当前位置:文档之家› 2020个体化给药方案1

2020个体化给药方案1

2020个体化给药方案1

2020个体化给药方案1

浅谈个体给药方案的制定

浅谈个体给药方案的制定 作者高宝根 在疾病的治疗过程中,一方面要根据病情选择合适的药物,另一方面要搞清药物的体内过程。后者就是依据药动学和药效的原理来计算出每种药物在体内的参数。同一种药物在不同人体的药——时曲线不同,参数值也不同,有时有很大的差别;药品说明书上的用药剂量和用药间隔是根据健康人体参数得到的,所以说明书上用量和用法只能作为参考。实际情况是:不同病人,体征不同,肝、肾功能不同,原来的参数已经完全不适合病人,同一种药物在不同病人之间参数有很大差异,这就决定了不同病人的用量用法是不同的,况且在联合用药中药物的相互作用也可以使药物的体内参数发生变化,即说明书上的用法和用量已经完全不符合病人的实际情况。所以要使药物起到事半功倍的效果,一定要做到病人用药的个体化,即依据某种药物或联合用药时病人体内参数变化制订用药剂量、用药间隔,使疾病组织保持有效的浓度,这是临床药学工作的主要内容和临床药师的主要责任。 炮弹的运行依据炮手的经验和大炮的方向及角度,其弹头不能准确地摧毁军事目标,且对周围非军事设施破坏大;而导弹通过参数来控制运行路线,其弹头能够准确地摧毁军事目标,且对周围非军事设施破坏小,使现代战争的发生了根本的变化。 在国外临床药师依据参数制订个体化给药方案比较普及,用药精确就象使用导弹一样,疾病得到了很好的控制和治愈,并使药物的不

良反应和副作用很小;而我国的用药过程一般没有临床药师的参与,临床医生普遍根据经验和说明书用药,用药粗放就象使用炮弹一样,病人用药效果不佳,药物的不良反应和副作用很大,药源性疾病发生率高,药源性损害事件频发,所以某些药物通过参数制定个体化给药方案将会使一些疾病的治疗得到质的飞跃。 2011-12-15

基因检测基因分型指导临床个体化用药

基因分型检测指导个体化用药 据联合国世界卫生组织统计,全球死亡患者中三分之一是死于不合理用药,而非死于自然疾病本身。我国卫生部药品不良反应监测中心的数据为:住院病人中,每年约有19.2万人死于药品不良反应;家庭用药不良反应需要住院治疗的病人则多达250万人。 人们对药物毒副作用不重视是药物不良反应的重要原因。处方中的剂量多是常规剂量,对患者来说未必准确,没考虑个人代耐受因素,长期过量用药,很可能导致慢性药物中毒。 基因组的多态性是导致药物反应多态性的重要因素。实际上,每个人有自己特有的药物代基因,决定着药物的代和耐受剂量,只有根据自己的耐受剂量服药,才是最合理的安全剂量。进行药物代相关基因型检测,合理调整用药剂量,使长期用药更安全,毒副作用更小,效果更好。 药物基因组学正是从已知基因对药物效应的影响,确定药物作用的靶点,研究从表型到基因型的药物反应个体多样性。从基因水平研究证明和阐述药物疗效以及药物作用的靶位、作用模式和毒副作用。揭示药物反应多态性这些差异的遗传特征,鉴别基因序列中的差异,并以药物效应及安全性为目标,研究各种基因突变与药效及安全性之间的关系。通过对药物疗效与安全性的遗传体质评估,减少药物毒副作用及耐药现象发生,实现“个性化用药”的目标。 我们第四军医大学药学系药物基因组教研室经过研究,已开发了结核病用药指导的基因检测,乙肝治疗药物拉米夫定、抗凝剂药物华法林以及铂类、5-氟尿嘧啶、巯基嘌呤类等肿瘤化疗药物的用药指导基因检测项目,倡导基于基因分型的个体化合理用药。同时还开发了人乳头瘤病毒筛查与宫颈癌预警项目。 1.结核病用药指导的基因检测: 近年来,结核分枝杆菌耐药现象日趋严重,大大削弱了抗结核药物的疗效。目前结核菌的耐药性问题已成为结核病疫情上升和难以控制的一个重要原因。研究表明,结核分枝杆菌基因中基因突变所引起的耐药性是结核分枝杆菌产生耐药的主要方式。多数导致结核分枝杆菌耐药的基因突变机理比较明确,异烟肼、利福平、乙胺丁醇是一线抗结核药物。kat G 基因的点突变与异烟肼耐药性密切相关,kat G 基

