材料科学基础课后习题答案第二章
- 格式:doc
- 大小:103.00 KB
- 文档页数:8
材料科学基础A第二章习题与答案2.3 等径球最紧密堆积的空隙有哪两种?一个球周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积的空隙有四面体空隙和八面体空隙。
一个球周围有8个四面体空隙和6个八面体空隙。
2.4 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成四面体空隙数为(n×8)/4=2n个,八面体空隙数为(n×6)/6=n个。
不等径球堆积时,较大的球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。
其中稍小的球体填充在四面体空隙,稍大的球体填充在八面体空隙。
2.7 解释以下概念:(1)晶系:晶胞参数相同的一类空间点阵。
(2)晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。
(3)晶胞参数:表示晶胞的形状和大小的6个参数,即3条边棱的长度a、b、c和3条边棱的夹角α、β、γ。
(4)空间点阵:把晶体结构中原子或分子等结构基元抽象为周围环境相同的阵点之后,描述晶体结构的周期性和对称性的图像。
(5)米勒指数(晶面指数):结晶学中常用(hkl)来表示一组平行晶面的取向,其数值是晶面在三个坐标轴(晶轴)上截距的倒数的互质整数比。
(6)离子晶体的晶格能:1mol离子晶体中的正负离子由相互远离的气态结合成离子晶体时所释放的能量。
(7)原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。
(8)离子半径:以晶体中相邻的正负离子中心之间的距离作为正负离子的半径之和。
(9)配位数:在晶体结构中,该原子或离子的周围,与它相接相邻结合的原子个数或所有异号离子的个数。
(10)离子极化:离子在外电场作用下,改变其形状和大小的现象(或在离子紧密堆积时,带电荷的离子所产生的电场,必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形的现象)。
(11)同质多晶:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象。
第二章思考题与例题1.离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2.从结构、性能等方面描述晶体与非晶体的区别。
3.何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4.比较三种典型晶体结构的特征。
(Al 、α-Fe、Mg 三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。
)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5.固溶体和中间相的类型、特点和性能。
何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6.已知Cu的原子直径为2.56 A ,求Cu的晶格常数,并计算1mm3Cu的原子数。
7.已知Al 相对原子质量Ar(Al )=26.97,原子半径γ=0.143nm,求Al 晶体的密度。
38 bcc 铁的单位晶胞体积,在912℃时是0.02464nm3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm3。
当铁由bcc转变为fcc 时,其密度改变的百分比为多少?9.何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10.在面心立方晶胞中画出[012]和[1 2 3]晶向。
在面心立方晶胞中画出(012)和(1 2 3)晶面。
11.设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。
反之,求(1213)及(21 12)的正交坐标的表示。
(练习),上题中均改为相应晶向指数,求相互转换后结果。
12.在一个立方晶胞中确定6 个表面面心位置的坐标,6 个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。
13.写出立方晶系的{110} 、{100} 、{111} 、{112}晶面族包括的等价晶面,请分别画出。
2-2晶胞是晶体结构中的重复单元,可以取最小原胞如P 胞,也可以取可以反映对称性的较大的原胞如面心立方结构中的晶胞是P 胞的4倍。
空间格子是等同点构成的点阵连成的格子,它和晶体结构的不同之处在于把具体的原子集团抽象成一个等同点或者叫阵点,而其重复的单元是平行六面体。
所以这个平行六面体和晶胞的区别也是平行六面体中的阵点代替了晶胞中的具体的原子团。
2-3(1)由已知1:2:361:31:21所以晶面指数为(3 2 1) (2)晶面指数为(3 2 1) 2-4bcb(011 cbcc2-5 2-6 2-7(略)2-8{0211}有(0112) ,(1102),(0121),(1021)(2011), (0211)。
{2110}有(2110),(0121),(2101),(1210),(0211),(1021),c[0001][)2-9(1)(121)和 (100)面所在的晶带的晶带指数为2:1:01012:0111:0021::==w v u ,所以晶带指数为[012](100)和(010)面所在的晶带的晶带指数为000110::::0:0:1100001u v w ==,所以晶带指数为[001]或写为[001](2)[001]和[111]晶向所决定的晶面的晶面指数为0:1:11100:1110:1101::==l k h ,所以晶面指数为(110)或(110)[010]和[100]晶向所决定的晶面的晶面指数为1:0:01001:0100:0010::==l k h ,所以晶面指数为(001)或(001)2-10(1)(100)晶面的晶面间距nm a d 143.0121100==(110)晶面的晶面间距nm a d 202.001122110=++=(123) 晶面的晶面间距nm ad 0764.0321222123=++=(2)(100)晶面的晶面间距nm a d 183.0121100==(111)晶面的晶面间距nm ad 211.0111111=++=(112)晶面的晶面间距nm a d 149.02112112=++=2.12解:如图:(1)(0,0,0),(0.5,0,0.5)a ,(0.5,0.5,0)a , (0,0.5,0.5)a ,(1,1,1)a ,(0.5,1,0.5)a , (1,0.5,0.5)a ,(0.5,0.5,1)a 。
