a 2 -1 a 2 1

化简得(a 2 b 2 )x 2 —2a 2 cx a 2c 2 -a 2b 2 令 A(x i ,y i ), B(X 2 , y 2), 2 贝 y X i X 2 |a -c ^,x i x 2 a +b 2 2 a c 2 2 a b a 2 b 2 由OA OB =(为 X 2 ,% y 2 ), a =(3,- 1),OA OB 与a 共线,得 3(% y 2)(x i X 2) =0. y i =Xi -cy 7 -c, 3( x 2 -2c)区 x 2) = 0, 3c 2 . 二至,所以a 2 =3b 2. X-| x 2 2a 2c a 2 b 2 2 2 16a c = a 「b , 3 I 故离心率e = c —. (II )证明:由(I )知a 2 =3b 2 ,所以椭圆 2 2 0 y__ a 2 b 2 x 2 3y 2 =3b 2 . 设OM =(x,y),由已知得(x,y) = (Xi,y );; ■丄化 小), x =檢1 + %, 「? J y =环卡%. (2)设M 为椭圆上任意一点,且OM 「OA .OB(.i R), 证明,」为定值. 2 2 笃与=1(a b ■ 0), F(c,0), a b 2 2 则直线AB 的方程为y=x —c,代入笃吕 a b (I )解:设椭圆方程为

初中数学几何的动点问题专题练习

动点问题专题训练 1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104 x x =+?, 解得80 3 x = 秒.

初中九年级数学竞赛培优讲义全套专题10 最优化

专题10 最优化 阅读与思考 数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有: 1.配方法 由非负数性质得()02 ≥±b a . 2.不等分析法 通过解不等式(组),在约束条件下求最值. 3.运用函数性质 对二次函数()02 ≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为: (1)当0>a ,a b x 2-=时,a b ac y 442-=最小值 ; (2)当0

【例3】()2 13 22+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ). 解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论. 【例4】(1)已知2 11- + -=x x y 的最大值为a ,最小值b ,求2 2b a +的值. (“《数学周报》杯”竞赛试题) (2)求使()168422 +-+ +x x 取得最小值的实数x 的值. (全国初中数学联赛试题) (3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值. (“我爱数学”初中生夏令营数学竞赛试题) 解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等. 【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低? (河南省竞赛试题) 解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费( ) ay m y n a S 222+--=,通过有理化,将式子整理 为关于y 的方程.

解析几何中的定值问题

解析几何中的定值问题 1、(2014安徽高考)如图,已知两条抛物线22 111222:2(0),:2(0)E y p x p E y p x p =>=>, 过点O 的三条直线1l 、2l 和3l . 1l 与1E 和2E 分别交于12,A A 两点,2l 与1E 和2E 分别交于 12,B B ,3l 与1E 和2E 分别交于21,C C . 记111222,A B C A B C ??的面积分别为1S 与2S ,求证 1 2 S S 的值为定值. 证明:设直线321,,l l l 的方程分别为 x k y x k y x k y 321,,===. 把直线与抛物线联立求解得: )2,2(),2,2(122122112111k p k p A k p k p A , )2,2(),2,2(222222212211k p k p B k p k p B , )2,2(),2,2( 3 2 2322312311k p k p C k p k p C . 由三角形三顶点坐标面积公式得: ))1 1(1)11(1)11(1( )2(323231312121211k k k k k k k k k k k k p S -+-+-=, ))1 1(1)11(1)11(1( )2(3 23231312121222k k k k k k k k k k k k p S -+-+-=, 所以 1 2 S S =221)(p p 为定值. 注:(1)设?ABC 三顶点的坐标分别为),(),,(),,(332211y x y x y x ,则 |)()()()(|231232232231x x y x x y y y x y y x S ABC ---+---=?; (2) 原解答包含一个重要结论,111222,A B C A B C ??三边对应平行,进而,

相关主题
文本预览
相关文档 最新文档