个体化用药基因检测

个体化用药基因检测 临床意义:药物反应的个体差异是药物治疗中的普遍现象,也是临床药物治疗失败与不良反应发生的重要原因。其中各种药物相关代谢酶的基因单核苷酸多态性(SNP)成为影响患者药物治疗有效性及毒副反应的重要因素之一。明确患者基因多态性(SNP)是药物精准治疗的前提。目前为止,美国FDA已批准了有约140个需要基因信息指导才能准确治疗的药物,CFDA也推荐卡马西平等药物通过筛查基因避免发生诸如表皮剥脱性皮炎严重不良反应。仁济医院检验科为更好地服务于临床,开展基于患者基因SNP的个体化用药基因检测项目。具体个体化用药基因检测项目见“检验信息-临床分子诊断菜单”。 采血时间:周一至周六门诊时间 检测时间:周一至周五 报告时间:5个工作日 高敏HBV-DNA(检测下限20 IU/mL)检测

临床意义:为了满足临床对乙肝患者病毒DNA基线水平评估、药物疗效与耐药监控、治疗终点判定及治疗后复发的早期检测。检验科开展高敏乙肝病毒DNA (高敏HBV-DNA)检测。高敏HBV-DNA检测灵敏度高(检测下限20 IU/mL),线性范围宽(20 – 109 IU/mL),核酸提取、纯化、加样实现全自动化操作,降低人为误差,提高检测准确性。检验过程从核酸提取开始加入内标,全程监控(提取+扩增),防止假阴性。 采血时间:周一~周六 检测时间:周一~周六 报告时间:3工作日 高通量基因测序产前筛查(胎儿非整倍体无创产前基因检测) 临床意义:仁济医院是国家卫生计生委批准的“高通量基因检测技术进行产筛与疾病诊断”试点单位,为了满足临床诊断需求,检验科和妇产科联合在国家卫生计生委规范要求下开展新项目“高通量基因测序产前筛查”的检测。 无创胎儿染色体非整倍体产前检测项目(简称无创DNA)是筛查胎儿染色体疾病,降低出生缺陷的项目,是一种精确的筛查技术,准确率为99%。本项目定性检测孕周为12-24周的高危孕妇(如产前常规筛查胎儿染色体异常高风险、35岁以上高龄孕妇等)所孕育胎儿的染色体非整倍体(13-三体、18-三体、21-三体)。通过抽取孕妇外周血(8-10mL),通过高通量测序平台对母亲外周血游离胎儿

