当前位置:文档之家› 数学建模基础练习一及参考答案

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案
数学建模基础练习一及参考答案

练习1 matlab练习

一、矩阵及数组操作:

1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。

二、绘图:

5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,

并且用legend标注。

6.画出下列函数的曲面及等高线:

z=sinxcosyexp(-sqrt(x^2+y^2)).

7.在同一个图形中绘制一行三列的子图,分别画出向量x=[1 5 8 10 12

5 3]的三维饼图、柱状图、条形图。

三、程序设计:

8.编写程序计算(x 在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;

9.用两种方法求数列:

前15项的和。

10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。 11.试找出100以内的所有素数。

12.当)1(433221)(+?++?+?+?=n n n f 时, ?)

20()30()

40(=+f f f

四、数据处理与拟合初步:

13.随机产生由10个两位随机数的行向量A,将A 中元素按降序排列为B,再将B 重排为A 。 14.通过测量得到一组数据:

分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。 15.计算下列定积分:

dxdy y x e

x )sin(2112

2

2

2+??

---

16.(1)微分方程组

当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t 在[0,25]上的解,并画出相空间轨道图像。

(2)求微分方程?

??='==+'-+''0)0()0(0)1(y y y y n y x 的解。 17.设通过测量得到时间t 与变量y 的数据: t=[0 0.3 0.8 1.1 1.6 2.3]; y=[0.5 0.82 1.14 1.25 1.35 1.41];

分别采用二次多项式和指数函数y=b 0+b 1e^t+b 2te^t 进行拟合,并计算均方误差、画出拟合效果图进行比较。

18.观察函数:y=e^x-1.5cos(2*pi*x)在区间[-1,1]上的函数图像,完成下列两题:

(1)用函数fzero 求解上述函数在[-1,1]的所有根,验证你的结果; (2)用函数fminbnd 求解上述函数在[-1,1]上的极小、极大、最小和最大值,在函数图像上标出你求得的最小值点作出验证。

注:可以用help fzero 命令查看fzero 的调用格式,fzero 典型的调用

方法是:

fzero(@myfun,x0) %返回函数myfun 在x0附近的根; fminbnd 典型的调用方法是:

fminbnd(@myfun,x1,x2) %返回函数myfun 在区间[x1,x2]上的最小值。

19.(1)解方程组??

?

??=+-=-+-=-6

10372109103132121x x x x x x x

(2)解方程组??

?

??=-++=+-+=-++0501230

7ln sin 32z y x z x z y x y

20.求函数2sin )(x x f =的泰勒展开式(x 的次数不超过10)

练习2 spss (matlab 也可以实现,有兴趣可以试试) 21.利用附件中的数据结合回归分析专题中的三个例题,分别进行线性回归和非线性回归, 要求:

(I )先作相关性分析并绘制散点图; (II )做完回归分析后进行各种检验; (1) 写出经验回归方程; (2) 拟合优度检验; (3) 回归方程的显著性检验; (4) 回归系数的显著性检验; (5) 残差图;

(6) 残差分析及异常值检验。

练习3 lingo&lindo(matlab 也能实现部分功能)

22.求解线性规划:若x 、y 满足条件??

?

??≤+-≥+-≤-+.0104010230122y x y x y x ,,求y x z 2+=的最

大值和最小值.

23. (整数规划)福安商场是个中型的百货商场,它对售货人员的需求经过统计分析如下表所示,为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问该如何安排售货人员的休息,既满足了工作需要,又使配备的售货人员的人数最少,请列出此问题的数学模型。

24.求解非线性规划

222

12312313121222

112321233123min (,,)222.. 0 216 0 f x x x x x x x x x x x x s t g x x x x g x x x x g x x x x ?=+++-++?=+-≤??

=++≤??=--+≤?

()()

()

25.求解非线性规划

?????

??

