当前位置:文档之家› 轻载下的正激同步整流变换器分析

轻载下的正激同步整流变换器分析

轻载下的正激同步整流变换器分析
轻载下的正激同步整流变换器分析

轻载下的正激同步整流变换器分析

摘要:同步整流技术的广泛应用促进了低电压大电流技术的发展,但是,使用同步整流技术会造成开关电源在轻载情况下的低效率问题。以正激式同步整流变换器为例,从电感电流连续和断续两种状态,分析了轻载工况下的工作情况。

关键词:同步整流;CCM;DCM;环路电流;振铃

O 引言

随着计算机、通讯和网络技术的迅猛发展,低压大电流DC/DC变换器成为目前一个重要的研究课题。传统的二极管或肖特基二极管整流方式,由于正向导通压降大,整流损耗成为变换器的主要损耗。功率MOSFET导通电阻低、开关时间短、输入阻抗高,成为低压大电流功率变换器首选的整流器件。根据MOSFET的控制特点,应运而生了同步整流(Synchronous rectification,SR)这一新型的整流技术。

1 同步整流正激变换器

图l给出的是一种电压自驱动同步整流正激变换器,图l中两个与变压器耦合的分离辅助绕组N4、N5用来分别驱动两个同步整流管S201、S202。当主开关管导通时,变压器副边绕组上正下负,S201栅极电压为高,导通整流;主开关管截止时,副边绕组下正上负,续流S202栅极为高,导通续流。

正激变换器中,同步整流S201的运行情况与变压器磁复位方式有关。如果采用如图1所示的辅助绕组复位电路,在复位结束过程之后,变压器电压保持为零的死区时间内,输出电流流经续流同步整流管S202,但是S202栅极无驱动电压,所以输出电流必须流经S202的体二极管。M0SFET体二极管的正向导通电压高,反向恢复特性差,导通损耗非常大,这就使采用MOSFET整流的优势大打折扣,为了解决这一问题,较为简单的做法是在S202的漏极和源极之间并联一个肖特基二极管D201,在S202截止的时间内,代替S202的体二极管续流,这一方法增加的元件不多,线路简单,也很实用。

为了优化驱动波形,可以采用分离的辅助绕组来分别驱动两个同步整流管,比起传统的副边绕组直接驱动的同步整流变换器来说,这种驱动方式无工作电流通过驱动绕组,因此不需要建立输出电流的时间,MOSFET能够迅速开通,开通时的死区时间即体二极管导通的时间减少了一半。另一方面驱动电压不只局限于副边电压,可以通过调整辅助线圈来得到合适的驱动电压。

2 轻载条件下的同步整流

对于正激变换器,在主开关管截止的时间里,输出电流是靠输出储能电感里的能量维持的,因此变换器有两种可能的运行情况:电感电流连续模式(CCM,continuous current mode)和电感电流断续模式(DCM,discontinuous current mode)。

2.1 电感电流连续模式CCM

当负载电流较大时,电感电流在整个周期内都不会下降到零,每个开关周期可以分为两个阶段,在t1阶段,S201导通,S202截止,电感两端的电压为Vs-Vo(其中,Vs为变压器副边绕组电压,Vo为变换器输出电压),电感电流持续上升;t2阶段,S201关断,S202导通,电感两端电压为-V。,电感电压持续下降。稳态时,一个开关周期内,滤波电容C的平均充电电流与放电电流相等,故变换器输出的负载电流平均值Io就是iL的平均值,由于负载电流较大,电感电流iL在整个周期中都不会下降至零,电感电流方向不发生变化,如图2(a)所示。

当负载电流Io减小时,ILmax和ILmin都减小,当负载电流Io减小到使ILmin在Ioff结束时恰好为零,如图2(b)所示,此时的负载电流称之为临界电流

当负载电流进一步减小时,对于副边采用传统二极管续流工作的正激变换器来说,将会出现电感电流断续的工作情况,如图2(c)所示。

当副边采用同步整流工作时,由于续流MOSFET的双向导通的特性,使得此时的电感电流能够反向,如图2(d)所示,产生环流。有了环流就会消耗环流能量。这个能量的大小和输出滤波电感有关,输出滤波电感越小,环流就会越大,环流能量越大,损耗也越大。所以由于同步整流器不能从CCM模态自动切换到DCM模态,轻载时就会产生很大的环流损耗。环流损耗、开关驱动损耗和开关损耗使得变换器轻载时的效率较低。