迪安肿瘤个体化治疗

迪安肿瘤个体化治疗 个体化治疗前沿简介>> 大规模人群调查和世界卫生组织调查均发现药物安全性问题是住院病人致死最重要的原因之一,居于全部死亡原因的第五位。 “全世界每年死亡的患者中,有1/3是药物不良反应所致。这是由传统的给药方式造成的,医生没有考虑人的个体差异,而是千人一药,千人一量。” 周宏灏——我国遗传药理学的开拓者、中国工程院院士。 华法林——常用抗凝药,在美国每年200万患者在服用该药,造成高达10万例严重的副作用,其中包括数千人死亡的。该药个体剂量差异可相差20倍,剂量过大会使病人有出血的危险;剂量太少可能会导致血栓,心脏病,中风,甚至死亡。 最佳用药剂量很大程度上取决于药物相关基因变异,即单核苷酸多态性(SNP)。SNP 的复杂性,决定了药物反应的多态性,所以个体化用药,也意味着理想的治疗需要进行全基因组的药物筛选。目前,个体化治疗已经成为恶性肿瘤、高血压、糖尿病等重大慢性疾病临床治疗的发展方向和最有效的手段。 肿瘤个体化用药及有关检测 目前常用的抗肿瘤化疗药物对患者治疗的有效性低于70%,约20%-35%的患者接受了不恰当的药物治疗。如果肿瘤治疗能够同病异治、因人而异、实施个体化治疗,将能够大大提高疗效,避免过度治疗和降低患者经济负担,减少医疗资源的浪费。随着药物基因组学以及蛋白质组学、转录组学等高通量分子检测技术的出现,分子靶向技术治疗癌症的个体化治疗手段——即从个体基因组中分析和鉴别患者之间存在的疾病相关的个体差异,并利用这些差异来合理的指导临床治疗,已经成为医学界广泛共识。 卫生部2010年11月首次发布了《结直肠癌诊疗规范》,明确规定:确诊为复发或转移性结直肠癌时,应进行相关基因状态检测,制定个体化治疗方案,患者确定为复发或转移性结直肠癌接受爱必妥、帕尼单抗(抗EGFR单抗)时,必须检测肿瘤组织的KRAS基因状态。肿瘤细胞表面存在着接收不同信号的通道。抗EGFR单抗通过阻断EGFR二聚体的形成,抑制其下游的细胞内信号传导,从而抑制肿瘤细胞的存活、增值等。但如果KRAS基因突变可旁路激活细胞内信号传导,从而导致抗EGFR单抗失效。所以,通过检测KRAS基因有否突变,医生就可以有针对性的区别给药。 南京军总全军病例中心——迪安分子病理诊断中心 南京军区南京总医院病理科是国内规模最大、水平最高的病理专业科室之一,同时开展医教研全面工作的病理专业科室,2005年首批成为全军临床病理中心。国内独立实验室领跑者——迪安公司与南京军总病理中心整合优质技术资源,发起建立了“南京军总全军病理中心-迪安分子病理真的中心”。配备了领先的技术平台,包括基因芯片、基因测序、实时荧光PCR、荧光原位杂交技术等,多位博士、教授、主任医师亲自指导,旨在为华东乃至全国的医疗机构和患者提供高质量的肿瘤分子变了检测、诊断、咨询及学术推广服务。中心是全国性的、少有的具有医疗资质的专业分子病理诊断平台,是您需要的肿瘤个体化用药相关检测服务的最佳选择。

肿瘤个体化治疗检测技术.doc

肿瘤个体化治疗检测技术指南 (试行)

前言 肿瘤的个体化治疗基因检测已在临床广泛应用,实现肿瘤个体化用药基因检测标准化和规范化,是一项意义重大的紧迫任务。本指南从诊断项目的科学性、医学实验室检测方法的准入、样本采集至检测报告发出的检测流程、实验室质量保证体系四个方面展开了相关论述,使临床医生能够了解所开展检测项目的临床目的、理解检测结果的临床意义及对治疗的作用;医学实验室为患者或临床医护人员提供及时、准确的检验报告,并为其提供与报告相关的咨询服务。检测技术的标准化和实验室准入及质量保证对临床和医学实验室提出了具体的要求,以最大程度的保证检测结果的准确性。 本指南是参考现行相关的法规和标准以及当前认知水平下制定的,随着法规和标准的不断完善,以及肿瘤个体化治疗靶点基因的不断发现,本技术规范相关内容也将进行适时调整。 本指南起草单位:中国医学科学院肿瘤医院分子肿瘤学国家重点实验室、苏州生物医药创新中心,经国家卫生计生委个体化医学检测技术专家委员会、中国抗癌协会相关专业委员会、中华医学会检验医学分会、中华医学会肿瘤学分会的专家修订。 本指南起草人:詹启敏、曾益新、王珏、姬云、钱海利、李晓燕、孙石磊

