当前位置:文档之家› 郑君里《信号与系统》(第3版)课后习题(模拟与数字滤波器)【圣才出品】

郑君里《信号与系统》(第3版)课后习题(模拟与数字滤波器)【圣才出品】

郑君里《信号与系统》(第3版)课后习题(模拟与数字滤波器)【圣才出品】
郑君里《信号与系统》(第3版)课后习题(模拟与数字滤波器)【圣才出品】

IIR数字滤波器设计及软件实现

实验四:IIR 数字滤波器设计及软件实现 一、实验原理与方法 1、设计IIR 数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法,其基本设计过程是: (1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; (2)设计过渡模拟滤波器; (3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。 本实验的数字滤波器的MATLAB 实现是指调用MATLAB 信号处理工具箱函数filter 对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n )。 二、实验内容 1、调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特性曲线,如图4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 图4.1 三路调幅信号st (即s (t ))的时域波形和幅频特性曲线 2、要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。实验结果如图4.2,程序见附录4.2。 提示:抑制载波单频调幅信号的数学表示式为 0001()cos(2)cos(2)[cos(2())cos(2())]2 c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,fc 为载波频率,0cos(2)f t π称为单频调制信号,f0为调制正弦波信号频率,且满足0c f f >。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,

数字滤波器的MATLAB设计与实现.

数字滤波器的MATLAB设计与实现 数字滤波器的MATLAB设计与实现 类别:电子综合 引言 随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。 1 数字滤波器的设计1.1 数字滤波器设计的基本步骤数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。IIR滤波器的特征是,具有无限持续时间冲激响应。种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间,在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。随着MATLAB软件尤其是MATLAB的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。数字滤波器设计的基本步骤如下:(1)确定指标在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般在频域中给出幅度和相位响应。幅度指标主要以两种方式给出。第一种是绝对指标。它提供对幅度响应函数的要求,一般应用于FIR滤波器的设计。第二种指标是相对指标。它以分贝值的形式给出要求。在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中人有线性相位。运用线性相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③长度为N 的滤波器(阶数为N-1),计算量为N/2数量级。因此,本文中滤波器的设计就以线性相位FIR滤波器的设计为例。(2)逼近确定了技术指标后,就可以建立一个目标的数字滤波器模型。通常采用理想的数字滤波器模型。之后,利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。(3)性能分析和计算机仿真上两步的结果是得到以差分或系统函数或冲激响应描述的滤波器。根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。 1.2 滤波器的MATLAB设计(1)MATLAB MATLAB是一套用于科学计算的可视化高性能语言与软件环境。它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个界面友好的用户环境。它的信号处理工具箱包含了各种经典的和现代的数字信号处理技术,是一个非常优秀的算法研究与辅助设计的工具。在设计数字滤波器时,通常采用MATLAB来进行辅助设计和仿真。(2)FIR滤波器的MATLAB设计下面以设计线性相位FIR滤波器为例介绍具体的设计方法。线性相位FIR滤波器通常采用窗函数法设计。窗函数法设

模拟滤波器_各类滤波器特性

测试技术实验二 模拟滤波器专题实验 1 实验目的 1.1 了解滤波器特性参数的含义及测定方法; 1.2 了解跟踪滤波器——恒百分比, 了解相关滤波器——恒带宽; 1.3 比较模拟滤波器及其选择; 1.4 掌握基础模拟仪器仪表的使用 2 实验设备 2.1滤波器综合实验台,相关滤波器实验台,数字示波器; 2.2 信号发生器2个,电源。 实验1 各种滤波器特性实验 1 实验目的 1.1 了解典型滤波器LP和BP的特性; 1.2 观察滤波器阶次增加带来的影响; 1.3 加深对各种滤波器原理及特性方面的理解以备今后应用。 2 实验设备 2.1滤波器综合实验台,数字示波器; 2.2 信号发生器2个,±5V电源。 3 实验步骤 3.1 低通滤波器特性及阶次影响实验 3.1.1 在断电状态下检查电源是否是士5V,接线并确认提供的电源电压和接线无误; 3.1.2 在断电状态下,正确设置开关以确定二阶和四阶低通滤波器形成; 3.1.3 上电后监视CLK,确认为方波,并将其频率调整为3kHz,则滤波器中心频率是 3000/100=30Hz; 3.1.4 用信号发生器正弦接在滤波器输入端,峰峰值为3V,保持幅值不变,令频率从低 频到高频变化,用示波器观察输出波形并记录相关参数; 。 3.1.5 根据记录的相关数据做出低通滤波器的幅频和相频曲线,并求出 c 3.2 带通滤波器特性实验 3.2.1 断电状态下检查电源; 3.2.2 断电状态下正确设置开关; 3.2.3 通电后检查CLK应是方波,并调整其频率为3kHz,则滤波器中心频率为 3000/100=30Hz; 3.2.4 输入峰峰值为3V正弦信号,改变其频率,观察滤波波形并记录数据,作出幅频 和相频图,并计算其带宽;