为了避免电感电流轻载时反向形成环路电流,可以采用如图3所示的驱动电路。S201、S202为两个同步整流管,Vdd为一基准电压,R211和R212分压后产生一个电压给定值加在比较器的同向输入端,比较器的反向输入端接在输出电流取样电阻R210上。当输出电流高于临界输出电流,比较器输出高电平,主开关管截止期间,S202、S203导通,高电位加至续流M0SFET S202栅极,S202导通续流;当输出电流低于临界电流时,比较器输出低电位,S204、S203、S202均截止,这个时候的续流工作就交由与S202并联的肖特基管D201完成,由于肖特基的单向导电性避免了环路电流的形成。

值得注意的是,续流MOSFET一定要在反向电流产生前截止。如果已经产生了反向电流以后才使MOSFET截止,此时反向电流迅速下降,产生很大的di/dt,会在续流MOSFET源极和漏极两端产生很高的电压尖峰,这个电压尖峰甚至可能高于MOSIFET的耐压,使续流MOSFET击穿,如图4的试验波形所示。

在这种控制方式下,重载时由续流同步整流管续流,轻载时由肖特基管续流,电感电流将进入DCM模式,这样减少了导通损耗,提高了轻载时变换器的效率。

2.2 电感电流断流模式(DCM)

在这种情况下,每个周期可以分为三个阶段,t1和t2阶段同上述CCM相同。如果在进入t3时刻时,电感两端电压和电感电流精确为零,电路就刚好处于稳态,不会出现振荡,但实际电路中,很难保证这两个条件的满足。

在t3阶段,S201和S202均处于关断状态,由电感L201寄生电容Cp负载电容C201与负载并联构成了L/C振荡回路,考虑到C201>>Cp,可以求得振荡频率为

这个频率往往很高,会在S202源极和漏极两端形成明显的振荡,也就是通常所说的振铃现象,这个过程通常来说是欠阻尼振荡,如图5的试验波形所示。

由于DCM模式能够避免轻载时环路电流的产生,却可以大大提高了变换器轻载时的效率。两种电路模式的效率对比如图6所示。

3 结语

在轻载工况下,采用关断续流MOSFET使得正激变换器副边工作在DCM模式下,可以显著提高同步

整流变换器轻载时的效率。实验证明,采用如图3所示的电路能够完成轻载时副边电流CCM到DCM的转化,是提高正激变化器轻载效率的一种可行的方法。

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的工作原理 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。 它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝

同步整流技术分享

江苏宏微科技股份有限公司 Power for the Better
同步整流技术及主要拓扑电路
宏微科技市场部
2015-9-16

Contents
? 同步整流电路概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
1 CONFIDENTIAL





Contents
? 同步整流技术概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
2 CONFIDENTIAL





同步整流技术概述
由于中低压MOSFET具有很小的导通电阻,在有电流通过时产生的电压降很 小,可以替代二极管作为整流器件,可以提高变换器的效率。
diode
MOSFET
MOSFET作整流器时,栅源极间电压必须与被整流电压的相位保持同步关系才 能完成整流功能,故称同步整流技术。 MOSFET是电压控制型开关器件,且没有反向阻断能力,必须在其栅-源之 间加上驱动电压来控制器漏-源极之间的导通和关断。这是同步整流设计的难 点和重点。 根据其控制方式,同步整流的驱动电路分为 ?自驱动方式; ? 独立控制电路他驱方式; ? 部分自驱+部分他驱方式结合;
Power for the Better
3 CONFIDENTIAL