??=-+-=≤-=≤-=≤-+=-+-=0

1)( 0

)( 0

)( 02)( ..)2()1(),( min 2112

312211222121x x x h x x g x x g x x x g t s x x x x f

第一次练习答案

第1题:

(1)、3*3:

单位阵:x=eye(3,3); >> x=eye(3,3) x =

1 0 0 0 1 0 0 0 1 全1阵:x=ones(3,3); >> x=ones(3,3) x =

1 1 1 1 1 1 1 1 1

全0阵:x=zeros(3,3); >> x=zeros(3,3) x =

0 0 0

0 0 0

0 0 0

均匀分布随机阵([-1,1])之间:x=unifrnd(-1,1,3,3);

>> x=unifrnd(-1,1,3,3)

x =

0.6294 0.8268 -0.4430

0.8116 0.2647 0.0938

-0.7460 -0.8049 0.9150

正态分布随机阵(均值为1,标准差为0):x=normrnd(1,0,3,3); >> x=normrnd(1,0,3,3)

x =

1 1 1

1 1 1

1 1 1

>> x(x<1)=0;

x(x>1)=1

x =

1 1 1

1 1 1

1 1 1

(2)15*8:

单位阵:x=eye(15,8);

>> x=eye(15,8)

x =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

全1阵:x=ones(15,8);

>> x=ones(15,8)

x =

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

全0阵:x=zeros(15,8);

>> x=zeros(15,8)

x =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

均匀分布随机阵([-1,1])之间:x=unifrnd(-1,1,15,8);

>> x=unifrnd(-1,1,15,8)

x =

-0.2155 0.5310 -0.3192 0.6286 0.5075 -0.3776 0.9923 -0.6363

0.3110 0.5904 0.1705 -0.5130 -0.2391 0.0571 -0.8436 -0.4724

-0.6576 -0.6263 -0.5524 0.8585 0.1356 -0.6687 -0.1146 -0.7089

0.4121 -0.0205 0.5025 -0.3000 -0.8483 0.2040 -0.7867 -0.7279

-0.9363 -0.1088 -0.4898 -0.6068 -0.8921 -0.4741 0.9238 0.7386 -0.4462 0.2926 0.0119 -0.4978 0.0616 0.3082 -0.9907 0.1594 -0.9077 0.4187 0.3982 0.2321 0.5583 0.3784 0.5498 0.0997

-0.8057 0.5094 0.7818 -0.0534 0.8680 0.4963 0.6346 -0.7101

0.6469 -0.4479 0.9186 -0.2967 -0.7402 -0.0989 0.7374 0.7061

0.3897 0.3594 0.0944 0.6617 0.1376 -0.8324 -0.8311 0.2441

-0.3658 0.3102 -0.7228 0.1705 -0.0612 -0.5420 -0.2004 -0.2981

0.9004 -0.6748 -0.7014 0.0994 -0.9762 0.8267 -0.4803 0.0265

-0.9311 -0.7620 -0.4850 0.8344 -0.3258 -0.6952 0.6001 -0.1964 -0.1225 -0.0033 0.6814 -0.4283 -0.6756 0.6516 -0.1372 -0.8481 -0.2369 0.9195 -0.4914 0.5144 0.5886 0.0767 0.8213 -0.5202

正态分布随机阵(均值为1,标准差为2):x=normrnd(1,2,15,8);

>> x=normrnd(1,2,15,8)

x =

-0.6627 -0.1781 1.7827 0.8643 1.2703 0.5020 -0.0156 1.0827 -0.9584 0.4125 1.9034 0.6096 2.0305 -1.1284 0.3588 -0.4683 -1.3128 -0.6959 0.7394 0.5648 1.5228 4.2069 1.0249 0.9384 -0.0671 -1.2403 1.3674 0.3938 -0.8830 3.4694 -5.0584 1.4647 -3.0053 6.0520 0.0477 1.0461 0.6753 0.5407 0.0860 1.8528

2.9285 4.3110 2.7240 1.1026 0.7079 -2.0123

3.4849 0.2544

2.0401 1.6151 -1.7234 2.6521 -0.0640 0.1107 -1.1334 0.5271

0.9599 -1.5142 1.9101 4.0540 4.3642 0.6881 2.8675 5.0474

0.9305 -0.7309 -0.6974 1.9338 -0.7515 1.5521 1.7006 -3.5167

-0.5963 0.6469 0.3302 0.5806 0.0324 0.4777 0.9420 5.4589

3.0374 2.5828 2.1056 2.2504 -0.4240 1.8868 1.3649 1.6751

0.7336 -1.6640 3.0782 1.3665 -1.3484 1.7838 -2.1301 3.0001

-0.4291 -3.6597 -1.2353 -1.0595 0.6155 -1.5014 0.8309 -2.3283

3.7028 -1.8982 3.5213 2.8984 0.4519 -0.8959

4.2079 -0.1801

0.5505 1.6670 2.3203 1.6141 4.0601 -0.4822 1.1967 0.4439

>> x(x<1)=0;