变换模拟滤波器为数字滤波器的设计

变换模拟滤波器为数字滤波器的设计 摘要:经过研究AF(模拟滤波器)和DF(数字滤波器)的设计,根据差分近似微分,推导出一种将模拟滤波器设计为数字滤波器的变换方法,并用双线性变换来实现这个设计,结果表明该方法具有结构简单,精确和易于实现的优点。 关键字:模拟滤波器;数字滤波器;双线性变换 Abstract: through research AF (simulation filter) and DF (digital filters) the design, according to difference approximate differential is deduced, and a simulation for digital filters filter the transform method, double linear transformation and to achieve the design, and the results show that the method is simple in structure, accurate and easy to realize advantages. Key word: simulation filter; Digital filter; Double linear transformation 0.引言 数字滤波器是数字信号处理所需要的一种重要方法,它可以在各种各样交织的信号里提取我们所需要的有用信号,从而虑除掉干扰信号、噪声信号以及其他不需要的信号[4]。数字滤波器处理的输出数字信号须经数模转换、平滑。数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波器在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。 1.设计原理 应用模拟滤波器设计数字滤波器时,首先须对输入模拟信号进行限带、抽样和模数转换,由于一个模拟系统可以用微分方程来表示,所以先微分方程进行拉氏变换,求出相应的系统函数,然后对原微分方程进行采样,而数字滤波器输入信号的抽样频率应大于被处理信号带宽的两倍,其频率响应具有以抽样频率为间隔的周期重复特性,最后利用公式将转化成,通过相应的数字频率和模拟频率之间的关系式进行频率转换,从而完成由AF设计DF[2]。设计流程图如下: 2.应用实例 为了设计出满足要求的高通滤波器,这里分别设计了模拟滤波器和数字滤波器,并且比较幅频响应特性,来验证该变换方法是否满足基本要求,具体的方法

数字滤波器的DSP实现

摘要 当前我们正处于数字化时代,数字信号处理技术受到了人们的广泛关注,其理论及算法随着计算机技术和微电子技术的发展得到了飞速的发展,被广泛应用于语音图象处理、数字通信、谱分析、模式识别、自动控制等领域。数字滤波器是数字信号处理中最重要的组成部分之一,几乎出现在所有的数字信号处理系统中。数字滤波器是指完成信号滤波处理的功能,用有限精度算法实现的离散时间线性非时变系统,其输入是一组(由模拟信号取样和量化的)数字量,其输出是经过变换的另一组数字量。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用越来越广泛。同时DSP(数字信号处理器)的出现和FPGA的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。 本论文的主要研究了数字滤波器的基本理论及其算法。基于TI公司的数字信号处理器TMS320VC5509设计了一款稳定度高,低功耗的数字滤波器系统,并完成了软硬调试工作。主要工作如下: (1)研究了数字滤波器的基本理论,以及数字滤波器的实现方法。通过学习识字滤波器 的结构、数字滤波器的设计理论,掌握了各种数字滤波器的原理和特性。为实现数字滤波器奠定了理论基础。 (2)研究分析了如何利用MATLAB仿真软件来设计出符合各种要求的数字滤波器。并采用 了相关的函数设计了几款常用的数字滤波器,并得到了滤波器的相关系数,为利用DSP实现数字滤波做好了一些前期的工作。 (3)根据TI公司5000系列数字信号处理器的基本结构和特征,充分利用其片上资源t结 合MATLAB软件的仿真,用软件实现高性能稳定的数字滤波器。 关键字:数字滤波器,DSP,IIR(无限长单位脉冲响应),FIR(有限长单位脉冲响应)