目录 1. 本指南使用范围 (1) 2. 简介 (1) 3. 标准术语和基因突变命名 (1) 3.1标准术语 (1) 3.2 基因突变命名 (2) 3.3 参考序列 (2) 3.4 各类变异 (2) 4. 分析前质量保证 (5) 4.1 样本类型及获取 (5) 4.2 采样质量的评价 (6) 4.3 样本采集中的防污染 (6) 4.4 样本运送和保存 (6) 5.分析中质量保证 (7) 5.1 实验室设计要求 (7) 5.2 检测方法 (7) 5.3 DNA提取方法与质量控制 (13) 5.4 RNA提取方法与质量控制 (14) 5.5 试剂的选择、储存及使用注意事项 (14) 5.6 核酸扩增质量控制 (15) 5.7 设备维护和校准 (15) 5.8 人员培训 (15) 5.9 方法的性能验证 (16)

麻醉领域的个体化用药,药物基因组学(Evan Kharasch)

Pharmacogenetics in Anesthesia Evan D. Kharasch, M.D., Ph.D. St. Louis, Missouri 302 Page 1 Pharmacogenetics (or pharmacogenomics) aims to understand the inherited basis for variability in drug response. The promise of pharmacogenetics has been a change from “one drug and dose fits all” to individualized predictive medicine, or “the right drug at the right dose in the right patient”. Anesthesiology as a specialty played a key role in developing pharmacogenetics. Prolonged apnea after succinylcholine, thiopental-induced acute porphyria, and malignant hyperthermia were clinical problems of the 1960’s whose investigation helped craft the new science of pharmacogenetics. Today we perhaps take for granted the knowledge that they are genetically-based problems, due to variants in pseudocholinesterase, heme synthesis and the ryanodine receptor, respectively. This review will address basic principles of pharmacogenetics and their application to drugs used in anesthetic practice. The term pharmacogenetics was originally defined (1959) as “the role of genetics in drug response”. Since the science of pharmacokinetics (drug absorption, distribution, metabolism, excretion) evolved earlier than pharmacodynamics, early pharmacogenetic studies addressed mainly pharmaco-kinetics. Application (fusion) of the genomic revolution and associated technologies to pharmaco-genetics spawned pharmacogenomics. Pharmacogenetics has been used by some in a more narrow sense, to refer only to genetic factors which influence drug kinetics and dynamics (drug receptor actions), while pharmacogenomics has been used more broadly to refer to the application of genomic technologies (whole-genome or individual gene changes) to drug discovery, pharmacokinetics and pharmacodynamics, pharmacologic response, and therapeutic outcome. Nonetheless, many consider this distinction unimportant and use the two terms interchangeably, as will this review. BASIC CONCEPTS A polymorphism is a discontinuous variation in a population (a bimodal or trimodal distribution). It is different than simple continuous variability (i.e. a unimodal population distribution, even if quite wide). A genetic polymorphism is the presence of multiple discrete states (i.e. for a particular trait) within a population, which has an inherited difference. The complete human genome consists of approximately 3 billion base pairs, which encode approximately 30,000 genes. A single nucleotide polymorphism (SNP) is a variation in the DNA sequence which occurs at a specific base. Polymorphisms are relatively common, occurring by definition in ≥1% of the population, while mutations are less common, occurring in <1%. Only 3% of DNA consists of sequences which code for protein (exons). Other portions of the DNA include promoter regions (near the transcription initiation site), enhancer regions (which bind regulatory transcription factors), and introns (DNA sequences which do not code for protein). After exons and introns are transcribed, the intronic mRNA is excised and the exonic mRNA is spliced together to form the final mature mRNA, which then undergoes translation into protein. SNPs are frequent, occurring in approximately 1:100-1:1000 bases. SNPs and mutations may occur in the coding or noncoding regions of the DNA. Since most occur in the latter, they are usually synonymous (or silent, having no effect on proteins), although intronic changes and promoter variants can change protein expression. Non-synonymous SNPs result in a change in an amino acid. A conservative change results in a similar amino acid that does not alter protein function, while a non-conservative change yields an amino acid which alters protein structure or function. These latter SNPs may be clinically significant. SNPs are not the only events which can cause RNA and protein changes; others are deletions, insertions, duplications, and splice variants, however these are not inherited. Multiple SNPs can occur in the DNA which encodes a particular protein. A haplotype is a set of closely linked alleles or DNA polymorphisms which are inherited together. While SNPs are important, haplotypes are more clinically relevant. Polymorphisms can be classified at the DNA locus (which depicts the normal “wild-type” and the altered base pair; for example the mu opioid receptor gene polymorphism at base pair 118 which codes for changing an adenine nucleotide to a guanine is abbreviated as A118G, or 118 A>G); at polymorphism changes the amino acid at position 40