>> x(x>1)=1

x =

0 0 1 0 1 0 0 1

0 0 1 0 1 0 0 0

0 0 0 0 1 1 1 0

0 0 1 0 0 1 0 1

0 1 0 1 0 0 0 1

1 1 1 1 0 0 1 0

1 1 0 1 0 0 0 0

0 0 1 1 1 0 1 1

0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1

1 1 1 1 0 1 1 1

0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 0

0 1 1 1 1 0 1 0

第2题:

a=fix((10-0+1)*rand(10)+0)

>> a=fix((10-0+1)*rand(10)+0)

a =

8 1 7 7 4 3 8 9 3 0

9 10 0 0 4 7 2 2 9 0

1 10 9 3 8 7 5 8 6 5

10 5 10 0 8 1 7 2 6 8

6 8

7 1 2 1 9 10 10 10

1 1 8 9 5 5 10 3 3 1

3 4 8 7 4 10 6 2 8 6

6 10 4 3

7 3 1 2

8 5

10 8 7 10 7 6 1 6 4 0

10 10 1 0 8 2 2 5 6 3 b=sum(sum(a>=5))

>> b=sum(sum(a>=5))

b =

59

第3题:

a=[0,0,0;0,1,0;0,0,1]

a =

0 0 0

0 1 0

0 0 1

>> a(find(sum(abs(a),1)==0),:)=[];

>> a(:,find(sum(abs(a),1)==0))=[]

a =

1 0

0 1

第4题:

randint(10,10,[1,1000])

>> randint(10,10,[1,1000])

ans =

815 158 656 707 439 277 752 841 352 76 906 971 36 32 382 680 256 255 831 54 127 958 850 277 766 656 506 815 586 531 914 486 934 47 796 163 700 244 550 780 633 801 679 98 187 119 891 930 918 935

98 142 758 824 490 499 960 350 286 130

279 422 744 695 446 960 548 197 758 569 547 916 393 318 647 341 139 252 754 470 958 793 656 951 710 586 150 617 381 12 965 960 172 35 755 224 258 474 568 338 >> A=length(find(mod(ans,2)==1));

>> B=length(find(isprime(ans)))

B =

14

>> A=length(find(mod(ans,2)==1))

A =

38

第5题:

>> x=0:0.01:1000;

y1=2*x+5;

y2=x.^2-3*x+1;

plot(x,y1,'-.^',x,y2,' :*');

legend('y1','y2')

5

01002003004005006007008009001000

第6题:

[x,y]=meshgrid(0:0.25:4*pi);

>> z=sin(x)*cos(y)*exp(-sqrt(x.^2+y.^2));

>> subplot(1,2,1);

>> mesh(x,y,z);

>> title('mesh(x,y,z)')

>> subplot(1,2,2);

>> meshc(x,y,z);

>> title('meshc(x,y,z)')

15

mesh(x ,y,z)0

meshc(x,y,z)

第7题:

subplot(1,3,1);

>> pie3([1,5,8,10,12,5,3]); >> subplot(1,3,2);

>> bar3([1,5,8,10,12,5,3]); >> subplot(1,3,3);

>> stem3([1,5,8,10,12,5,3])

2

第8题:

>> x=-8:0.5:8;

y=[];

for x0=x;

if x0>=-3&x0<-1

y=[y,(-x0.^2-4.*x0-3)/2];

elseif x0>=-1&x0<1

y=[y,-x0.^2+1];

elseif x0>=1&x0<=3

y=[y,(-x0.^2+4.*x0-3)/2];

else y=[y,[]];

end

end

y

y =

Columns 1 through 7

0 0 0 0 0 0 0

Columns 8 through 14

0 0 0 0 0.3750 0.5000 0.3750

Columns 15 through 21

0 0.7500 1.0000 0.7500 0 0.3750 0.5000 Columns 22 through 28

0.3750 0 0 0 0 0 0

Columns 29 through 33

0 0 0 0 0

第9题:

(两种方法)