数字滤波器与模拟滤波器设计比较综述

目录 摘要................................................................................................................................................. I ABSTRACT.............................................................................................................................. II 1绪论 (1) 1.1 滤波器的应用 (1) 1.2滤波器的发展现状 (1) 2模拟滤波器设计 (3) 2.1低通滤波器设计 (3) 2.1.1巴特沃思型低通滤波器设计 (3) 2.1.2切比雪夫型低通滤波器设计 (5) 2.2高通滤波器设计 (8) 2.2.1巴特沃思型高通滤波器设计 (8) 2.3带通滤波器设计 (10) 2.3.1切比雪夫型带通滤波器设计 (13) 2.4 带阻滤波器设计 (15) 2.4.1巴特沃思型带阻滤波器设计 (16) 3数字滤波器设计 (19) 3.1数字滤波器概述 (20) 3.1.1数字滤波器的基本结构 (21) 3.1.2数字滤波器的设计原理 (24) 3.2有限冲激响应滤波器设计 (25) 3.3无限冲激响应滤波器设计 (27) 4模拟滤波器与数字滤波器比较 (28) 4.1模拟滤波器和数字滤波器优缺点 (28) 4.2模拟滤波器与数字滤波器比较 (28)

数字滤波器的设计及实现

数字滤波器的设计及实现 【一】设计目的 1. 熟悉IIR 数字滤波器和FIR 数字滤波器的设计原理和方法; 2. 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计各种IIR 和FIR 数字滤波器,学会根据滤波要求确定滤波器指标参数; 3. 掌握用IIR 和FIR 数字滤波器的MA TLAB 实现方法,并能绘制滤波器的幅频特性、相频特性; 4. 通过观察滤波器的输入、输出信号的时域波形及其频谱,建立数字滤波的概念。 【二】设计原理 抑制载波单频调幅信号的数学表达式为 []))(2cos())(2cos(2 1)2cos()2cos()(000t f f t f f t f t f t s c c c ++-==ππππ (2.1) 其中,)2cos(t f c π称为载波,c f 为载波频率,)2cos(0t f π称为单频调制信号,0f 为调制正弦波信号频率,且满足0c f f >。由(2.1)式可见,所谓抑制载波单频调制信号,就是两个正弦信号相乘,它有2个频率成分:和频c f +0f ,差频c f -0f ,这两个频率成分关于载波频率c f 对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率c f 对称的两根谱线。 复合信号st 产生函数mstg 清单: function st=mstg %产生信号序列st ,并显示st 的时域波形和频谱 %st=mstg 返回三路调幅信号相加形成的混合信号,长度N=800 N=800; %信号长度N 为800 Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz ,Tp 为采样时间 t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; %第1路调幅信号载波频率fc1=1000Hz fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz fc2=Fs/20; %第2路调幅信号载波频率fc2=500Hz fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz fc3=Fs/40; %第3路调幅信号载波频率fc3=250Hz fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号 xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号 xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号 st=xt1+xt2+xt3; %三路信号相加,得到复合信号

ex18模拟原型滤波器的设计

数字信号处理实验 第十次实验 实验名称:模拟原型滤波器的设计 学生班级:电信 学生姓名: 学生学号: 指导教师: zgx

一、实验目的 (1)加深对模拟滤波器基本类型、特点和主要设计指标的了解(2)掌握模拟低通滤波器原型的设计方法 (3)学习MATLAB语言有关模拟原型滤波器设计的子函数的使用方法 二、实验原理 输入信号和输出信号均为连续时间信号,冲击响应也是连续的滤波器,成为模拟滤波器。 模拟滤波器从功能上可以分为低通、高通、带通、带阻以及全通滤波器。 实际使用中理想滤波器是不可能实现的,必须设计一个因果可实现的滤波器去逼近。通常通带和阻带都允许存在一定误差容限,即通带不一定完全水平,阻带也不一定绝对衰减到零。在通带和阻带之间允许存在一定宽度的过渡带。 三、实验任务 设计一个模拟原型低通滤波器,通带截止频率fp=6kHz,通带最大衰减Rp≦1dB,阻带截止频率fs=15kHz,阻带最小衰减As≧30dB。 要求:分别实现符合以上指标的巴特沃斯滤波器、切比雪夫一型滤波器、切比雪夫二型滤波器、椭圆滤波器,绘制幅频特性和相频特性曲线、零极点分布图,并列写传递函数表达式。