移相全桥参数计算

1、 2、 介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是| |因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC2895移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏 情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表1设计规范 描述最小值典型值最大值输入电压370V390V410V 输出电压11.4V12V12.6V 允许输出电压瞬变]600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 3、功能示意图 4、功率预算 为满足效率的目标,一组功率预算需要设定。 ^BUOGET =^OUT X 1 =45,2W V H J 5、原边变压器计算T1 变压器匝比(al): VREF GNU UPD OUTA CQMP QUIT HI WTC UL L AB oyrr&1* DC LCD DUTE瞽 QELEF OUTF TT TMiNl S-VNC M mr GS15 RSUV WC1 □ cm ADELEF口 -jWTF I s srrec

估计场效应晶体管电压降(VRDSON ): V RDSON ~ 0*3 V 基于最小指定的输入电压时 70%的占空比选择变压器。 基于平均输入电压计算典型工作周期 (DTYP ) ("OUT 彳力整座N 0 66 (V|N - 2 兀 ) 输岀电感纹波电流设置为输岀电流的 20% 需要注意在选择变压器磁化电感的正确数值 (LMAG )。下列方程计算主变 压器 器运行在电流型控制。 如果LMA 太小,磁化电流会导致变换器运行在电压模式控制代替 peak-current 模式 这是因为磁化电流太大,它将作为PW 坡道淹没RS!的电流传感信号。 ^2.76mH 图2显示了 T1原边电流(IPRIMARY )和同步整流器Q 罰QF 电流对同步整流栅驱动电流的反应。注意 l (QE ) l (QF ) 也是T1的次级绕组电流。变量 D 是转换器占空比。 a1 = N P N s 3[二(¥N 和忡)x 口叱 =21 M OUT P OUT X °隈 V OUT = 10A 仃1)的最低磁化电感,确保变频

倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析 在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变 换器是最能够满足上面的要求的[3]。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果 证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步 整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电 流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图 如图3所示。 (a) 模式1[t0-t1] (b) 模式2[t1-t2]

LT1952-可以实现最佳同步整流的正激电路控制

LT1952—可以实现最佳同步整流的正激电路控制LT1952是一个电流型可将同步整流实现最佳化控制的简单的正激变换拓 扑。初级仅用一颗MOS。LT1952即可实现从25W到500W的电源供给。且有非常高的效率和可靠性。低的复杂性和低成本利于小空间应用。LT1952的关键特性包括自动最大占空比箝制。二次侧最佳同步整流控制,精密100mV的低过流检测保护阈值。在低应力的短路保护控制下的触发软起动。LT1952的各种关键功能示于图1。 图1 LT1952内部方框等效电路 启动部分 在正常条件下,SD-V SEC端必须超过1.32V,V IN端必须超过14.25V时才允许IC开启。两者联合使2.5V基准建立以供给LT1952的控制电路。并提供2.5mA 的外部驱动,SD-V SEC的阈值可以用于外部调节系统输入电压的欠压锁定阈值。UVLO的窗口阈值也可以由SD-V SEC端调节。启动前它给出11μA电流。启动后变为0μA。时序图如图2。 图2 LT1952 工作时序