法一:

>> a=1;

b=2;

sum=0;

for k=1:15;

c=b/a;

sum=sum+c;

t=b;

b=a+b;

a=t;

end

sum

sum =

24.5701

法二:

>> a(1)=2;

b(1)=1;

a(2)=3;

b(2)=2;

s=a(1)/b(1)+a(2)/b(2);

for i=3:15;

a(i)=a(i-1)+a(i-2);

b(i)=a(i-1);

n(i)=a(i)/b(i);

s=s+n(i);

end

>> s

24.5701

第10题:

>> X=randint(1,20,[10,99]);

b=floor(X);

p=mean(b);

m=find(b

c=b(m);

n=find(mod(c,2)==0);

d=c(n)

d =

66 18 24 22

第11题:

>> a=primes(100)

a =

Columns 1 through 13

2 3 5 7 11 13 17 19 23 29 31 37 41 Columns 14 through 25

43 47 53 59 61 67 71 73 79 83 89 97

第12题:

>> a=1;b=2;sum=0;s=0;m=0;

for k=1:20;

n=a*b;

sum=sum+n;

a=a+1;

b=a+1;

end

sum

for k=21:30;

n=a*b;

s=sum+n;

a=a+1;

b=a+1;

end

for k=31:40

n=a*b;

m=s+n;

a=a+1;

b=a+1;

end

m

u=m/(s+sum)

sum =

3080

s =

4010

m =

5650

u =

0.7969

第13题:

>>a=randint(1,10,[10,99])

a =

24 81 38 57 24 64 33 68 72 77 >> [b,i]=sort(a,'descend')

81 77 72 68 64 57 38 33 24 24

i =

2 10 9 8 6 4

3 7 1 5 >> c(i)=b;

>> c

第14题:

>> t=1:10;

y=[4.842,4.362,3.754,3.368, 3.169,3.038,3.034,3.016,3.012,3.005];

u=exp(-t);

p=polyfit(u,y,1);

tt=1:0.05:10;

uu=exp(-tt);

yy1=polyval(p,uu);

z1=polyval(p,u);

wucha1=sqrt(sum((z1-y).^2))

v=t.*u;

q=polyfit(v,y,1);

vv=tt.*uu;

yy2=polyval(q,vv);

z2=polyval(q,v);

wucha2=sqrt(sum((z2-y).^2))

figure(1);

plot(t,y,'*',tt,yy1,t,z1,'x');

figure(2);

plot(t,y,'+',tt,yy2,t,z2,'o');

wucha1 =

0.7280

wucha2 =

0.0375

figure(1)

12345678910

figure(2)

第15题:

第一:

数学建模期末考试2018A试的题目与答案

华南农业大学期末考试试卷(A卷) 2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1.2.3.4.当i在此岸时记x i = 1.否则为0;此岸的状态下用s = (x1.x2.x3.x4)表示。该问题中决策为乘船方案.记为d = (u1, u2, u3, u4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。(12分) . .

数学建模入门试题极其答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 1.解:把人体简化为长方柱,表面积之比为前:侧:顶=1:a:b ,选坐标系将人的速度表示为(v,0,0),即人沿x 周方向走,v>0,而设语雨速为(x,y,z ),行走距离为L ,则淋雨量Q 的表达式为: Q=[ Q=|x-a|+a|y|+b|z|]*L/v 记q=a|x|+b|z|,则 L( 1q -+v x ),v≤x Q(v)= L(v x -q +1),v>x 收回书的1/10,设教授已借出书的册数是时间t 的函数小x(t)的函数, 其授借出数的册数为0。