四、实验过程和结果 1.巴特沃斯滤波器: 程序清单: 得到输出:

所以 1 s 2361.3s 2361.5s 2361.5s 2361.3s 1 )s (H 02 0304050+++++= 且所求曲线:

2.切比雪夫一型滤波器:程序清单:

得到数据: 所以传递函数表达式为: 27563 .0s 74262.0s 4539.1s 95281.0s 1 )s (H 02 03040++++= 所求曲线图形:

模拟滤波器与数字滤波器的Matlab转换

%IIR滤波器设计 %首先确定 %通带和阻带截止频率Wp Ws rad/s此截至频率对应下面的最大衰减与最小衰减,不要与三分贝点弄混了 %通带最大衰减与阻带最小衰减Rp Rs dB %现在设计通带截止频率10HZ通带最大衰减2dB阻带截止频率20HZ阻带最小衰减12dB的 %模拟滤波器然后将其转化为一个数字滤波器 %转化分为两种方法 %1.脉冲响应不变该法设计出的滤波器幅频特性更接近于模拟滤波器 %2.双线性法抗混叠性能更好 fp=10;fs=20; Rp=2;Rs=12; Wp=2*pi*fp;Ws=2*pi*fs; [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')%注意此时为模拟滤波器 fn=Wn/(2*pi); [z0,p0,k0]=buttap(N);%注意此时是归一化的buttord %相当于去归一化以Wn做因子进行扩展 z0=Wn*z0;%零点 p0=Wn*p0;%极点 k0=Wn^N*k0;%增益 b=real(poly(z0)); b=b*k0; a=real(poly(p0));%a为直接分母系数,b为直接分子系数 [H,w]=freqs(b,a);%系统频率特性 f=w./(2*pi); figure(1) subplot(311) plot(f,20*log10(abs(H)/max(abs(H)))); title('幅频特性曲线'); xlabel('f:HZ');ylabel('abs(H)/max(abs(H)'); grid %脉冲响应不变法 %数字频率转化即为模拟频率在折叠频率内的归一化 %通带和阻带截止频率Wp Ws rad/s %Wn为3dB截止频率 d1Wp=Wp/100; d1Ws=Ws/100; w1n=Wn/100; %脉冲响应不变

FIR数字滤波器设计与实现

FIR 数字滤波器设计与实现 一.摘要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有着广泛的应 用。其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。 二.关键词:FIR 窗函数系统函数MATLAB 三.内容提要: 数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系 统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。 (一)FIR 滤波器的基本结构 在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为: n N n z n h z H ∑-==1 0)()(。从该系统函数可看出,FIR 滤波器有以下特点: 1)系统的单位冲激响应h(n)在有限个n 值处不为零; 2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统); 3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包 含有反馈的递归部分。 1.FIR 滤波器实现的基本结构有: 1) 横截型(卷积型、直接型) a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为: 。则可以直接由差分方程得出FIR 滤波器结构如 下图所示: 这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。 b .线性相位FIR 滤波器的横截型结构

有源模拟滤波器实验报告

实验报告

工程大学教务处制 一、实验目的 1.掌握滤波器的滤波性能特点。 2.掌握常规模拟滤波器的设计、实现、调试、测试方法。 3.掌握滤波器主要参数的调试方法。 4.了解电路软件的仿真方法。 二、实验原理 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的结束n,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: 1.根据阻带衰减速率要求,确定滤波器的阶数n。 2.选择具体的电路形式。 3.根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程 组。 4.解方程组求出电路中元件的具体数值。 5.安装电路并进行调试,使电路的性能满足指标要求。 根据滤波器所能通过信号的频率围或阻带信号频率围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 a)有源二阶低通滤波器(LPF) 图1 压控电压源二阶低通滤波器 b)有源二阶高通滤波器(HPF)

图2 压控电压源二阶高通滤波器 c)有源带通滤波器(BPF) 图3 压控电压源二阶带通滤波器 d)带阻滤波器(NF) 图4 压控电压源双T 二阶有源带阻滤波器 三、实验仪器 1.示波器 2.信号源 3.万用表 4.直流稳压电源 四、实验容