临床个体化用药

个体化用药研究 充分考虑每个病人的遗传因素(即药物代谢基因类型)、性别、年龄、体重、生理病理特征以及正在服用的其它药物等综合情况的基础上制定安全、合理、有效、经济的药物治疗方式称为个体化用药。个体化用药能够减少药物浪费、减轻病人的经济负担和时间花费。 个体化用药是现代医学用药的重大进展,我国临床药理学的快速发展始于20世纪70年代,而国外发展得更早一些[1]。临床药代动力学理论的建立和完善,使得治疗医学领域产生了一门重要技术—治疗药物监测(TDM),并在近二十多年的医学实践中发挥重大作用。随着人类基因组学的发展,以及临床药物疗效与毒副作用个体多样性的表现,近三年来,国外又提出了药物基因组学,它可以提高用药的安全性和有效性,减少药物不良反应的发生,为发展个体化用药提供了新的理论依据。 一、药物动力学研究与个体化用药 临床药代动力学理论为临床个体化给药提供了理论基础。80年代后期,在我国形成了治疗药物监测的新体系。治疗药物监测的目的,是通过测定体液(或血液)中药物浓度,利用药代动力学的原理和计算方法,使给药方案个体化,提高药物的疗效、避免或减少毒性反应。临床使用的药物中有一部分可通过此法进行检验。药代动力学的主要内容是随着时间变化,药物及其代谢产物在生物体液、组织和排泄物中定量变化的规律。为了较为正确地描述需采用适当的数学模型,建立微分方程。一般用房室模型来说明不同药物进入体内的转运。 例如环孢素在小肠吸收时可被小肠壁上皮细胞中的CYP3A酶系代谢或被小肠上皮细胞表达的P一糖蛋白阻止吸收,吸收后主要经肝脏的CYP3A酶系代谢。因此,环孢素在人体内的吸收和消除都具有非线性药动学特点,血液中药物谷浓度与服用剂量不成比例,稍微增减剂量,均会引起血药浓度较大波动。药师应告知病人不要随意减量。临床上将环孢素改为150 mg/d与125 mg/d交替使用,这样易致血药浓度波动大,建议改为135 mg/d,结果血药浓度稳定在130 ng/m左右,环孢素在体

临床给药方案的计算

临床给药方案的计算 研究药物代谢动力学的目的之一是根据药物的动力学参数及其方程式估算给药的适当剂量(D 或X )、恰当的给药间隔时间(t )以及在体内及早达到和维持稳态平衡血药浓度(C ss ),用以制订一般的给药方案;对具体的病人(个体化)制订给药方案时,则需考虑到该病人的具体情况(如肝、肾、心功能、有无酸、碱中毒,尿液PH 值等)加以调整。 给药方案的设计是根据所需达到的有效浓度制订剂量和给药间隔时间(或静滴速度),如可以固定剂量而调整给药间隔时间;也可固定给药间隔而调整剂量。 以下所列举的一些计算公式可用于一室模型药物,但也适用于二室模型者。 (1)静脉滴注给药 一室模型静滴公式: 或 式中 为滴注速度;K 为消除速率常数;V d 为表观分布容积; 为分布容积系数(V d /体重);BW 为体重(kg )。 例1 以利多卡因静滴治疗心律失常患者,期望能达到的稳态血药浓度为3μg /ml ,该患者,体重60kg ,应该以什么滴注速度恒速滴注?利多卡因的k =0.46/小时;V d =100L( = 1.7 L/kg )。 计算: = 3μg /ml ×100L ×0.46/小时=3mg/L ×100L ×0.46/小时=138mg/小时=2.3mg/分 例2 上述病人,为了及早地使血药浓度达到稳态血药浓度,应静脉注射多少? 静脉注射负荷量(D 0*)=C SS ?V C 式中V C 为中央室分布容积,利多卡因的V C =30L 计算:D 0*=3μg /ml ?30L=3mg/L ?30L=90mg 例3 上述病人,如以160mg /小时速度滴注,要求达到血药浓度3μg /ml ,需持续滴 K V C K d SS ??=0K BW C K SS ???'?=00K ?'?' K V C K d SS ??=0