随着LT1952开启。V IN端会降到8.75V以上,若低于此值。IC则关断,V IN 的窗口电压5.5V有很低的460μA启动输入电流。接一支电阻和一个电容网络到供电端V IN,V IN电容值的选择原则为防止其电压在辅助绕组供给V IN端电流之前降到8.75V以下。 输出驱动 LT1952有两个输出端子,SOUT和OUT。OUT端提供±1A峰值的MOS栅驱动能力,电压箝制在13V以下。SOUT端提供±50mA的12V以下的峰值驱动。用以给二次侧的同步整流控制提供合适的信号。对于SOUT和OUT的供出。PWM 的锁定设置在每个主振周期的开始。 输出信号的给出比同步输出信号有一点延迟时间为T delay。(图2)T delay 的调整由DELAY端至地接一电阻来完成。调此时间达到二次同步整流的最佳化。 SOUT及OUT关断在每个周期内同时完成,完成方法有三: ㈠MOSFET峰值电流在I SENSE端起出。 ㈡自适应最大占空比的箝制在负载及输入电压条件下达标。 ㈢最大占空比复位,PWM锁住。 在以下任何条件下,低V IN,低SD-V SEC或OC端过流检测出,这时重新的软起动锁住两输出,令其关断。 前沿消隐 为防止MOS开关噪声导致的SOUT及OUT过早关断,需调节前沿消隐,这意味着电流检测比较器及过流比较器的输出在MOS开启时要消隐掉,在OUT 的前沿之后也要消隐一小段时间,(图6)所要消隐的时间可由调节BLANK到地的电阻值来完成。 自适应最大占空比调制 对于正激变换器要用最简化的单一MOSFET的拓扑完成。因此最大占空比箝制适应变压器的输入电压才可以可靠地控制功率MOS,该伏、秒箝制提供给变压器复位一个安全保障。防止变压器饱合而不能复位。连续的负载变化会导致变换器加大占空比。如果占空比太大,变压器的复位电压会超出初级侧MOS的耐压限度,导致灾难性损坏。许多变换器解决此问题的方法是采用限制MOSFET 的最大占空比为50%的方法来解决,或采用另一固定的最大占空比来解决。这会导致MOSFET非常大的反压。LT1952提供了一个伏秒箝制法解决,使MOSFET 的最大占空比可以超过50%,这样对同样MOS变压器及整流器可以给出更大的功率。而体积却可以缩下来。此外,伏秒箝制还容许降低MOSFET的承受电压,这样MOSFET的R DS ON就比较小,效率就提高了,伏秒箝制定义了最大占空比的保障轨,在系统输入电压增加时,它会降落下来。 LT1952的SD-V SEC和SS-MAXDC端提供一个无电容的调整伏秒箝制解决方案。一些控制器有伏秒箝制控制开关的最大占空比是采用外接电容调整开关的最大导通时间,这种技术有一个伏秒箝制的不准确性。它与外面大的偏差电容及其漂移有关与内部振荡器的漂移也有关,而LT1952只用一支来执行伏秒箝制而不必用精确的外部电容也与振荡器的幅度及频率变化也无关。 在SD-V SEC端上电压的增加会使最大占空比的箝制减少。如果SD-V SEC采用由变压器输入电压处经过电阻分压后供给。则一个伏秒箝制就完成了。为调节初始最大占空比的箝制,SS-MAXDC端电压用一分压器从2.5V V REF处到地取得,SS-MAXDC端上的电压增加时,提供的最大占空比箝制也增加。

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。 为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。 1SRM4010同步整流模块功能简介 SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。 SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。 SRM4010引脚功能及应用方式一览表 引脚号引脚名称引脚功能应用方式 1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端 2FWDForward功率MOSFET漏极接变压器次级负端 3SGND外控信号参考地外围控制电路公共地 4REGin内部线性调整器输入可以外接辅助绕组或悬空 5REGout5V基准输出可为次级反馈控制电路提供电压 6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地 7CDLY轻载复位电容端设置变压器轻载时的复位时间 8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间

德州仪器-具有同步整流功能的移相全桥控制器UCC28950使用说明

- + -V S UCC28950 https://www.doczj.com/doc/7e1181104.html, SLUSA16A–MARCH2010–REVISED JULY2010 Green Phase-Shifted Full-Bridge Controller With Synchronous Rectification Check for Samples:UCC28950 FEATURES APPLICATIONS ?Phase-Shifted Full-Bridge Converters ?Enhanced Wide Range Resonant Zero Voltage Switching(ZVS)Capability?Server,Telecom Power Supplies ?Industrial Power Systems ?Direct Synchronous Rectifier(SR)Control ?High-Density Power Architectures ?Light-Load Efficiency Management Including ?Solar Inverters,and Electric Vehicles –Burst Mode Operation –Discontinuous Conduction Mode(DCM),DESCRIPTION Dynamic SR On/Off Control with Programmable Threshold The UCC28950enhanced phase-shifted controller builds upon Texas Instrument’s industry standard –Programmable Adaptive Delay UCCx895phase-shifted controller family with ?Average or Peak Current Mode Control with enhancements that offer best in class efficiency in Programmable Slope Compensation and today’s high performance power systems.The Voltage Mode Control UCC28950implements advanced control of the full-bridge along with active control of the ?Closed Loop Soft Start and Enable Function synchronous rectifier output stage.?Programmable Switching Frequency up to1 MHz with Bi-Directional Synchronization The primary-side signals allow programmable delays to ensure ZVS operation over wide-load current and ?(+/-3%)Cycle-by-Cycle Current Limit input voltage range,while the load current naturally Protection with Hiccup Mode Support tunes the secondary-side synchronous rectifiers ?150-μA Start-Up Current switching delays,maximizing overall system ?V DD Under Voltage Lockout efficiency. ?Wide Temperature Range-40°C to125°C UCC28950Typical Application Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date.Copyright?2010,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.