材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。
它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。
材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。
随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。
工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。
2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。
材料的结构包括原子、晶体和晶界等方面的组成和排列方式。
而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。
材料的结构直接决定了材料的性能。
例如,金属的结晶结构决定了金属的塑性和导电性。
硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。
因此,通过对材料的结构进行了解,可以预测和改变材料的性能。
3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。
不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。
例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。
聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。
陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。
因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。
4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。
它包括了物理、化学、力学、热学、电学等方面的特性。
测量材料的特性需要使用特定的实验方法和设备。
例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。
材料的强度可以通过拉伸试验或压缩试验来测量。
材料的导电性可以通过四探针法或霍尔效应进行测量。
通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。
材料科学与工程基础 - 第二章 - 课后习题答案2.1 选择题1.D2.B3.C4.A5.D2.2 填空题1.结构、性质、性能、制备、应用2.金属、陶瓷、聚合物3.晶体4.金属材料、陶瓷材料、聚合物材料、复合材料5.原子、分子2.3 简答题1.材料科学与工程的基础概念和特点有:–材料科学:研究材料的结构、性质、制备和性能等方面的科学。
–材料工程:研究通过控制材料的结构和制备方法,得到具有特定性能和使用寿命的材料并应用于工程中。
材料科学与工程的特点包括:–综合性:材料科学与工程是一门综合性的学科,涉及物理、化学、力学、热学等各个学科。
–实用性:材料科学与工程以实际应用为目的,研究如何通过控制材料的结构和性能,满足工程和产品的需求。
–发展性:随着科技的进步和社会的发展,材料科学与工程也在不断发展,涌现出各种新材料和新技术。
2.不同材料的结构特点及其对材料性能的影响–金属材料:金属材料具有密排列的晶体结构,其晶粒间有较好的连续性,导致金属材料具有良好的导电性、导热性和机械性能。
–陶瓷材料:陶瓷材料以离子键或共价键为主要结合方式,具有非常硬、脆和耐高温的特点,但导电性差。
–聚合物材料:聚合物材料由长链状分子构成,具有良好的绝缘性、柔韧性和可塑性,但强度和硬度较低。
–复合材料:复合材料由不同的两种或更多种材料组成,通过它们的相互作用产生优异的整体性能。
同时,复合材料的结构也决定其性能。
3.材料的制备方法包括:–金属材料的制备方法有铸造、锻造、挤压、焊接等。
–陶瓷材料的制备方法有干法制备和湿法制备等。
–聚合物材料的制备方法有合成聚合法、溶液聚合法、熔融聚合法等。
–复合材料的制备方法有增强相法、混合相法、层压法等。
4.材料性能的测试方法包括:–机械性能的测试方法有拉伸试验、压缩试验、弯曲试验等。
–热性能的测试方法有热膨胀试验、热导率测试等。
–电学性能的测试方法有导电性测试、介电常数测试等。
–光学性能的测试方法有透光率测试、折射率测试等。
第二章答案之相礼和热创作2-1略.2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数.答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321).2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描绘晶体结构的参量有哪些?定量描绘晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵.定量:晶胞参数.2-5根据结合力的本质分歧,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键.离子键的特点是没有方向性和饱和性,结合力很大.共价键的特点是具有方向性和饱和性,结合力也很大.金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力.范德华键是经过分子力而发生的键合,分子力很弱.氢键是两个电负性较大的原子相结合构成的键,具有饱和性.2-6等径球最紧密堆积的空隙有哪两种?一个球的四周有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的四周有8个四面体空隙、6个八面体空隙.2-7n个等径球作最紧密堆积时可构成多少个四面体空隙、多少个八面体空隙?不等径球是怎样进行堆积的?答:n个等径球作最紧密堆积时可构成n个八面体空隙、2n个四面体空隙.