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

数学模型习题解答解读

上机练习题一 班级: 姓名: 学号: 1.建立起始值=3,增量值=5.5,终止值=44的一维数组x 答案: x=(3:5.5:44) 2.写出计算 Sin(30o )的程序语句. 答案: sin(pi*30/180) 或 sin(pi/6) 3.矩阵??????????=187624323A ,矩阵???? ??????=333222111B ;分别求出B A ?及A 与B 中对应元素之间的乘积. 答案:A = [3,2,3; 4,2,6; 7,8,1] B = [1,1,1; 2,2,2; 3,3,3] A*B ;A.*B 4计算行列式的值1 876243 23=A 。答案:det(A) 5对矩阵 ???? ??????=187624323A 进行下述操作。 (1)求秩。答案:rank(A) (2)求转置。答案:A' (3) 对矩阵求逆,求伪逆。答案:inv(A) ,pinv(A) (4) 左右反转,上下反转。答案:fliplr(A),flipud(A) (5) 求矩阵的特征值. 答案:[u,v]=eig(A) (6) 取出上三角和下三角. 答案:triu(A) tril(A) (7)以A 为分块作一个3行2列的分块矩阵。答案:repmat(a) 6 计算矩阵??????????897473535与???? ??????638976242之和。 >> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b 7 计算??????=572396a 与?? ????=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8];

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明,结果很 可能是否定的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设 条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图 所示,方桌的四条腿分别在A、B、C、D 处,A、、D的初始位置在与x轴平行,再 假设有一条在x轴上的线,则也与A、B,C、D平行。当方桌绕中心0旋转时,对角线与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令() fθ为A、B离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3) ,三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =(0)0g >(若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,与互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 10; 10=235/1000;

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模模拟试题及参考答案

《数学建模》模拟试题 一、(02') 人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。 二、(02') 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。 三、(03') 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。 将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离 ,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论; (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量 (2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0 30,0==θθ时的总淋雨量。 (3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为?,如图2建立总淋雨量与速度v 及参数?,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。 四、(03') 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

数学模型课后答案

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q值方法; (3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, , 432 ,333 ,235321 ===p p p ∑==3 1 . 1000i i p 方法一(按比例分配) , 35.23 1 11 == ∑=i i p N p q , 33.33 1 22 == ∑=i i p N p q 32 .43 1 33 == ∑=i i p N p q 分配结果为: 4 ,3 ,3321 ===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分 配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π ) 2 2 2 n wk k(r n πvt +=∴ . 2 2 2n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日) 1. 在 3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

数学模型期末考试试题及答案

试卷学期《数学模型》期末考试A山东轻工业学院08/09学年II 页)本试卷共4< 题说明总号考次开试分考卷试,参加考试的同学可以携带任何资料,可以 使用计算器,但上述物品严禁相互借用。16分,每小题8分)一、简答题<本题满分得分)式,写出与§2.2录像机计数器的用途中,仔细推算一下<11、在阅卷人<2)式的差别,并解释这个差别;中不允许缺货的存储模型中为什么没有考虑生产 费用,在什么条件下可2、试说明在§3.1 以不考虑它;8分)二、简答题<本题满分16分,每小题得分1阅卷人?s)(ti的变化情时、对于1§5.1传染病的SIR 模型,叙述当0?况并加以证明。 E 2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度的减函数,)0?0,b?c?a?bE,(a即,请问如何达到最大经济效益?本题满分16分,每小题8分)三、 简答题<得分s程是法图解说明为什么方策、1在§9.3 随机存储略中,请用)S?(x)?cI(I的最小正根。阅卷人0、请结合自身特点谈一下如何培养数学建模 的能力?2 分)四、<本题满分20得分219人,二年级有某中学有三个年级共1000名学生,一年级有人。现要选20名校级优秀学生,请用下列办316人,三年级有465 阅卷人Q ;<2))按比例加惯例的方法法分配各年级的优秀学生名额:<1值法。另外如果校级优秀学个,重新进行分配,并按照席位分配的理想生名额增加 到21化准则分析分配结果。得分分)16五、<本题满分阅