适配器的反激同步整流控制电路分析

适配器的反激同步整流控制电路分析随着消费类电子的发展,其外部供电电源(适配器)所消耗的电能占全球能耗的比例在急剧加大,成为不可忽视的耗能“大户”。以美国为例,每年适配器需要消耗电能3000亿度/年,占整个国家每年用电总量的11%。 在节能减排深入人心的当今,目前各国政府的法规中对外部电源的要求越来越严格。美国能源之星5.0,针对外部电源的平均效率也作出了更为苛刻的规范。 表1:输出电压Vout>6V时的电源效率。 表2:输出电压Vout<6V时的电源效率。 高功率密度,高集成度毫无疑问已经成为电子技术发展的方向,电源效率的提升不仅能减小电源的体积还能大大提高电源的可靠性。 适配器作为小功率的消费品,设计成本成为设计工程师首要考虑关键因素,Flyback 结构因为电路简单,已经成为设计150W以下适配器普遍采用的电路架构。 传统采用肖特基作为整流输出的设计中,因为肖特基的壁垒电压VF的存在,使得大电流输出的情况下,消耗在肖特基上的损耗很大,不仅造成电源效率低下,更因为温度过高降低了电源的可靠性。为了解决这问题,同步整流技术应运而生,同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流肖特基二极管以降低整流损耗的一项新技术。 深圳鹏源电子致力于为客户提供成本更优,效率更高的同步整流方案,为了满足客户高效高功率密度的设计需要。 准谐振(Quasi-resonance)因为谷底开通,能有效降低Flyback的开关损耗,提升效率,但需要注意的是QR临界电流模式,其导通损耗较连续电流模式(CCM)要大,所以在115Vac电压输入无PFC的情况下,QR的控制方式反而没有CCM的效率高。而且QR为变频控制,在低输入电压满载的情况下开关频率很低,这就需要更大的变压器,电源的体积受到了限制。因此,为提高效率,目前许多厂家都采用多模式控制方式,即在高压输入的情况下工作QR模式,在低压输入的情况下工作在CCM模式。众所周知,目前所有厂家的同步整流控制器都只能工作在断续或临界模式,而擎力科技所推出的同步整流控制IC采用

同步整流技术总结

同步整流总结 1概述 近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低 压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率 就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以 按照下式进行估算: V out V out (0.1 V out V cu V f) 0.1 V out—原边和控制电路损耗 V cu —印制板的线路损耗 V f —整流管导通压降损耗 我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模 块最大的估算效率为 72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越 来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m Q的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案 得到了广泛的认同。今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯 的所有领域。 2同步整流电路的工作原理 图1采用同步整流的正激电路示意图(无复位绕组)

应用同步整流技术实现双向DC/DC变换

应用同步整流技术实现双向DC/DC变换 [日期:2006-11-9] 来源:电源技术应用作者:浙江大学姜德来吕征宇[字体:大中小] 摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。通过实验加以验证。 关键词:双向;同步整流;恒压;恒流 0 引言 同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。 此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。 l 工作原理 1 1 电路拓扑 双向同步整流电路拓扑如图1所示。当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,SⅡ关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。

1.2 参数设计 设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。具体算式如下。 式中:Vg为Buck电路输入电压; Vo为Boost电路输入电压; D为Sw管的占空比: △Q为对应输出电压纹波的电荷增量; △Vo为Buck电路输出电压纹波要求; △Vg为Boost电路输出电压纹波要求; △lmin为Buck和Boost电路电流纹波要求的较小值; I为电感电流。 1.3双向恒流型控制 1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。电路参数方程为