1.二阶低通滤波器 ①参照图4 电路安装二阶低通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 17k Ω,R4 =10k Ω, C1 = C2 = C =0.1μF,计算截止频率fc、通带电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万用 表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并将 测量结果与理论值相比较。 2.二阶高通滤波器 ①参照图6 电路安装二阶高通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 1.7k Ω,R4 = 10kΩ,C1 = C2 = C = 0.1μF,Q = 0.707,计算截止频率fc 和通带电压放大倍数Auo 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并 将测量结果与理论值相比较。 3.二阶带通滤波器 ①参照图9 电路安装二阶带通滤波器。元件值取:R1 = R2 = R = 1.5kΩ,R3 = 2R = 3kΩ,R4 = 10kΩ, R5 = 19kΩ,C1 = C2 = C = 0.1μF,计算截止频率fc、通带电压放大倍数Auo 和 Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 4.二阶带阻滤波器 ①参照图12 电路安装二阶带通滤波器。元件值取:R1 = R2 =R = 3kΩ,R3 = 0.5R = 1.5kΩ,R4 = 20kΩ, R5 = 10kΩ,C1 = C2 = C = 0.1μF,C3 = 2C = 0.2μF,计算截止频率fc、通带 电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 五、实验预习和仿真 1.压控电压源型有源二阶低通滤波器 仿真电路:

MATLAB模拟与仿真数字低通滤波器

MATLAB模拟与仿真数字低通滤波器 电子信息科学与技术专业学生田莎莎 指导老师孙红艳 摘要:数字滤波器因其具有精度高、可靠性好、灵活性大等优点而在工程上应用相当广泛。而MATLAB语言具有编程效率高,调试手段丰富,扩充能力强等特点,因此用MATLAB设计数字低通滤波器更方便。本文首先介绍了MA TLAB的发展、特点和主要功能,其次介绍了FIR滤波器原理、滤波器类型,IIR滤波器原理、经典设计方法。最后介绍了FIR和IIR滤波器的MA TLAB仿真。关键词:数字低通滤波器;数字滤波器;FIR;IIR;MA TLAB Simulation and Design of Low Pass Filter Based On MATLAB Student majoring in Electronic Information Science and Technology Tian Sha-sha Tutor Sun Hong-yan Abstract:The digital filter is quite extensive in engineering application because of its high precision, good reliability and flexibility. MATLAB is a kind of language which facing the science and engineering calculation. Its characteristic is high efficiency, commissioning means programming rich, strong ability to extend and so on.Therefor ,it is convenient to design the digital low pass filter based on MATLAB.This paper introduces finite impulse response digital filter (FIR) and infinite impulse response digital filter (IIR) respectively.It mainly introduces that the FIR digital filter types and MA TLAB programming design,IIR digital filter theory and simulation using MA TLAB. Key words: low pass digital filter;digital filter;FIR;IIR;MATLAB 引言当代信息技术正向着数字化、网络化和智能化的大趋势发展,而数字化是网络化和智能化的基础,实际生活中遇到的信号多种多样,例如控制信号、气象信号、生物医学信号、地震勘探信号、遥感遥测信号、机械振动信号、广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号,等等。上述这些信号大部分是模拟信号,也有小部分是数字信号。模拟信号是自变量连续的函数,自变量可以是一维的,也可以是二维或多维的。绝大多数情况下一维模拟信号的自变量是时间,通过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号就称为一维数字信号。因此,实际上用数字序列表示的信号就是数字信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变

FIR数字滤波器设计与软件实现

实验二:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。(3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。

(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止 频率 p 20.24 p f ωπ =T=π,通带最大衰为0.1dB,阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为60dB。 ○4实验程序框图如图2所示,供读者参考。

FIR低通滤波器加窗效应分析要点

目录 一.摘要 (2) 二.引言 (3) 三.FIR滤波器设计 (4) 3.1 线性相位FIR滤波器的条件与特点 3.2 用窗函数法设计FIR滤波器的基本原理 3.3 用窗函数法设计FIR滤波器的一般步骤 3.4 FIR滤波器加窗效应分析 3.5 几种常用窗函数简介 四 MATLAB仿真滤波实现 (14) 4.1 MATLAB软件简介 4.2 设计中主要用到的MATLAB函数 4.3 实验程序及结果分析 五心得体会与总结 (21) 六参考文献 (22) 1

