当前位置:文档之家› 数学模型第四版课后答案姜启源版

数学模型第四版课后答案姜启源版

数学模型第四版课后答案姜启源版
数学模型第四版课后答案姜启源版

《数学模型》作业答案

第二章(1)(2012年12月21日)

1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们

要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:

(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;

(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?

如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.

解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3

1

.1000i i

p

方法一(按比例分配) ,35.23

1

11==

∑=i i

p

N

p q ,33.33

1

22==

∑=i i

p

N

p q 32.43

1

33==

∑=i i

p

N

p q

分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)

9个席位的分配结果(可用按比例分配)为:

4 ,3 ,2321===n n n

第10个席位:计算Q 值为

,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322

3=?=

Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n

方法三(d ’Hondt 方法)

此方法的分配结果为:5 ,3 ,2321===n n n

此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).

i

i

n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i

i n p

尽量接近.

再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.

考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得

??

+=n

t

dn wkn r k vdt 0

)(2π

)22 2

n wk k(r n πvt +=∴ .2 22n v

k w n v rk t ππ+=∴

《数学模型》作业解答

第三章1(2008年10月14日)

1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货

批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.

01 对于不允许缺货模型,每天平均费用为:

kr rT c T c T C ++=

2

)(21

2221r c T

c dT dC

+-= 令

0=dT

dC

, 解得 r

c c T 21

*2= 由rT Q = , 得2

12c r

c rT Q =

=*

*

与不考虑购货费的结果比较,T、Q的最优结果没有变.

02 对于允许缺货模型,每天平均费用为:

??

????

+-++

=kQ Q rT r c r Q c c T Q T C 23221)(221),( 2223322221222T

kQ rT Q c r c rT Q c T c T C

--+--=??

T

k rT Q c c rT Q

c Q C ++-=??332 令???????=??=??00Q

C

T

C

, 得到驻点:

???

?

??

?+-

+-+=-

+=

**

3

23222

2

3323213

22

33221)(22c c kr

c c c r k c c c c c r c Q c c k c c c rc c T

与不考虑购货费的结果比较,T、Q的最优结果减少.

2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,

r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的

一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.

解:由题意可得贮存量)(t g 的图形如下:

贮存费为 ∑?=→??-==?

i T

i i t T

T r k c dt t g c t g c 1

02

20

22

))()(lim

ξ

又 )()(00T T r T r k -=- ∴ T k r T =

0 , ∴ 贮存费变为 k

T

T r k r c 2)(2?-=

于是不允许缺货的情况下,生产销售的总费用(单位时间内)为

k

T

r k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=

k r k r c T

c dT dC 2)(221-+-=. 0=dT dC

, 得)

(221r k r c k c T -=* 易得函数处在*

T T C )(取得最小值,即最优周期为: )

(221r k r c k

c T -=

*

r

c c ,T

r k 21

2≈

>>*

时当 . 相当于不考虑生产的情况.

∞→≈*

,T r k 时当 . 此时产量与销量相抵消,无法形成贮存量.

第三章2(2008年10月16日)

3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.

解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1

)(+=

b k

b λ, 分母∞→→+λ时是防止中的011

b b 而加的. 总费用函数()x

c b kx b x t c b kx b t c t c x C 3122121211)

1()(2)1(2+--++--++=β

ββββββ

最优解为 []

k b k

c b b b c kb

c x β

β)1(2)1()1(22

322

1

+++++=

5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设

t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售

期分为T t T

T t <<<<2

20和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,

使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为

??

???<<-<<-=T t T bp a T t bp a x 2,2

0,21

又 t q t q β+=0)(.于是总利润为

[][]?

?--+--=2

2

221121)()()()(),(T

T

T dt bp a t q p dt bp a t q p p p

=2

2)(022)(20222011T T

t t q t p bp a T t t q t p bp a ??????

---+??????---ββ

=)8

322)(()822)((2

0222011T t q T p bp a T T q T p bp a ββ---+---

)(2

)822(12011bp a T

T T q T p b p -+---=??β )(2

)8322(22022bp a T

T t q T p b p -+---=??β 0,02

1=??=??p p 令

, 得到最优价格为: ???

???

???????++=???

???++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为

??+-

=-+-=20

2

21210)(2

)()(T

T

T p p bT

aT dt bp a dt bp a Q 于是得到如下极值问题:

)8

322)(()822)((),(m ax 2

022201121T t q T p bp a T T q T p bp a p p ββ---+---=

t s . 021)(2

Q p p bT

aT =+-

利用拉格朗日乘数法,解得:

??