肿瘤个体化治疗检测技术指南(总40页)

肿瘤个体化治疗检测技术指南(总40页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

肿瘤个体化治疗检测技术指南 (试行)

前言 肿瘤的个体化治疗基因检测已在临床广泛应用,实现肿瘤个体化用药基因检测标准化和规范化,是一项意义重大的紧迫任务。本指南从诊断项目的科学性、医学实验室检测方法的准入、样本采集至检测报告发出的检测流程、实验室质量保证体系四个方面展开了相关论述,使临床医生能够了解所开展检测项目的临床目的、理解检测结果的临床意义及对治疗的作用;医学实验室为患者或临床医护人员提供及时、准确的检验报告,并为其提供与报告相关的咨询服务。检测技术的标准化和实验室准入及质量保证对临床和医学实验室提出了具体的要求,以最大程度的保证检测结果的准确性。 本指南是参考现行相关的法规和标准以及当前认知水平下制定的,随着法规和标准的不断完善,以及肿瘤个体化治疗靶点基因的不断发现,本技术规范相关内容也将进行适时调整。 本指南起草单位:中国医学科学院肿瘤医院分子肿瘤学国家重点实验室、苏州生物医药创新中心,经国家卫生计生委个体化医学检测技术专家委员会、中国抗癌协会相关专业委员会、中华医学会检验医学分会、中华医学会肿瘤学分会的专家修订。 本指南起草人:詹启敏、曾益新、王珏、姬云、钱海利、李晓燕、孙石磊

目录 1. 本指南使用范围.................................. 错误!未指定书签。 2. 简介............................................ 错误!未指定书签。 3. 标准术语和基因突变命名.......................... 错误!未指定书签。 3.1标准术语.................................................... 错误!未指定书签。 3.2 基因突变命名 ............................................... 错误!未指定书签。 3.3 参考序列 ................................................... 错误!未指定书签。 3.4 各类变异 ................................................... 错误!未指定书签。 4. 分析前质量保证.................................. 错误!未指定书签。 4.1 样本类型及获取.............................................. 错误!未指定书签。 4.2 采样质量的评价 (6) 4.3 样本采集中的防污染.......................................... 错误!未指定书签。 4.4 样本运送和保存.............................................. 错误!未指定书签。 5.分析中质量保证................................... 错误!未指定书签。 5.1 实验室设计要求.............................................. 错误!未指定书签。 5.2 检测方法 ................................................... 错误!未指定书签。 5.3 DNA提取方法与质量控制...................................... 错误!未指定书签。 5.4 RNA提取方法与质量控制...................................... 错误!未指定书签。 5.5 试剂的选择、储存及使用注意事项.............................. 错误!未指定书签。 5.6 核酸扩增质量控制............................................ 错误!未指定书签。 5.7 设备维护和校准.............................................. 错误!未指定书签。 5.8 人员培训 ................................................... 错误!未指定书签。 5.9 方法的性能验证.............................................. 错误!未指定书签。