UCC28950移相全桥设计指南设计

UCC28950移相全桥设计指南 一,拓扑结构及工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于充电,2 Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变, S为零电流关断,3S为零电流开通。 所以4 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 图1模式1主电路简化图及等效电路图 ②模式2 图2模式2简化电路图 ③模式3

图3模式3简化电路图 ④模式4 图4模式4主电路简化图及等效电路图⑤模式5 图5模式5 主电路简化图及等效电路图⑥模式6 图6模式6主电路简化图及等效电路图⑦模式7

图7模式7主电路简化电路图 ⑧模式8 图8模式8主电路简化电路图 二,关键问题 1:滞后臂较难实现ZVS 原因:滞后臂谐振的时候,次级绕组短路被钳位,所以副边电感无法反射到原边参加谐振,导致谐振的能量只能由谐振电感提供,如果能量不够,就会出现无法将滞后臂管子并联的谐振电容电压谐振到0V. 解决方法: ①、增大励磁电流。但会增大器件与变压器损耗。 ②、增大谐振电感。但会造成副边占空比丢失更严重。 ③、增加辅助谐振网络。但会增加成本与体积。 2,副边占空比的丢失 原因:移相全桥的原边电流存在着一个剧烈的换流过程,此时原边电流不足以提供副边的负载电流,因此副边电感就会导通另一个二极管续流,即副边处于近似短路状态; Dloss与谐振电感量大小以及负载RL大小成正比,与输入电压大小成反比。 解决方法: ①、减少原副边的匝比。但会造成次级整流管的耐压增大的后果。

一种全桥同步整流器的设计及其应用

一种全桥同步整流器的设计及其应用 2012-10-24 22:01:37 来源:21IC 关键字:全桥同步整流器 由于现代高速超大规模集成电路的尺寸不断减小,同时又对功率要求的不断增加。因此必须提高供电电源的功率密度,在有限的散热空间里增加功率密度,就必须提高电源的工作效率。近年来,通过增加输出级同步整流、引入软开关技术等,使得开关电源的效率得到了大幅提高。如何进行一步提高其工作效率,笔者从输入级的一次整流入手进行了相应分析和研究。 1 原理与设计 1.1 桥式整流与桥式同步整流分析 一般开关电源中一次整流电路结构如图1所示。因为图中电源V1由电网提供,要采用高压二极管对其进行整流,所以D1,D2,D3,D4的压降约为1 V。当输出电流为I时,将在整个整流桥上产生P(VD)=1×2×I的功率损耗。 桥式同步整流电路结构如图2所示,图中M1、M2、M3、M4为n沟道增强型功率MOS 管,其中D1、D2、D3、D4为其寄生体二极管。图中左半部分为其驱动信号产生模块。 为进一步提高电源变换器的效率,降低一次整流部分的损耗是提高电源变换器工作效率的一种有效途径。采用P-MOSFET管来实现整流功能的整流电路称为同步整流电路,P-MOSFET管不像二极管那样能自动截止反向电流,需要用P-MOSFET管来实现同步整流,必须控制P-MOSFET管的导通和关断,而P-MOSFET管的导通和关断又取决于它的栅极驱

动信号。因此,在设计同步整流P-MOSFET管栅极驱动信号的大小和时序,要确保同步整流电路的正常工作。图3为相应开关管M1、M2、M3、M4控制信号S1、S2、S3、S4波形图。 为防止开关管发生直通的现象,在上下桥臂的波形切换之间加入了死区时间Tdeadtime。 因为工作频率在50 Hz,所以无需考虑其开关损耗。桥式同步整流电路中功率损耗主要发生在其导通的直流电阻RDS上,即P=(RDS×2)I2,图4给出了相应损耗功耗曲线。 设全桥整流时整流桥的损耗功率P(VD)=2×I。设全桥同步整流时开关管的损耗功率P(VT)=Ron×I2。与全桥整流相比全桥同步整流所节省的功率损耗P(D)=P(VD)-P(VT)=2×I-Ron×I2。根据函数的增减性,当I=1/Ron时,P(D)可取得最大值。 1.2 相应参数计算 此部分主要考虑将输入正弦波变为与之同步的方波,相应电路如图5所示。为防止整流开关管发生直通的现象,在上下桥臂波形切换之间加入了死区时间。引死区时间由过零比较电压时行设定,即电阻R1与电阻R2、R3与电阻R4的比值来确定。死区时间Tdeadtime 在整个周期中所占的时间为 其中,V1-1为同步交流信号的幅值;T为输入交流信号的周期。