卷人大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个层次结构图如图,已知准则层。 选可业就岗位供择对目标层的成对比较矩阵1 / 4 选择就业岗位 71/1/43511????????23111/2/AB??41,比较矩阵分别为成,方案层对准则层的对 ????1????22171/51/1????117463????????3112/B?3B?1/41。,JhYEQB29bj ????32????1/21/6111/71/3????请根据层次分析方法为小李确定最佳的工作岗位。 16分)六、<本题满分得分某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的阅卷人<额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制退保)。 定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?5Y944Acbad 退保死亡II 学期《数学模型》期末考试A试卷解答山东轻工业 学院08/09学年0.05 0.03 分)分,每小题8一、简答题<本题满分160.15 0.07 m(m?1)???2mr?vt2?)得4分1、答:由<1,。。。。。。。。。。。。。。。。。。。。20.1 健康疾病2???knk2?)t?2r?n?(knm?代入得。。。。。。。。。。。。。。。。。。。。,6分将 vv0.6 ???2r?r2??r,则得<2因为)。所以。。。。。。。。。。。。。。。。。。。。8分 crc,每天的平均费用是,则平均每天的生产费用为2、答:假设每件产品的生产费用为 33ccrT112??crC(T)?4分,。。。。。。。。。。。。。。。。。。。。 1132T1)TdC()TdC(11)T(TC?下面求最小,发现使,所以111dTdT12c1??TT,与生产费用无关,所以不考虑。。。。。。。。。。。。。。。。。。。。。81cr2分 二、简答题<本题满分16分,每小题8分) 1di??s?),(1s??i,1、答:由<14若)0?dtdi1s)(t??s,?0i时,4增 加; 。。。。。。。。。。。。。。。。。。。。分当0?dtdi1?i(ts),?0i时,达到最大值当;

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

数学模型吕跃进数学建模A试卷及参考答案

数学建模A试卷参考答案 一.概念题(共3小题,每小题5分,本大题共15分) 1、什么是数学模型?(5分) 答:数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 2、数学建模有哪几个过程?(5分) 答:数学建模有如下几个过程:模型准备,模型假设,模型构成,模型求解,模型分析,模型检验,模型应用。 3、试写出神经元的数学模型。 答:神经元的数学模型是 其中x=(x1,…x m)T输入向量,y为输出,w i是权系数;输入与输出具有如下关系: θ为阈值,f(X)是激发函数;它可以是线性函数,也可以是非线性函数.(5分) 二、模型求证题(共2小题,每小题10分,本大题共20分) 1、(l)以雇员一天的工作时间t和工资w分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图。解释曲线为什么是你画的那种形状。(5分) (2)如果雇主付计时工资,对不同的工资率(单位时间的工资)画出计时工资线族。根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议。(5分) 答:(l)雇员的无差别曲线族f(w,t)=C是下凸的,如图1,因为工资低时,他愿以较多的工作时间换取较少的工资;而当工资高时,就要求以较多的工资来增加一点工作时间. (2)雇主的计时工资族是w=at,a是工资率.这族直线与f(w,t)=c的切点P1,P2,P3,…的连线PQ为雇员与雇主的协议线.通常PQ是上升的(至少有一段应该是上升的),见图1. 2、试作一些合理的假设,证明在起伏不平的地面上可以将一张椅子放稳。(7分)又问命题对长凳是否成立,为什么?(3分) 答:(一)假设:电影场地面是一光滑曲面,方凳的四脚连线构成一正方形。 如图建立坐标系:其中A,B,C,D代表方凳的四个脚,以正方形ABCD的中心为坐标系原点。 记H为脚A,C与地面距离之和, G为脚B,D与地面距离之和, θ为AC连线与X轴的夹角, 不妨设H(0)>0,G(0)=0,(为什么?) 令X f(θ)=H(θ)-G(θ)图二 则f是θ的连续函数,且f(0)=H(0)>0 将方凳旋转90°,则由对称性知H(π/2)=0,G(π/2)=H(0) 从而f(π/2)=-H(0)<0 由连续函数的介值定理知,存在θ∈(0,π/2),使f(θ)=0 (二)命题对长凳也成立,只须记H为脚A,B与地面距离之和, G为脚C,D与地面距离之和, θ为AC连线与X轴的夹角 将θ旋转1800同理可证。 三、模型计算题(共5小题,每小题9分,本大题共45分)