不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别添补到其空隙中,稍大的小球添补八面体空隙,稍小的小球添补四面体空隙,构成不等径球体紧密堆积.2-8写出面心立方格子的单位平行六面体上全部结点的坐标.答:面心立方格子的单位平行六面体上全部结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1).2-9计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数.答::面心:原子数4,配位数6,堆积密度六方:原子数6,配位数6,堆积密度2-10根据最紧密堆积原理,空间利用率越高,结构越波动,金刚石结构的空间利用率很低(只要34.01%),为什么它也很波动?答:最紧密堆积原理是建立在质点的电子云分布呈球形对称以及有方向性的根底上的,故只适用于典型的离子晶体和金属晶体,而不克不及用最密堆积原理来衡量原子晶体的波动性.另外,金刚石的单键个数为4,即每个原子四周有4个单键(或原子),由四面体以共顶方式共价结合构成三维空间结构,以是,虽然金刚石结构的空间利用率很低(只要34.01%),但是它也很波动.2-11证明等径圆球六方最密堆积的空隙率为25.9%.答:设球半径为a,则球的体积为,球的z=4,则球的总体积(晶胞),立方体晶胞体积:(2a)3=16a3,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%.3,求它的晶胞体积.答:设晶胞的体积为V,绝对原子质量为M,则晶胞体积nm32-13根据半径比关系,阐明下列离子与O2—配位时的配位数各是多少?已知r O2-=0.132nm,r Si4+=0.039nm,r K+=0.131nm,r Al3+=0.057nm,r Mg2+=0.078nm.答:对于Si4+、K+、Al3+、Mg2+来说,其顺次是0.295、0.99、0.43、0.59;根据正离子配位数与正负离子半径比的关系知配位数为:Si4+4;K+8;Al3+6;Mg2+6.2-14为什么石英分歧系列变体之间的转化温度比同系列变体之间的转化温度高得多?答:石英同一系列之间的变化是位移性变化,不触及晶体结构中键的决裂和重建,仅是键长、键角的调整、必要能量较低,且变化迅速可逆;而分歧系列之间的变化属于重建性变化,都触及到旧键的决裂和新键的重建,因此必要较的能量,且变化速率缓慢;以是石英分歧系列之间的转化温度比同系列变体之间转化的温度要高的多.2-15无效离子半径可经过晶体结构测定算出.在上面NaCl型结构晶体中,测得MgS和MnS的晶胞参数均为a=0.520nm(在这两种结构中,阴离子是互相接触的).若CaS(a=0.567nm)、CaO(a=0.480nm)和MgO(a=0.420nm)为一样平常阳离子-阴离子接触,试求这些晶体中各离子的半径.答:MgS中a=0.502nm,阴离子互相接触,a=2r-,∴rS2-=0.177nm;CaS中a=0.567nm,阴-阳离子互相接触,a=2(r++r-),∴r Ca2+=0.107nm;CaO中a=0.408nm,a=2(r++r-),∴r O2-=0.097nm;MgO中a=0.420nm,a=2(r++r-),∴r Mg2+=0.113nm.3,根据此数据计算晶胞参数,并将此值与你从离子半径计算得到数值进行比较.答:设晶胞的体积为V,绝对原子质量为M,对于NaCl型结构来说,其n=4,则晶胞体积nm3则晶胞参数:,根据离子半径计算:a=2(r++r-)=4.14nm∴<a2-17Li2O的结构是O2-作面心立方堆积,Li+占据全部四面体空隙地位,氧离子半径为0.132nm.求:(1)计算负离子彼此接触时,四面体空隙所能包容的最大阳离子半径,并与书末附表Li+半径比较,阐明此时O2-能否互相接触;(2)根据离子半径数据求晶胞参数;(3)求Li2O的密度.解:根据上图GO=FO=r max,AB=BC=AC=AD=BD=CD=2由几何关系知:比Li+的离子半径r Li+=0.078nm小,以是此时O2-不克不及互相接触.晶胞参数Li2O的密度g/cm32-18MgO和CaO同属NaCl型结构,而它们与水作用时则CaO要比MgO活泼,试解释之.解:由于r Mg2+与r Ca2+分歧,r Ca2+>r Mg2+,使CaO结构较MgO疏松,H2O易于进入,以是活泼.2-19CaF2的晶胞参数为0.547nm.(1)根据CaF2晶胞立体图画出CaF2晶胞在(001)面上的投影图;(2)画出CaF2(110)面上的离子陈列简图;(3)正负离子半径之和为多少?解(1)CaF2晶胞在(001)面上的投影图(2)CaF2(110)面上的离子陈列简图(3)正负离子半径之和2-20计算CdI2晶体中的I-及CaTiO3晶体中O2-的电价能否饱和?解:CdI2晶体中Cd2+的配位数CN=6,I-与三个在同一边的Cd2+相连,且I-的配位数CN=3以是,即I-电价饱和CaTiO3晶体中,Ca2+的配位数CN=12,Ti4+的配位数CN=6,O2-的配位数CN=6以是,即O2-电价饱和.2-21(1)画出O2-作面心立方堆积时,各四面体空隙和八面体空隙的所在地位(以一个晶胞为结构基元暗示出来);(2)计算四面体空隙数、八而休空隙数与O2-数之比解(1)略(2)四面体空隙数与O2-数之比为2:1,八面体空隙数与O2-数之比为1:12-22根据电价规则,在上面状况下,空隙内各需填入何种价数的阳离子,并对每一种结构举出—个例子.(1)全部四面体空隙地位均填满;(2)全部八面体空隙地位均填满;(3)填满—半四面体空隙地位;(4)填满—半八面体空隙地位.答:分别为(1)阴阳离子价态比应为1:2如CaF2(2)阴阳离子价态比应为1:1如NaCl(3)阴阳离子价态比应为1:1如ZnS(4)阴阳离子价态比应为1:2如TiO22-23化学手册中给出NH4Cl的密度为1.5g/cm3,X射线数听阐明NH4Cl有两种晶体结构,一种为NaCl型结构,a=0.726nm;另一种为CsCl结构,a=0.387nm.上述密度值是哪一种晶型的?(NH4+离子作为一个单元占据晶体点阵).解:若NH4Cl为NaCl结构则可由公式可得:3若NH4Cl为NaCl结构,则可由公式可得:由计算可知NaCl型结构的NH4Cl与化学手册中给出NH4Cl的密度接近,以是该密度NaCl晶型2-24MnS有三种多晶体,其中两种为NaCl型结构,一种为立方ZnS 型结构,当有立方型ZnS结构变化成NaCl型结构时,体积变更的百分数是多少?已知CN=6时,r Mn2+=0.08nm,r S2-=0.184nm;CN=4时,r Mn2+=0.073nm,r S2-=0.167nm.