2015肿瘤个体化治疗检测技术指南

2015肿瘤个体化治疗检测技术指南(试行) 发布时间:2015-08-04作者:SFDA 前言 肿瘤的个体化治疗基因检测已在临床广泛应用,实现肿瘤个体化用药基因检测标准化和规范化,是一项意义重大的紧迫任务。本指南从诊断项目的科学性、医学实验室检测方法的准入、样本采集至检测报告发出的检测流程、实验室质量保证体系四个方面展开了相关论述,使临床医生能够了解所开展检测项目的临床目的、理解检测结果的临床意义及对治疗的作用;医学实验室为患者或临床医护人员提供及时、准确的检验报告,并为其提供与报告相关的咨询服务。检测技术的标准化和实验室准入及质量保证对临床和医学实验室提出了具体的要求,以最大程度的保证检测结果的准确性。 本指南是参考现行相关的法规和标准以及当前认知水平下制定的,随着法规和标准的不断完善,以及肿瘤个体化治疗靶点基因的不断发现,本技术规范相关内容也将进行适时调整。 本指南起草单位:中国医学科学院肿瘤医院分子肿瘤学国家重点实验室、苏州生物医药创新中心,经国家卫生计生委个体化医学检测技术专家委员会、中国抗癌协会相关专业委员会、中华医学会检验医学分会、中华医学会肿瘤学分会的专家修订。 本指南起草人:詹启敏、曾益新、王珏、姬云、钱海利、李晓燕、孙石磊 DNA RNA.jpg 目录 1. 本指南使用范围 1 2. 简介 1 3. 标准术语和基因突变命名 1

3.1标准术语 1 3.2 基因突变命名 2 3.3 参考序列 2 3.4 各类变异 2 4. 分析前质量保证 5 4.1 样本类型及获取 5 4.2 采样质量的评价 6 4.3 样本采集中的防污染 6 4.4 样本运送和保存 6 5.分析中质量保证 7 5.1 实验室设计要求 7 5.2 检测方法 7 5.3 DNA提取方法与质量控制 13 5.4 RNA提取方法与质量控制 14 5.5 试剂的选择、储存及使用注意事项 14 5.6 核酸扩增质量控制 15 5.7 设备维护和校准 15 5.8 人员培训 15 5.9 方法的性能验证 16 6. 分析后质量保证 17 6.1 检测结果的记录 17 6.2 失控结果的记录与分析 17

基因检测基因分型指导临床个体化用药修订稿

基因检测基因分型指导临床个体化用药 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

基因分型检测指导个体化用药 据联合国世界卫生组织统计,全球死亡患者中三分之一是死于不合理用药,而非死于自然疾病本身。我国卫生部药品不良反应监测中心的数据为:住院病人中,每年约有万人死于药品不良反应;家庭用药不良反应需要住院治疗的病人则多达250万人。 人们对药物毒副作用不重视是药物不良反应的重要原因。处方中的剂量多是常规剂量,对患者来说未必准确,没考虑个人代谢耐受因素,长期过量用药,很可能导致慢性药物中毒。 基因组的多态性是导致药物反应多态性的重要因素。实际上,每个人有自己特有的药物代谢基因,决定着药物的代谢和耐受剂量,只有根据自己的耐受剂量服药,才是最合理的安全剂量。进行药物代谢相关基因型检测,合理调整用药剂量,使长期用药更安全,毒副作用更小,效果更好。 药物基因组学正是从已知基因对药物效应的影响,确定药物作用的靶点,研究从表型到基因型的药物反应个体多样性。从基因水平研究证明和阐述药物疗效以及药物作用的靶位、作用模式和毒副作用。揭示药物反应多态性这些差异的遗传特征,鉴别基因序列中的差异,并以药物效应及安全性为目标,研究各种基因突变与药效及安全性之间的关系。通过对药物疗效与安全性的遗传体质评估,减少药物毒副作用及耐药现象发生,实现“个性化用药”的目标。 我们第四军医大学药学系药物基因组教研室经过研究,已开发了结核病用药指导的基因检测,乙肝治疗药物拉米夫定、抗凝剂药物华法林以及铂类、5-氟尿嘧啶、巯基嘌呤类等肿瘤化疗药物的用药指导基因检测项目,倡导基于基因分型的个体化合理用药。同时还开发了人乳头瘤病毒筛查与宫颈癌预警项目。

万古霉素个体化给药临床药师指引.