数学建模考试题(开卷)及答案

2010年上学期2008级数学与应用数学,信息与计算科学专业 《数学建模》课程考试供选试题 第1题 4万亿投资与劳动力就业: 2008以来,世界性的金融危机席卷全球,给我国的经济发展带来很大的困难。沿海地区许多中小企业纷纷裁员,造成大量的人员失业。据有关资料估计,从2008年底,相继有2000万人被裁员,其中有1000万人是民工。部分民工返乡虽然能够从一定程度上缓解就业压力,但2009年的600多万毕业大学生给我国就业市场带来巨大压力。但可喜的是,我国有庞大的外汇储备,民间资本实力雄厚,居民储蓄充足。中国还是发展中国家,许多方面的建设还处于落后水平,建设投资的潜力巨大。为保持我国经济快速发展,特别是解决就业问题带来希望,实行政府投资理所当然。在2009年两代会上,我国正式通过了4万亿的投资计划,目的就是保GDP增长,保就业,促和谐。但是有几个问题一直困扰着我们,请你运用数学建模知识加以解决。问题如下: 1、GDP增长8%,到底能够安排多少人就业?如果要实现充分就业,2009年的GDP到底要增长多少? 2、要实现GDP增长8%,4万亿的投资够不够?如果不够,还需要投资多少? 3、不同的产业(或行业)吸纳的劳动力就业能力不同,因此投资的流向会有所不同。请你决策,要实现劳动力就业最大化,4万亿的投资应该如何分配到不同的产业(或行业)里? 4、请你给出相关的政策与建议。 第2题 深洞的估算:假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG的石头,并准确的测定出听到回声的时间T=5S,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。 1、不计空气阻力; 2、受空气阻力,并假定空气阻力与石块下落速度成正比,比例系数k1=0.05; 3、受空气阻力,并假定空气阻力与石块下落速度的平方成正比,比例系数k2=0.0025; 4、在上述三种情况下,如果再考虑回声传回来所需要的时间。 第3题 优秀论文评选:在某数学建模比赛的评审过程中,组委会需要在一道题目的150 篇参赛论文中选择4 篇论文作为特等奖论文。评审小组由10 名评委组成,包括一名小组组长(出题人),4 名专业评委(专门从事与题目相关问题研究的评委),5 名普通评委(从事数学建模的教学和组织工作,参与过数学建模论文的评审)。组委会原先制定的评审步骤如下: step1:首先由普通评委阅读所有150 篇论文,筛选出20 篇作为候选论文。 Step2:然后由小组内的所有评委阅读这些候选论文,每人选择4 篇作为推荐的论文。 Step3:接着进入讨论阶段,在讨论阶段中每个评委对自己选择的 4 篇论文给出理由,大家进行讨论,每个评委对论文的认识都会受到其他评委观点的影响。 Step4:在充分讨论后,大家对这些推荐的论文进行投票,每个评委可以投出4票,获得至少6 票的论文可以直接入选,如果入选的论文不足,对剩余的论文(从20篇候选论文中除去已经入选的论文)重复step2至step4 步的评审工作。如果三轮讨论后入选的论文仍然不够,则由评选小组组长确定剩下名额的归属。 如果有超过4 篇的论文获得了至少6票,则由评选小组组长确定最终的名额归属。问题:

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

(完整版)数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系. 解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲. 量纲矩阵为: A=) ??????? ???---ρ()() ()()()()(001310013212s v P T M L 齐次线性方程组为: ?? ? ??=--=+=-++0 30 32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得 1131ρπs v P -=, 1 13ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系 数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0 , [μ]=MLT -2 (LT -1L -1 )-1L -2 =MLL -2T -2 T=L -1 MT -1 ,[g ]=LM 0T -2 ,其中L ,M ,T 是基本量纲. 量纲矩阵为 A=) ()()()()()() (210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即 ??? ??==+=+0 2y -y - y -0 y y 0y y -3y -y 431 324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得 g v μρπ1 3 --=. 3 ρ μλg v =∴,其中λ是无量纲常数.

数学建模期末考试2018A试的题目与答案.doc

. . 华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、(满分12分) 一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分 别记为i = 1.2.3.4.当i 在此岸时记x i = 1.否则为0;此岸的状态下用s =(x 1.x 2.x 3.x 4)表示。该问题中决策为乘船方案.记为d = (u 1, u 2 , u 3, u 4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。 (12分)

数学建模课后答案

第一章 4.在1、3节“椅子能在不平的地面上放稳不”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之与分别定义为)()(a g a f 和。f 与g 都就是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题: 已 知 a a g a f 是和)()(的连续函数,对任意 0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也就是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8 第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 就是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--=

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标

* 根据数据,试给出鉴别胃病的方法。 论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 , 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了

最新数学建模(数学模型)期末考试试题及答案详解

1 数学模型(数学建模)期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、(满分12分) 一人摆渡希望用一条船将一只狼,一只羊,一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白 菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。 (12分) 1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就

相关主题
文本预览
相关文档 最新文档