解:当为立方ZnS型结构时:=当为NaCl型结构时:=2(r Mn2++r S2-以是体积变更:=46.15%2-25钛酸钡是一种紧张的铁电陶瓷,其晶型是钙钛矿结构,试问:(1)属于什么点阵?(2)这个结构中离子的配位数为多少?(3)这个结构服从鲍林规则吗?请作充分讨论.答:(1)属于立方晶系(2)Ba2+、Ti4+和O2-的配位数分别为12、6和6(3)这个结构服从鲍林规则鲍林第一规则——配位多面体规则对于Ti4+配位数为6对于Ba2+配位数为12符合鲍林第一规则鲍林第二规则——电价规则即负离子电荷Z-=则O2-离子电荷=与O2-离子电荷相称,故符合鲍林第二规则,又根据钙钛矿型结构知其配位多面体不存在共棱或共面的状况,结构状况也符合鲍林第四规则——分歧配位体连接方式规则和鲍林第五规则——节约规则以是钙钛矿结构服从鲍林规则.2-26硅酸盐晶体结构有何特点?怎样表征其学式?答:硅酸盐晶体结构非常复杂,但分歧的结构之间具有上面的共同特点:(1)结构中的Si4+离子位于O2-离子构成的四面体中心,构成硅酸盐晶体的基本结构单元[SiO4]四面体.Si-O-Si是一条夹角不等的折线,一样平常在145°左右.(2)[SiO4]四面体的每个顶点,即O2-离子最多只能为两个[SiO4]四面体所共用.(3)两个相邻的[SiO4]四面体之间只能共顶而不克不及共棱或共面连接.(4)[SiO4]四面体中心的Si4+离子可以部分地被Al3+离子所取代,取代后结构本人不发生太大变更,即所谓的同晶取代,但晶体的性子发生了很大的变更.这为材料的改性提供了可能.硅酸盐的化学式表征方法次要有以下两种:(1)氧化物暗示法将构成硅酸盐晶体的全部氧化物按肯定的比例和顺序全部写出来,先是1价的碱金属氧化物,其次是2价、3价的金属氧化物,末了是SiO2(2)无机络合盐暗示法构成硅酸盐晶体的全部离子按肯定的比例和顺序全部写出来,再把相关的络阴离子用中括号括起来即可.先是1价、2价的金属离子,其次是Al3+离子和Si4+离子,末了是O2-离子和OH-离子.氧化物暗示法的优点在于一览无余的反应出晶体的化学组成,可以按此配料来进行晶体的实验室合成.用无机络合盐法则可以比较直观的反应出晶体所属的结构类型,进而可以对晶体结构及性子作出肯定程度的预测.两种暗示方法之间可以互相转换.2-27硅酸盐晶体的分类根据是什么?可分为那几类,每类的结构特点是什么?答:硅酸盐晶体次要是根据[SiO4]在结构中的陈列结合方式来分类,具体可以分为五类:岛状、组群状、链状、层状和架状.结构和组成上的特征见下表:结构类型[SiO4]共用O2-数外形络阴离子团Si:OI岛状0 四面体[SiO4]4-1:4组群状 1222 双四面体三节环四节环六节环[Si2O7]6-[Si3O9]6-[Si4O12]8-[Si6O18]12-2:71:31:31:3链状 22、3 单链双链[Si2O6]4-[Si4O11]6-1:34:11层状 3 立体层[Si4O10]4-4:10架状 4 骨架[SiO4]4-[(Al x Si4-x)O8]x-1:4 1:42-28下列硅酸盐矿物各属何种结构类型:Mg2[SiO4],K[AlSi3O8],CaMg[Si2O6],Mg3[Si4O10](OH)2,Ca2Al[AlSiO7].答:分别为岛状;架状;单链;层状(复网);组群(双四面体).2-29根据Mg2[SiO4]在(100)面的投影图回答:(1)结构中有几种配位多面体,各配位多面体间的连接方式怎样?(2)O2-的电价能否饱和?(3)晶胞的分子数是多少?(4)Si4+和Mg2+所占的四面体空隙和八面体空隙的分数是多少?解:(1)有两种配位多面体,[SiO4],[MgO6],同层的[MgO6]八面体共棱,如59[MgO6]和49[MgO6]共棱75O2-和27O2-,分歧层的[MgO6]八面体共顶,如1[MgO6]和51[MgO6]共顶是22O2-,同层的[MgO6]与[SiO4]共顶,如T[MgO6]和7[SiO4]共顶22O2-,分歧层的[MgO6]与[SiO4]共棱,T[MgO4]共28O2-和28O2-;(2)O2-与3个[MgO6]和1个[SiO4],,以是O2-饱和(3)z=4;(4)Si4+占四面体空隙=1/8,Mg2+占八面体空隙=1/2.2-30石棉矿如透闪石Ca2Mg5[Si4O11](OH)2具有纤维状结晶习性,而滑石Mg3[Si4O10](OH)2却具有片状结晶习性,试解释之.解:透闪石双链结构,链内的Si-O键要比链5的Ca-O、Mg-O键强很多,以是很容易沿链间结合力较弱处劈裂成为纤维状;滑石复网层结构,复网层由两个[SiO4]层和两头的水镁石层结构构成,复网层与复网层之间靠教弱的分之间作用力联系,因分子间力弱,以是易沿分子间力联系处解理成片状.2-31石墨、滑石和高岭石具有层状结构,阐明它们结构的区别及由此惹起的性子上的差别.解:石墨与滑石和高岭石比较,石墨中同层C原子进行SP2杂化,构成大Π键,每一层都是六边形网状结构.由于间隙较大,电子可在同层中运动,可以导电,层间分子间力作用,以是石墨比较软.滑石和高岭石区别次要是滑石是Mg2+取代Al3+的2:1型结构八面体层为三八面体型结构而高岭石为1:1型二八面体结构2-32(1)在硅酸盐晶体中,Al3+为什么能部分置换硅氧骨架中的Si4+;(2)Al3+置换Si4+后,对硅酸盐组成有何影响?(3)用电价规则阐明Al3+置换骨架中的Si4+时,通常不超出一半,否则将使结构不波动.解:(1)Al3+可与O2-构成[AlO4]5-;Al3+与Si4+处于第二周期,性子类似,易于进入硅酸盐晶体结构中与Si4+发生同晶取代,由于遵照鲍林规则,以是只能部分取代;(2)Al3+置换Si4+是部分取代,Al3+取代Si4+时,结构单元[AlSiO4][ASiO5],失往了电中性,有过剩的负电荷,为了坚持电中性,将有一些半径较大而电荷较低的阳离子如K+、Ca2+、Ba2+进入结构中;(3)设Al3+置换了一半的Si4+,则O2-与一个Si4+一个Al3+相连,阳离子静电键强度=3/4×1+4/4×1=7/4,O2-电荷数为-2,二者相差为1/4,若取代超出一半,二者相差必定>1/4,形成结构不波动.第三章答案3-2略.3-2试述位错的基本类型及其特点.解:位错次要有两种:刃型位错和螺型位错.刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面.螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是立体,呈螺施状,称螺型位错.3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料?