一.摘要 数字滤波器一词出现在60年代中期。由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。 数字滤波器是一个离散时间系统(按预定的算法,将输入离散时间信号(对应数字频率)转换为所要求的输出离散时间信号的特定功能装置)。应用数字滤波器处理模拟信号(对应模拟频率)时,首先须对输入模拟信号进行限带、抽样和模数转换。数字滤波器输入信号的数字频率(2π*f/fs,f为模拟信号的频率,fs为采样频率,注意区别于模拟频率),按照奈奎斯特抽样定理,要使抽样信号的频谱不产生重叠,应小于折叠频率(ws/2=π),其频率响应具有以2π为间隔的周期重复特性,且以折叠频率即ω=π点对称。为得到模拟信号,数字滤波器处理的输出数字信号须经数模转换、平滑。数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波器在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。 数字滤波器有低通、高通、带通、带阻和全通等类型。它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。应用最广的是线性、时不变数字滤波器,以及f.i.r滤波器。 2

模拟低通滤波器转换为数字高通滤波器

本科生毕业论文设计 题目模拟低通滤波器转换为数字高通滤波器 作者姓名刘金星 指导教师于红 所在学院职业技术学院 专业(系)应用电子技术教育 班级(届) 2013届 完成日期 2013 年月日

目录 中文摘要、关键词 (Ⅰ) 英文摘要、关键词 (Ⅱ) 第1章滤波器概述 (1) 1.1滤波器简介............... (错误!未定义书签。) 1.2我国滤波器的发展概况及现状(错误!未定义书签。) 1.3 滤波器的分类............. (错误!未定义书签。) 1.4模拟滤波器与数字滤波器比较及各自优缺点(错误!未定义书签。) 1.5设计的主要任务 (3) 第2章各种滤波器的基本特性以及作用 (6) 2.1 各种滤波器的幅频特性 (6) 2.2 各种滤波器的作用 (7) 2.2.1低通滤波器(LPF) (7) 2.2.2高通滤波器(HPF) (9) 第3章课题设计原理 (4) 3.1简单模拟低通滤波器的设计指标 (4) 3.2两种不同实现转变的设计方法简介 (4) 3.3双线性变换法的优点 (5) 第4章电路参数计算以及Matlab软件介绍 (12) 4.1电路参数的计算 (12) 4.2仿真软件MatlabR2010a的介绍与演示 (12) 第5章巴特沃斯滤波器仿真以及最终结果仿真.....() 5.2.1巴特沃斯低通滤波器仿真(错误!未定义书签。2) 5.2.2数字高通滤波器的仿真.. (错误!未定义书签。4) 第6章总结 (17)

致谢 ....................... (错误!未定义书签。8) 参考文献 (19)

实验五IIR数字滤波器设计及软件实现

实验四:IIR数字滤波器设计及软件实现 一、实验内容及步骤 1、调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号 st,三路信号在时域混叠无法在时域分离,但频域是可分离的,所以可以通过滤波的方法在频域分离。 2、要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可 以分离st中三路抑制载波单频调幅信号的三个滤波器(低通、高通、带通)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1db,阻带最小衰减为60db. 3、编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计三个椭圆滤 波器,并绘图显示其损耗函数曲线。 4、调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生 的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号yn1、yn2、yn3的,并绘图显示其时域波形,观察分离效果。 二、实验结果显示 原信号图形:

高通滤波器 输出波形

带通滤波器输出波形

低通滤波器输出波形

带阻滤波器输出波形

三、实验结论:由上面所绘图形可知,利用数字滤波器完全可以将时域混叠而频域未混叠的波形分开,达到滤波目的。 四、思考题 (1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。答:第一路调幅信号的调制信号频率为100HZ,载波频率为1000HZ;第二路调幅信号的调制信号频率为50HZ,载波频率为500HZ;第三路调幅信号的调整信号频率为25HZ,载波频率为250HZ。 (2)信号产生函数mstg中采样点数N=1600,对st进行N点FFT可以得到6根理想谱线。如果取N=1800,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg 中采样点数N的值,观察频谱图验证您的判断是否正确? 答: 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。分析可知,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz 的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