???+

-=--=88

0201T

bT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.

第三章3(2008年10月21日)

6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?

解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元);

每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=212

1

)( 得:k T T

T C 10092500

)(++=

0=dT

dC

, 解得:3

50

92500*==T 由实际意义知:当3

50*

=

T (即订货周期为350)时,总费用将最小.

又k T C 10035095025003)(*

+?+?==300+100k

k T C 10030930

2500

)(0+?+==353.33+100k

)(0T C -)(*T C =(353.33+100k )-(300+100k )32

=53.33.

故应改变订货策略.改变后的订货策略(周期)为T *

=3

50,能节约费用约53.33元.

《数学模型》作业解答

第四章(2008年10月28日)

1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用

A 原料2千克,

B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价

分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:

max S=20x+30y

s.t. ??

?

??∈≥≤+≤+Z y x y x y x y x ,,0,7045202

这是一个整线性规划问题,现用图解法进行求解

可行域为:由直线1l :x+2y=20, 2l :5x+4y =70

2l

92500

2+-=T

dT dC

数学模型第四版(姜启源)作业对于6.4节蛛网模型讨论下列问题:

对于6.4节蛛网模型讨论下列问题: (1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数 量1+k x 和k x 决定。如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并 与6.4的结果进行比较。 (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和 1-k y 决定,试分析稳定平衡的条件是否还会放宽。 解:(1) 设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为: )2 (11k k k x x f y +=++ 则 0),2 (0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k 消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,…. 该方程的特征方程为 022=++αβαβλλ 与6.4节中 )2 (11-++=k k k y y g x 时的特征方程一样, 所以0<αβ<2, 即为0p 点的稳定条件。

(2)设 )2 (11k k k x x f y +=++ )2 (11-++=k k k y y g x , 则有 0),2 (0101>-+-=-++ααx x x y y k k k 0),2 (0101>-+=--+ββy y y x x k k k 消去y,得到 0123)1(424x x x x x k k k k +=++++++αβαβαβαβ 该方程的特征方程为 02423=+++αβαβλαβλλ 令λ=x ,αβ=a , 即求解三次方程 0a 2ax ax 4x 23=+++ 的根 在matlab 中输入以下代码求解方程的根x : syms x a solve(4*x^3+a*x^2+2*a*x+a==0,x) 解得 1x = (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 2x = -(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3) - 3^(1/2)*a*24*i - 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i +

数学模型第四版课后答案姜启源版

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1Λ=i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

(整理)作业1数学建模,姜启源版.

实验一动力系统 一、实验目的与要求 掌握运用软件求解动态系统模型,通过研究散点图得到动态系统的内在性质和长期趋势。通过对数据进行处理,归纳出动态系统模型。 1、用Excel对数据进行处理,建立动态系统模型并且进行验证; 2、用Excel画散点图,对动态系统模型解的长期趋势进行分析; 3、用Excel求解动态系统模型并估计均衡点; 4、用Excel分析多元动态系统模型。 二、实验内容 Example 1.1 P9 研究课题第一题 随着汽油价格的上涨,今年你希望买一辆新的(混合动力)汽车。你把选择范围缩小到以下几种车型:2007Toyota Camry混合动力汽车2007Saturn混合动力汽车2007Honda Civic混合动力汽车2007Nissan Altima 混合动力汽车2007Mercury Mariner混合动力汽车。每年公司都向你提供如下的“优惠价”。你有能力支付多达60个月的大约500美元的月还款。采用动力系统的方法来确定你可以买那种新的混合动力系统汽车。 混合动力汽车“优惠价”(美元)预付款(美元)利率和贷款持续时间Saturn 22045 1000 年利率5.95%,60个月Honda Civic24350 1500年利率5.5%,60个月Toyota Camry26200 750年利率6.25%%,60个月Mariner27515 1500年利率6%%,60个月 Altima24900 1000年利率5.9%%,60个月 解答如下,对五家公司分别建立动力系统模型: Saturn:Δb n=b n+1-b n=0.0595b n-6000 b n+1= b n+0.0595b n-6000 b0=21045 Honda Civic:Δb n=b n+1-b n=0.055b n-6000 b n+1= b n+0.055b n-6000 b0=22850 Toyota Camry: Δb n=b n+1-b n=0.0625b n-6000 b n+1= b n+0.0625b n-6000 b0=25450 Mariner:Δb n=b n+1-b n=0.06b n-6000 b n+1= b n+0.06b n-6000 b0=26015