解:非化学计量化合物的特点:非化学计量化合物发生及缺陷浓度与氛围性子、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从均衡常数看出;非化学计量化合物都是半导体.由于负离子缺位和间隙正离子使金属离子过剩发生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩发生负离子过剩(p型)半导体.3-4影响置换型固溶体和间隙型固溶体构成的要素有哪些?解:影响构成置换型固溶体影响要素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续.2.<15%连续.3.>40%不克不及构成固熔体.(2)离子价:电价相反,构成连续固熔体.(3)晶体结构要素:基质,杂质结构相反,构成连续固熔体.(4)场强要素.(5)电负性:差值小,构成固熔体.差值大构成化合物.影响构成间隙型固溶体影响要素:(1)杂质质点大小:即添加的原子愈小,易构成固溶体,反之亦然.(2)晶体(基质)结构:离子尺寸是与晶体结构的关系紧密相关的,在肯定程度下去说,结构两头隙的大小起了决定性的作用.一样平常晶体中空隙愈大,结构愈疏松,易构成固溶体.(3)电价要素:外来杂质原子进人世隙时,必定惹起晶体结构中电价的不服衡,这时可以经过生成空位,发生部分取代或离子的价态变更来坚持电价均衡.3-5试分析构成固溶体后对晶体性子的影响.解:影响有:(1)波动晶格,制止某些晶型变化的发生;(2)活化晶格,构成固溶体后,晶格结构有肯定畸变,处于高能量的活化形态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度降低;(4)构成固溶体后对材料物理性子的影响:固溶体的电学、热学、磁学等物理性子也随成分而连续变更,但一样平常都不是线性关系.固溶体的强度与硬度每每高于各组元,而塑性则较低3-6阐明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位构成的缔合中心;Ca2+占据K.地位,带一个单位正电荷;Ca原子位于Ca原子地位上;Ca2+处于晶格间隙地位.3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中构成空位型固溶体;(2)CaCl2溶入NaCl中构成空位型固溶体;(3)NaCl构成肖特基缺陷;(4)Agl构成弗伦克尔缺陷(Ag+进入间隙).解:(1)NaCl Na Ca’+Cl Cl+V Cl·(2)CaCl2CaNa·+2Cl Cl+V Na’(3)O V Na’+V Cl·(4)AgAg V Ag’+Ag i·3,其晶格参数是0.42nm,计算单位晶胞MgO的肖特基缺陷数.解:设有缺陷的MgO晶胞的晶胞分子数为x,晶胞体积V=(4.20)3,x=ρVN0/M=3.96,单位晶胞的肖脱基缺陷数=4-x=0.04.3-9MgO(NaCl型结构)和Li2O(反萤石型结构)均以氧的立方密堆为根底,而且阳离子都在这种陈列的间隙中,但在MgO中次要的点缺陷是肖特基缺陷,而在Li2O中是弗伦克尔型,请解释缘故原由.解:Mg占据四面体空隙,Li占据八面体空隙.3-10MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体1000K和1500K的缺陷浓度.(答:6.4×10-3,3.5×10-2)解:n/N=exp(-E/2RT),R=8.314,T=1000k:n/N=6.4×10-3;T=1500k:n/N=3.5×10-2.3-11非化学计量化合物Fe x O中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值.(答:2.25×10-5;0.956)解:Fe2O32Fe Fe·+3O O+V Fe’’y2yyFe3+2y Fe2+1-3y O,X=1-y=1-0.0435=0.9565,FeO[V Fe’’]===2.22×10-23-12非化学计量缺陷的浓度与四周氛围的性子、压力大小相关,假如增大四周氧气的分压.非化学计量化合物Fe1-x O及Zn1+x O的密度将发生怎样样的变更?增大还是减小?为什么?解:Zn(g)Zn i·+e’Zn(g)+1/2O2=ZnOZn i·+e’+1/2O2ZnO[ZnO]=[e’]∴PO2[Zni·]ρO2(g)O O+V Fe’’+2h·k=[O O][V Fe’’][h·]/PO21/2=4[OO][V Fe’’]3/PO21/2[V Fe’’]∝PO2-1/6,∴PO2[V Fe’’]ρ3-13对于刃位错和螺位错,区别其位错线方向、伯氏矢量和位错运动方向的特点.解:刃位错:位错线垂直于位错线垂直于位错运动方向;螺位错:位错线平行于位错线平行于位错运动方向.3-14图3-1是晶体二维图形,内含有一个正刃位错和一个负刃位错.(1)围绕两个位错伯格斯回路,末了得伯格斯矢量多少?(2)围绕每个位错分别作伯氏回路,其结果又怎样?解:略.3-15有两个相反符号的刃位错,在同一滑移面上相遇,它们将是排挤还是吸收?解:排挤,张应力堆叠,压应力堆叠.3-16晶界对位错的运动将发生怎样样的影响?能估计吗?解:晶界对位错运动起拦阻作用.3-17晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描绘吗?解:不克不及,在大角度晶界中,原子陈列接近于无序的形态,而位错之间的距离可能只要1、2个原子的大小,不适用于大角度晶界.3-18从化学组成、相组成考虑,试比较固溶体与化合物、机械混合物的不同.固溶体机械混合物化合物构成缘故原由以原子尺寸“溶解”生成粉末混合原子间互相反映生成相数均匀单相多相单相均匀化学计量不服从定比定律服从定比定律化学组成不确定有几种混合物就有多少化学组成确定以AO溶质溶解在B2O3溶剂中为例:比较项固溶体化合物机械混合物化学组成(x=0~2)AB2O4AO+B2O3相组成均匀单相单相两相有界面3-19试阐明固溶体、晶格缺陷和非化学计量化合物三者之间的异同点,列出简明表格比较.解:固溶体、晶格缺陷、非化学计量化合物都是点缺陷,是晶体结构缺陷,都是单相均匀的固体,结构同主晶相.热缺陷——本征缺陷;固溶体——非本征缺陷;分类构成缘故原由构成条件缺陷反应化学式溶解度、缺陷浓度热缺陷肖特基弗伦克尔热崎岖T>0kO+M MM i··+MXMX 只受温度操纵固溶体有限,有限,置换,间隙掺杂溶解大小,电负性,电价,结构无:受温度操纵有:掺杂量<固溶度受温度操纵掺杂量>固溶度受固溶度操纵非化学计量化合物阳缺阴间阴间阴缺环境中氛围性子和压力变更Fe1-x OUO2+x Zn1+x OTiO2-X[h·]∝[]∝[]∝[]∝3-20在面心立方空间点阵中,面心地位的原子数比立方体项角地位的原子数多三倍.