数字滤波器与模拟滤波器设计比较

数字滤波器与模拟滤波 器设计比较 -CAL-FENGHAI.-(YICAI)-Company One1

目录 摘要................................................................................................................................................. I ABSTRACT .................................................................................................................................... II 1绪论.. (1) 滤波器的应用 (1) 滤波器的发展现状 (1) 2 模拟滤波器设计 (3) 低通滤波器设计 (3) 巴特沃思型低通滤波器设计 (3) 切比雪夫型低通滤波器设计 (5) 高通滤波器设计 (8) 巴特沃思型高通滤波器设计 (8) 带通滤波器设计 (10) 切比雪夫型带通滤波器设计 (13) 带阻滤波器设计 (15) 巴特沃思型带阻滤波器设计 (16) 3 数字滤波器设计 (19) 数字滤波器概述 (19) 数字滤波器的基本结构 (21) 数字滤波器的设计原理 (24) 有限冲激响应滤波器设计 (25) 无限冲激响应滤波器设计 (27) 4 模拟滤波器与数字滤波器比较 (28) 模拟滤波器和数字滤波器优缺点 (28) 模拟滤波器与数字滤波器比较 (28)

FIR数字滤波器的设计与实现

FIR 滤波器的设计 一.摘 要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有 着广泛的应用。其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。 二.关键词:FIR 窗函数 系统函数 MATLAB 三.引言: 数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。 (1).FIR 滤波器的基本结构 在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为: n N n z n h z H ∑-== 1 )()( 。从该系统函数可看出,FIR 滤波器有以下特点: 1)系统的单位冲激响应h(n)在有限个n 值处不为零; 2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统); 3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。 1.FIR 滤波器实现的基本结构有: 1) 横截型(卷积型、直接型) a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为: 。 则可以直接由差分方程得出FIR 滤波器 结构如下图所示: 这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。 b .线性相位FIR 滤波器的横截型结构 若h(n)呈现对称特性,即此FIR 滤波器具有线性相位,则可以简化成横截型结构,下面分情况讨论: ①N 为奇数时线性相位FIR 滤波器实现结构如图所示:

模拟滤波器的特性测定

实验六、滤波器的频响特性测定 光信二班 一、 实验目的 1) 了解RC 无源和有源滤波器的种类、基本结构及其特性 2) 对比研究无源和有源滤波器的滤波特性 3) 学会列写无源和有源滤波器网络函数的方法 二、 实验原理 (1)滤波器是对输入信号的频率具有选择性的一个双口网络,它允许某些基本频率(通常是某个频带范围)的信号通过,而其他频率的信号受到衰减或抑制,这些网络可以是由RLC 原件或RC 原件构成的无源滤波器,也可以是由RC 元件和有源器件构成的有源滤波器。 (2)根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 成低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )和带阻滤波器(BEF )四种。把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的分界点的频率c f 称为截止频率或称 转折频率。图2-6-1中的Aup 为通带的电压放大倍数,c f 为截止频率, 0f 为中心频率,L f 和H f 分别为低端和高端截止频率。 其中,低通滤波器的通频带为BW=(0~c w )=2∏(0~c f )。 高通滤波器的通频带为:BW=(c w ~∞)=2∏(c f ~∞)。 高通滤波器的通频带为: BW= H w - L w =2∏(H f -L f )。 带通滤波器的通频带为:BW=2∏(0~L f )∪2∏(H f ~∞)。

图2-6-1 各种滤波器的理想幅频特性 (3)滤波器的频响特性定义如图2-6-2所示。 滤波器的频响特性H (jw ),又称为传递函数或系统函数,它全面反映了滤波器的幅频和相频特性; . 2 22. 11 1 ()()() U H jw A w w U U U ???∠= = =∠∠式中, 221 1()m m U U A w U U = = 为 滤波器的幅频特性(又称为转移电 压比;1()w ?? ??=-为滤波器的相频特性。可以通过实验方 法来测量滤波器的上述幅频特性()A w 。 (4)本实验中四种滤波器的实验线路如图2-6-3所示。 图2-6-3 各种滤波器的实验线路图

实验四(IIR数字滤波器设计及软件实现)讲解学习

实验四(I I R数字滤波器设计及软件实现)

10.4实验四IIR数字滤波器设计及软件实现 10.4.1 实验指导 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。 3. 实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图

10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 图10.4.1 三路调幅信号st 的时域波形和幅频特性曲线 (2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。 提示:抑制载波单频调幅信号的数学表示式为 0001()cos(2)cos(2)[cos(2())cos(2())]2 c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。所以,1路抑制载波单频调幅 信号的频谱图是关于载波频率f c 对称的2根谱线,其中没有载频成分,故取名 为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分

相关主题
文本预览
相关文档 最新文档