第四版姜启源数学模型复习总结(2015年春)

第四版姜启源数学模型复习总结(2015年春) 【内容总结与思考】 第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。建模的一般方法及其在建模中的应用。建模的一般步骤(每步的主要内容与问题)。建模的全过程(框图)4个环节的含义。模型的特点(技艺性)。模型分类(表现特征),建模中的能力培养。 数学建模实例的建模思想及其步骤 §1 数学模型的概念: 模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。 模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。 数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。 1-1-1 模型是为了特定的目的,将原型的()而得到的原型替代物。 1-1-2数学模型可以描述为:对于一个现实对象,( )。

1-1-3 关于数学模型的如下论述中正确的是() A。数学模型是以现实世界的特定问题为研究对象。 B。数学模型只是对实际问题的近似表示,其中包含一些简化假设。C。数学模型表示是某一特定问题的内在规律的数学表示,是以方程和函数关系表示的数学结构。 D。数学模型是现实问题的真实的描述,不能做任何假设和简化。 1-1-4 关于数学建模的如下论述中正确的是() A。数学模型和数学建模是完全相同的概念。 B。数学建模是一个全过程,包括表述、求解、解释和验证四个环节。C。数学建模全过程涉及两个世界是现实世界和虚拟世界,涉及的“双向翻译”是同声翻译和文献翻译。 D.数学建模过程是一个从理论-实践-再理论-再实践不断改进的过程。 §2 建模的重要意义 (1)数学以空前的广度和深度向一切领域渗透 在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了;数学进入一些新领域,为数学建模开辟了许多处女地. 数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。 例1-2-1 数学建模的具体应用为()。§3实例1:椅子问题:实际问题转换为数学问题的方法:位

数学模型姜启源第四版答案

数学模型姜启源第四版答案 【篇一:姜启源数学模型课后答案(3版)】 t>第二章(1)(2008年9月16日) 1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分 较大者; (2). 1中的q值方法; (3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍 分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将 3种方法两次分配的结果列表比较. 解:先考虑n=10的分配方案, 3 p1?235,p2?333,p3?432, ?pi?1000. i?1 方法一(按比例分配) q1? p1n 3 ?2.35,q2? p2n 3 ?3.33, q3? p3n 3 ?4.32 ? i?1 pi ? i?1 pi

i?1 pi 分配结果为: n1?3, n2?3, n3?4 方法二(q值方法) 9个席位的分配结果(可用按比例分配)为: n1?2,n2?3, n3?4 第10个席位:计算q值为 q1? 235 2 2?3 ?9204.17, q2? 333 2 3?4 ?9240.75, q3? 432 2 4?5 ?9331.2 q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5 方法三(d’hondt方法) 此方法的分配结果为:n1?2,n2?3,n3?5 此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍). pini pini pini 是 每席位代表的人数,取ni?1,2,?,从而得到的近. 中选较大者,可使对所有的i,尽量接 再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本. 考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得 vdt?(r?wkn)2?kdn,两边积分,得 ?vdt?2?k?(r?wkn)dn t

姜启源《数学模型》第三版课件

第一章建立数学模型1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例 1.4 数学建模的方法和步骤1.5 数学模型的特点和分类1.6 怎样学习数学建模

1.1从现实对象到数学模型 我们常见的模型 玩具、照片、飞机、火箭模型… …~ 实物模型水箱中的舰艇、风洞中的飞机… …~ 物理模型地图、电路图、分子结构图… …~ 符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征

你碰到过的数学模型——“航行问题” 用x 表示船速,y 表示水速,列出方程: 75050)(750 30)(=?-=?+y x y x 答:船速每小时20千米/小时. 甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少? x =20y =5求解

航行问题建立数学模型的基本步骤?作出简化假设(船速、水速为常数); ?用符号表示有关量(x, y表示船速和水速); ?用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程); ?求解得到数学解答(x=20, y=5); ?回答原问题(船速每小时20千米/小时)。

数学模型(Mathematical Model) 和 数学建模(Mathematical Modeling) 对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型 数学 建模

相关主题
文本预览
相关文档 最新文档