万古霉素个体化给药临床药师指引 (广东省药学会2015年2月6日印发) 卫生部全国细菌耐药监测网(Mohnarin)数据显示,耐甲氧西林金黄色葡萄球菌(Methicillin-resistantStaphylococcus aureus,MRSA)分离率逐年上升,已成为医院感染重要的革兰阳性细菌[1]。 万古霉素作为首个糖肽类抗菌药物,是具有三重杀菌机制的杀菌剂,通过抑制细菌细胞壁的合成、改变细菌细胞膜的通透性以及阻止细菌胞浆内RNA的合成而杀灭细菌,是治疗MRSA 感染的首选药物之一。但由于万古霉素的耳、肾毒性与其浓度相关,故临床应用时需对特定人群进行血药浓度监测。并且在新生儿、儿童重症监护室患者、肥胖者、重症感染患者等人群中万古霉素的研究表明,部分上述患者沿用常规的万古霉素剂量仍无法达到治疗所需的理想血药浓度。因此,为了进一步优化和规范万古霉素在不同人群中的使用,根据患者的病理生理情况调整给药方案,有必要时应进行万古霉素血药浓度监测。 随着研究对不同人群中万古霉素药代动力学差异认知的深化,如何科学、合理、个体化地使用万古霉素已成为临床迫切需要解决的问题。我国各省市间万古霉素血药浓度监护存在一定差异,部分医护人员仍缺乏实际应用经验,严重影响万古霉素疗效的发挥和不良反应的预防。本指引基于国内外指南、专家共识以及临床研究证据,制定出万古霉素的血药浓度监测以及剂量调整方案,为万古霉素的个体化给药提供参考意见。 1万古霉素药动学特征 1.1吸收 腹腔给药生物利用度为:38%~60%[2];滴眼给药:可在前房达到有效治疗浓度[3];口服:口服基本不吸收,生物利用度低于5%[4]。 1.2分布 蛋白结合率:18%(终末期肾病)至55%(正常肾功能),低蛋白血症患者(烧伤、终末期肾病等患者)为19%~29% [5]。肾功能正常者万古霉素表观分布容积见表1。 表1 万古霉素表观分布容积

个体化用药.

1、人CYP2C19基因分型检测 ?【优势】:准确、快速、简便、灵敏、防污染 ?【适用科室】:心内科、神经内科、血液科、血管外科、精神科、消化科 1.临床意义: 细胞色素P450(Cytochrome P450,CYP)同功酶也称药酶,是体内药物代谢的主要酶系,CYP2C19基因编码的S-美芬妥英羟化酶是其重要成员。CYP2C19酶的遗传多态性使不同个体间酶活性存在显著不同。 CYP2C19基因存在至少18种基因多态性,其中*2型和*3型是中国人群中最常见的两种等位基因型,分别为CYP2C19基因 c.681G>A和c.636G>A的点突变。这些点突变引起CYP2C19基因编码 的酶活性丧失,代谢底物的能力减弱,从而引起相关药物代谢的个体化差异,导致相关药物对于不同患者的疗效明显不同。 经由S-美芬妥英羟化酶代谢的临床常用药物包括氯吡格雷、伏立康唑、质子抑制剂类药物、抗抑郁类药物、以及抗癫痫类药物等。 通过检测患者CYP2C19基因型,判断患者代谢速率类型,合理调整用药剂量,是提高相关疾病治愈率,减少毒副作用的有效途径。

2.CYP2C19基因多态性个体化用药 业界对CYP2C19的基因多态性与药物代谢的关系有着广泛研究,大量证据表明CYP2C19的基因多态性与药物的个体差异有着密切的联系。美国FDA已经规定在氯吡格雷等多种药物的包装上加上“Black label“,建议在用药前检测CYP2C19的基因型。 图A:在接受氯吡格雷治疗的1459例研究中,由于心血管病、心肌梗塞或中风等引起的死亡事件在CYP2C19突变者中为12.1%,而在野生型中为8.0%(携带者的HR:1.53;95% CI,1.07-2.19) 图B:在1389位接受PCI(经皮冠状动脉支架术)的患者中,确定的或可能形成支架血栓的患者在CYP2C19突变者中为2.6%,在野生型中占0.8%(HR:3.09;95% CI,1.19-8.00)。

相关主题
文本预览
相关文档 最新文档