原子B溶入A晶格的面心地位中,构成置换型固溶体,其成分应该是A3B呢还是A2B?为什么?解:略.3-21Al2O3在MgO中构成有限固溶体,在低共熔温度1995℃时.约有18wt%Al2O3溶入MgO中,假设MgO单位晶胞尺寸变更可忽略不计.试估计下列状况的密度变更.1)Al3+为填隙离子;2)Al3+为置换离子.解:(a)Al3+为填隙离子:缺陷反应为:(1)固溶式分子式:(b)Al3+为置换离子:缺陷反应为:(2)固溶式分子式:(3)取100g试样为基准:(为摩尔数)(m为摩尔数)∴MgO中固溶18%wt的Al2O3后的分子式为:O3或MgAlO(4)2AlO(5)由(5)式得x=0.137代入(2)(3)式,对(a)有即(b)有设:固溶前后晶胞体积不变,则密度变更为:(,分别代表固溶前后密度)以是,固溶后的密度小于固溶前的密度.3-22对硫铁矿进行化学分析:按分析数据的Fe/S计算,得出两种可能的成分:Fe1-x S和FeS1-x,前者意味着是Fe空位的缺陷结构,后者是Fe被置换.想象用一种实验方法以确定该矿物究竟属哪一类成分?解:Fe1-x S中存在Fe空位,非化学计量,存在h·P型半导体;FeS1-x 中金属离子过剩,存在S2-空位,存在N型半导体;因Fe1-x S、FeS1-x 分属分歧类型半导体,经过实验确定其半导体性子即可.3-23阐明为什么只要置换型固溶体的两个组分之间才能互相完全溶解,而填隙型固溶体则不克不及.解:(1)晶体两头隙地位是有限的,包容杂质质点才能<10%;(2)间隙式固溶体的生成,一样平常都使晶格常数增大,添加到肯定的程度,使晶格变得不波动而离解;置换固溶体构成是同号离子交换地位,不会对接发生影响,以是可构成连续固溶体.3-24对于MgO、Al2O3和Cr2O3,其正、负离子半径比分别为0.47、0.36和0.40,则Al2O3和Al2O3构成连续固溶体.(1)这个结果可能吗?为什么?(2)试估计,在MgO-Cr2O3零碎中的固溶度是有限的还是有限的?为什么?解:(1)Al2O3与Cr2O3能构成连续固溶体,缘故原由:1)结构内型相反,同属于刚玉结构.2)(2)MgO与Cr2O3的固溶度为有限缘故原由:结构类型分歧MgO属于NaCl型结构,Cr2O3属刚玉结构.虽然也不成能构成连续固溶体.3-25某种NiO黑白化学计量的,假如NiO中Ni3+/Ni2+=10-4,问每1m3中有多少载流子?解:设非化学计量化合物为Ni x O,Ni2O32+3+y2yyNi3+2y Ni2+1-3y O Ni3+/Ni2+=2y/(1-3y)=10-x则y=5×10-5,x=1-y=0.99995,Ni每m3中有多少载流子即为空位浓度:[]=y/(1+x)=2.5×10-5.3-26在MgO-Al2O3和PbTiO3-PbZrO3中哪一对构成有限固溶体,哪一对构成有限固溶体,为什么?解:MgO-AL2O3:,即r Mg、r Al半径相差大,MgO(NaCl 型)、AL2O3(刚玉)结构类型不同大,构成有限固溶体;PbTiO3-PbZrO3构成有限固溶体,由于虽然Ti4+、Zr4+半径相差较大(15.28),但都是(ABO3)钙钛矿型结构,Ti4+、Zr4+都添补八面体空隙,该空隙体积较大,可填入的阳离子的半径r值可在肯定范围内变更,而不至于使结构变更.3-27CeO2为萤石结构,其中加入15mol%CaO构成固溶体,测得固溶体密度d3,晶胞参数a=0.5417nm,试经过计算判别生成的是哪一品种型固溶体.已知原子量Ce140.12,Ca40.08,O16.00.解:对于CaO-CeO2固溶体来说,从满足电中性来看,可以构成氧离子空位的固溶体也可构成Ca2+嵌入阴离子间隙中的固溶体,其固溶方程为:对于置换式固溶体有x=0.15,1-x=0.85,2-x=1.85,以是置换式固溶体化学式CaCeO.有由于CeO2属于萤石结构,晶胞分子数Z=4,晶胞中有Ca2+、Ce4+、O2-三种质点.晶胞质量对于间隙固溶体,其化学式Ca2y Ce1-y O2,与已知组成CaCeO相比,O2-分歧,CaCeO CaCeO2∴间隙式固溶体化学式CaCeO2同理可得,接近于d2∴构成间隙固溶体,存在间隙Ca离子第四章答案4-1略.4-2试简述硅酸盐熔体聚合物结构构成的过程和结构特点.解:聚合物的构成是以硅氧四面体为根底单位,组成大小分歧的聚合体.可分为三个阶段:初期:石英的分化,架状[SiO4]断裂,在熔体中构成了各种聚合程度的聚合物.中期:缩聚并伴随变形一样平常链状聚合物易发生围绕Si-O轴转动同时弯曲,层状聚合物使层本人发生褶皱、翘曲、架状聚合物热缺陷增多,同时Si-O-Si键角发生变更.[SiO4]Na4+[Si2O7]Na6——[Si3O10]Na8+Na2O(短键)3[Si3O10]Na8——[Si6O18]Na12+2Na2O(六节环)后期:在肯定工夫和温度范围内,聚合和解聚达到均衡.缩聚释放的Na2O又能进一步腐蚀石英骨架而使其分化出低聚物,云云循环,直到体系达到分化-缩聚均衡为止.4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体.它们的结构有什么分歧?解:利用X射线检测.晶体SiO2——质点在三维空间做有规律的陈列,各向异性.SiO2熔体——外部结构为架状,近程有序,近程无序.SiO2玻璃——各向异性.硅胶——疏松多孔.4-4影响熔体粘度的要素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的缘故原由.解:(1)影响熔体粘度的次要要素:温度和熔体的组成.碱性氧化物含量添加,剧烈降低粘度.随温度降低,熔体粘度按指数关系递增.(2)通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度.这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了零碎中的“自在氧”而使O/Si比值添加,导致原来硅氧负离子团解聚成较简单的结构单位,因此使活化能减低、粘度变小.4-5熔体粘度在727℃时是107Pa·s,在1156℃时是103Pa·s,在什么温度下它是106Pa·s?解:根据727℃时,η=107Pa·s ,由公式得:(1)1156℃时,η=103Pa·s,由公式得:(2)联立(1),(2)式解得∴A=-6.32,B=13324当η=106Pa·s时,解得t=808.5℃.4-6试述石英晶体、石英熔体、Na2O·2SiO2熔体结构和性子上的区别.