同步整流技术最新

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11

内 容 简 介
?同步整流简介。 ?同步整流的分类。 。 ?同步整流的驱动方式 ?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求
供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能 ?电流从S流向D ?V/I特性,工作于3rd 象限
G S
z 用MOSFET来代替二极管在电路中的整流功能
z 相对于二极管的开关算好极小 g 控制,可以根据系统的需要, z 整流的时序受到MOSFET的Vgs 把整流的损耗做到最小

同步整流简介
? 例如:一个5V?30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30% /Po=13 5/45=30% Rdson=1.2m? Ploss=0.0012*30 0 0012*302=1.08W 1 08W Ploss/Po=1.08/45=2.4%
Mosfet
MBR8040(R)
SC010N04LS

移相全桥全参数计算

1、介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC28950移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表 1 设计规 描述最小值典型值最大值 输入电压370V 390V 410V 输出电压11.4V 12V 12.6V 允许输出电压瞬变600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 2、功能示意图

3、功率预算 为满足效率的目标,一组功率预算需要设定。 4、原边变压器计算T1 变压器匝比(a1): 估计场效应晶体管电压降(VRDSON): 基于最小指定的输入电压时70%的占空比选择变压器。 基于平均输入电压计算典型工作周期(DTYP) 输出电感纹波电流设置为输出电流的20%。 需要注意在选择变压器磁化电感的正确数值(LMAG)。下列方程计算主变压器(T1)的最低磁化电感,确保变频器运行在电流型控制。如果LMAG太小,磁化电流会导致变换器运行在电压模式控制代替peak-current模式。这是因为磁化电流太大,它将作为PWM坡道淹没RS上的电流传感信号。

图2显示了T1原边电流(IPRIMARY)和同步整流器QE和QF电流对同步整流栅驱动电流的反应。注意I(QE) I(QF)也是T1的次级绕组电流。变量D是转换器占空比。 计算T1次级均方根电流(ISRMS):

同步整流实现反激变换器设计.

同步整流实现反激变换器设计 摘要:详细分析了同步整流反激变换器的工作原理和该驱动电路的工作原理,并在此基础上设计了100V~375VDC 输入,12V/4A 输出的同步整流反激变换器,工作于电流断续模式,控制芯片选用UC3842,对设计过程进行了详细论述。通过Saber 仿真验证了原理分析的正确性,证明该变换器具有较高的变换效率。 引言 反激变换器具有电路简单、输入输出电压隔离、成本低、空间要求少等优点,在小功率开关电源中得到了广泛的应用。但输出电流较大、输出电压较低时,传统的反激变换器,次级整流二极管通态损耗和反向恢复损耗大,效率较低。同步整流技术,采用通态电阻极低的专用功率MOSFET来取代整流二极管。把同步整流技术应用到反激变换器能够很好提高变换器的效率。 1 同步整流反激变换器原理 反激变换器次级的整流二极管用同步整流管SR 代替,构成同步整流反激变换器,基本拓扑如图1(a)所示。为实现反激变换器的同步整流,初级MOS 管Q 和次级同步整流管SR 必须按顺序工作,即两管的导通时间不能重叠。当初级MOS 管Q 导通时,SR 关断,变压器存储能量;当初级MOS 管Q 关断时,SR 导通,变压器将存储的能量传送到负载。驱动信号时序如图1(b)所示。在实际电路中,为了避免初级MOS 管Q 和次级同步整流管SR 同时导通,Q 的关断时刻和SR 导通时刻之间应有延迟;同样Q 的导通时刻和SR 的关断时刻之间也应该有延迟。 图1 同步整流反激变换器 2 同步整流管的驱动 SR 的驱动是同步整流电路的一个重要问题,需要合理选择。本文采用分立元件构成驱动电路,该驱动电路结构较简单、成本较低,适合宽输入电压范围的变换器,具体驱动电路如图2 所示。SR 的栅极驱动电压取自变换器输出电压,因此使用该驱动电路的同步整流变换器的输出电压需满足SR 栅极驱动电压要求。