石英晶体石英熔体Na2O•2SiO2结构[SiO4]按共顶方式对称有规律有序陈列,近程有序基本结构单元[SiO4]呈架状结构,近程无序基本结构单元[Si6O18]12-呈六节环或八节环,近程无序性子固体无流动性,熔点高,硬度大,导电性差,结构波动,化学波动性好有流动性,η大,电导率大,概况张力大有流动性,η较石英熔体小,电导率大,概况张力大4-7SiO2熔体的粘度在1000℃时为1014Pa·s,在1400℃时为107Pa·s.SiO2玻璃粘滞流动的活化能是多少?上述数据为恒压下获得,若在恒容下获得,你以为活化能会改变吗?为什么?解:(1)根据公式:1000℃时,η=1014Pa·s,T=1000+273=1273K,①1000℃时,η=107Pa·s,T=1400+273=1673K,②联立(1),(2)式解得: 5.27×10-16Pa·s,(2)若在在恒容下获得,活化能不会改变.由于活化能是液体质点作直线运动所必须的能量.它与熔体组成和熔体[SiO4]聚合程度有关.4-8一种熔体在1300℃的粘度是310Pa·s,在800℃是107Pa·s,在1050℃时其粘度为多少?在此温度下急冷能否构成玻璃?解:(1)根据1300℃时,η=310Pa·s,由公式得:①。
2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)由热力学可知,结晶能否发生,取决于固相的自由能是否低于液相的自由能,即△G =G S-G L<0;只有当温度低于理论结晶温度 T m时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。
(2)影响过冷度的因素有:金属的本性,金属不同,过冷度大小不同;金属的纯度,金属的纯度越高,过冷度越大;冷却速度,冷却速度越大,过冷度越大。
(3)金属熔化时会出现过热,其原因是:由热力学可知,只有当温度高于理论结晶温度 T m时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。
2-4试比较均匀形核与非均匀形核的异同点。
答:相同点:(1)液态金属的结晶必须在过冷的液体中进行,液态金属的过冷度必须大于临界过冷度,晶胚尺寸必须大于临界晶核半径r k。
前者提供形核的驱动力,后者是形核的热力学条件所要求的。
(2)r k值大小与晶核的表面能成正比,与过冷度成反比。
过冷度越大,则r k越小,形核率越大,但是形核率有一极大值。
如果表面能越大,形核所需的过冷度也应越大。
凡是能降低表面能的办法都能促进形核。
(3)均匀形核既需要结构起伏,也需要能量起伏,二者皆是液体本身存在的自然现象。
(4)晶核的形成过程是原子扩散迁移的过程,因此结晶必须在一定的温度下进行。
不同点:(1)非均匀形核与固体杂质接触,减小了表面自由能的增加,也减小了形成晶核的体积,所以非均匀形核的形核功小,形核容易,可以在较小的过冷度下进行。
(2)均匀形核需要在很大的过冷度下进行,而且要求液态金属绝对纯净,无任何杂质,也不和型壁接触,只依靠液态金属的能量变化,由晶胚直接生核的过程,是一种理想状态;而在实际工业生产中,液态金属并不能达到这种理想状态,所以,凝固过程总是以非均匀形核的方式进行。
材料科学基础A第二章习题及答案材料科学基础A第二章习题及答案2.3 等径球最紧密堆积的空隙有哪两种?一个球周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积的空隙有四面体空隙和八面体空隙。
一个球周围有8个四面体空隙和6个八面体空隙。
2.4 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成四面体空隙数为(n×8)/4=2n个,八面体空隙数为(n×6)/6=n 个。
不等径球堆积时,较大的球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。
其中稍小的球体填充在四面体空隙,稍大的球体填充在八面体空隙。
2.7 解释下列概念:(1)晶系:晶胞参数相同的一类空间点阵。
(2)晶胞:从晶体结构中取出来的反映晶体周荷的离子所产生的电场,必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形的现象)。
(11)同质多晶:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象。
(12)类质同晶:化学组成相似的或相近的物质,在相同的热力学条件下形成的晶体具有相同的结构的现象。
(13)正尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,则称为正尖晶石。
(14)反尖晶石:在尖晶石结构中,如果半数的B离子占据四面体空隙,A离子和另外半数的B 离子占据八面体空隙,则称为反尖晶石。
(15)反萤石结构:正负离子位置刚好与萤石结构中的相反,即碱金属离子占据F−离子的位置,O2-或其他负离子占据Ca2+的位置。
(16)铁电效应:材料的晶体结构在不加外电场时就具有自发极化现象,其自发极化的方向能够被外加电场反转或重新定向,铁电材料的这种特性被称为铁电现象或铁电效应。
(17)压电效应:某些晶体在机械力作用下发生变形,使晶体内正负电荷中心相对位移而极化,致使晶体两端表面出现符号相反的束缚电荷,其电荷密度与应力成比例。
第2章 习题
2-1 a) 试证明均匀形核时,形成临界晶粒的△G K 与其临界晶核体积
V K 之间的关系式为2
K K V V G G ∆=-∆; b) 当非均匀形核形成球冠形晶核时,其△G K 与V K 之间的关系如何
a) 证明 因为临界晶核半径 2K V r G σ=-
∆ 临界晶核形成功 32
163()K V G G πσ∆=∆ 故临界晶核的体积 3423K K K V
r G V G π∆==∆ 所以 2
K K V V G G ∆=-∆ b) 当非均匀形核形成球冠形晶核时,SL 2K
V r G σ=-∆非 临界晶核形成功 3324(23cos cos )3()K SL V G G πσθθ∆=-+∆非
故临界晶核的体积 331
(23cos cos )3
K K V r πθθ=-+非() 3333SL 3281(23cos cos )(23cos cos )33()
SL K V V V V V G G G G σπσπθθθθ∆=--+∆=-+∆∆() 所以 2
K K V V G G ∆=-∆非
2-2 如果临界晶核是边长为a 的正方体,试求出其△G K 与a 的关系。