同步整流电路分析

同步整流电路分析作者gyf2000 日期2007-4-22 20:21:00 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

正激变换器中同步整流驱动分析

正激变换器中同步整流驱动分析 摘要:对同步整流的概念进行了定义并按驱动方式将它分为自驱动同步整流和外驱动同步整流;然后对正激变换器中自驱动和外驱动同步整流的特性分别进行了比较分析,在自驱动部分重点分析了RCD 箝位和有源箝位2 种形式的同步整流正激变换器电路;并讨论了影响同步整流效率的因素及提高效率应采取的措施;最后通 过实验得出结论,同步整流是低压、大电流电源中提高效率的有效方法。 关键词: 正激变换器; 同步整流; 自驱动; 外驱动 计算机、通信交换机等数据处理设备在电路密度和处理器速度不断提高的同时,电源系统也向低压、大电流和更加高效、低耗、小型化方向发展。如今IC 电压已经从5 V 降为3. 3 V 甚至1. 8 V ,今后还会更低。在DC2DC 变换器中,整流部分的功耗占整个输出功率的比重不断增大,已成为制约整机效率提高的障碍。传统整流电路一般采用功率二极管整流,由于二极管的通态压降较高,因此在低压、大电流时损耗很大。这就使得同步整流技术得到了普遍关注并获得大量应用[1 ,2 ] 。同步整流技术就是用低导通电阻MOSFET 代替传统的肖特基整流二极管,由于MOSFET 的正向压降很小,所以大大降低了整流部分损耗[2 ] 。同时对MOSFET 给出开关时序随电路拓扑工作要求作相应变化的门极驱动信号。由于门极驱动信号与MOSFET开关动作接近同步,所以称为同步整流(Synchronous Rectification ,简称SR) 。 1 正激变换器中的同步整流 自驱动同步整流是指直接从变压器副边绕组或副边电路的某一点上获取电压驱动信号,来驱动同步整流管。外驱动同步整流是指通过附加的逻辑和驱动电路,产生随主变压器副边电压作相应时序变化的驱动信号,驱动SR 管。这种驱动方法能提供高质量的驱动波形,但需要一套复杂的驱动控制电路。相比较来说,自驱动同步整流的电路结构简单,所需元件数量较少;同时自驱动同步整流续流二极管靠复位电压驱动,所以工作特性依赖于功率变压器的复位方式。理想情况是变压器复位时间与主开关管关断时间相等,这样,输出电流将在整个关断期间内通过同步整流管续流[4 ] 。由于漏源极间PN 结的存在,使MOSFET 漏源极之间存在一个集成的反向并联体二极管。电路拓扑要求整流管有反向阻断功能,因此MOSFET 作为整流管使用时,流过电流的方向必须是从源极到漏极,而不是通常的从漏极到源极[4 ] 。实际应用中,2 只SR 管的驱动信号之间应保证足够的死区时间。因为在2 个SR 管换流期间,如果一只整流管已处于导通态,而另外一只还没有关断,就会造成短路,导致较大的短路电流,可能会烧毁MOS 管。但死区时间也不能过长,因为在死区时间内,负载电流从SR 管的体二极管流过,完成MOSFET 作为整流管的功能,如果死区时间过长,电路虽然仍能正常工作,但会增加损耗。因此,从减小损耗的角度考虑,死区时间应设置得足够小。 图1 RCD 箝位自驱动同步整流正激变换器

同步整流电路分析

同步整流电路分析 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。 3、半桥他激、倍流式同步整流电路

相关主题
文本预览
相关文档 最新文档