为什么形成立方体晶核的△G K 比球形晶核要大
解:形核时的吉布斯自由能变化为
326V V G V G A a G a σσ∆=∆+=∆+ 令()0d G da
∆= 得临界晶核边长4K V a G σ=-
∆ 临界形核功
333
3222244649632()6()()()()K t
K V K V V V V V V G V G A G G G G G G σσσσσσσ∆=∆+=-∆+-=-+=∆∆∆∆∆ 2K V
r G σ=-∆,球形核胚的临界形核功 3
32242216()4()33()K b
V V V V G G G G G σσπσππσ∆=-∆+=∆∆∆ 将两式相比较
3
232
163()13262
()K K b V t V G G G G πσπσ∆∆==≈∆∆ 可见形成球形晶核得临界形核功仅为形成立方形晶核的1/2。
2-3 为什么金属结晶时一定要有过冷度影响过冷度的因素是什么固态金属熔化时是否会出现过热为什么
答:金属结晶时要有过冷度是相变热力学条件所需求的,只有△T>0时,才能造成固相的自由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。
金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。
固态金属熔化时是否会出现过热现象,需要看熔化时表面能的变化。
如果熔化前后表面能是降低的,则不需要过热;反之,则可能出现过热。
如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖在整个固体表面(因为液态金属总是润湿其同种固体金属)。
熔化时表面自由能的变化为:
()GL SL SG G G G A σσσ∆=-=+-表面终态始态
式中G 始态表示金属熔化前的表面自由能;G 终态表示当在少量液体金属
在固体金属表面形成时的表面自由能;A 表示液态金属润湿固态金属表面的面积;σGL 、σSL 、σSG 分别表示气液相比表面能、固液相比表
面能、固气相比表面能。
因为液态金属总是润湿其同种固体金属,根据润湿时表面张力之间的关系式可写出:σSG ≥σGL +σSL 。
这说明在熔
化时,表面自由能的变化△G 表≤0,即不存在表面能障碍,也就不必
过热。
实际金属多属于这种情况。
如果固体金属熔化时液相不与气相接触,则有可能时固态金属过热。
液体覆盖在整个固体表面
2-4 试比较均匀形核与非均匀形核的异同点。
答:相同点
1)形核的驱动力和阻力相同;
2)临界晶核半径相等;
3)形成临界晶核需要形核功;
4)结构起伏和能量起伏是形核的基础;
5)形核需要一个临界过冷度;
6)形核率在达到极大值之前,随过冷度增大而增加。
与均匀形核相比,非均匀形核的特点:
1)非均匀形核与固体杂质接触,减少了表面自由能的增加;
2)非均匀形核的晶核体积小,形核功小,形核所需结构起伏和能量起伏就小;形核容易,临界过冷度小;
3)非均匀形核时晶核形状和体积由临界晶核半径和接触角共同决定;临界晶核半径相同时,接触角越小,晶核体积越小,形核越容易;4)非均匀形核的形核率随过冷度增大而增加,当超过极大值后下降一段然后终止;此外,非均匀形核的形核率还与固体杂质的结构和表面形貌有关。
2-5 说明晶体成长形状与温度梯度的关系。
解:纯金属生长形态是指晶体长大时截面的形貌。
界面形貌取决于界面前沿液体中的温度分布。
纯金属凝固时,液固相界面前沿的液体过冷区由金属的理论结晶温度和实际温度分布曲线围成。
由于理论结晶温度为定值,因此过冷区的形状仅由实际温度分布所决定。
(1) 平面状界面。
当液体具有正温度梯度时,晶体以平界面方式推移长大。
此时,界面上任何偶然的、小的凸起深入液体时,都会使其过冷度减小,长大速率降低或停止长大,而被周围部分赶上,因而能保持平界面的推移。
长大中晶体沿平行温度梯度的方向生长,或沿散热
的反方向生长,而其他方向的生长则受到抑制。
(2) 树枝状平面。
当液体具有负温度梯度时,在界面上若形成偶然的凸起伸入前沿液体时,由于前方液体有更大的过冷度,有利于晶体长大和凝固潜热的散失,从而形成枝晶的一次轴。
一个枝晶的形成,其潜热使邻近液体温度升高,过冷度降低,因此,类似的枝晶只在相邻一定间距的界面上形成,相互平行分布。
在一次枝晶处的温度比枝晶间温度要高,如图(a)中所示的bb断面上TA>TB,这种负温度梯度使一次轴上又长出二次轴分枝,如图(b)所示。
同样,还会产生多次分枝的枝晶生长的最后阶段,由于凝固潜热放出,使枝晶周围的液体温度升高至熔点以上,液体中出现正温度梯度,此时晶体长大依靠平界面方式推进,直至枝晶间隙全部被填满为止。
2-6 简述三晶区形成的原因及每个晶区的性能特点。
答:铸锭三晶区的形成原因:
最外层为细小等晶区。
其形成是由于模壁的温度较低,液体的过冷度较大,因而形核率较高所致。
中间为柱状晶区。
其形成主要是模壁的温度升高,晶核的成长率大于晶核的形成率,且沿垂直于模壁方向的散热较为有利。
在细晶区中取向有利的晶粒优先生长为柱状晶。
中心为等轴晶区。
其形成是由于模壁温度进一步升高,液体过冷度进一步降低,剩余液体的散热方向性已不明显,处于均匀冷却状态;同时,未熔杂质、破断枝晶等易集中于剩余液体中,这些都促使等轴晶的形成。
铸锭三晶区的性能特点:外表层的细晶区:晶粒细小、组织致密、力学性能良好;中间的柱状晶区:晶粒取向、组织致密、缺陷聚集、塑性较差;心部的等轴晶区:晶粒无方向性、树枝状晶体、组织不够致密、性能一般。
2-7 为了得到发达的柱状晶区应该采取什么措施为了得到发达的等轴晶区应该采取什么措施其基本原理如何
答:铸锭组织控制,主要是对柱状晶区和等轴晶区的分布范围和晶粒大小的控制。
变更合金成分和浇铸条件可以改变各晶区分布范围的大小。
对给定合金而言,有利于柱状晶区发展的因素有:较快的冷却速度,高的熔化温度和浇注温度,定向散热等;有利于等轴晶区发展的
因素有:较慢的冷却速度,低的熔化温度和浇注温度,均匀散热等。
为了获得细小的等轴晶粒,可采用变质处理、振动和搅拌等措施。
2-8 指出下列各题错误之处,并改正之。
1) 所谓临界晶核,就是体系自由能的减少完全补偿表面自由能增加时的晶胚大小。
改正:临界晶核是体积自由能的减少补偿2/3表面自由能增加时的晶胚大小。
2) 在液态金属中,凡是涌现小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。
改正:即使有足够的能量起伏供给,小于临界晶核半径的晶胚也不能成核。
3) 无论温度分布如何,纯金属都是以树枝状方式生长。
改正:在负的温度梯度下,纯金属以树枝状方式生长。