当前位置:文档之家› 实验一被控过程的动态特性

实验一被控过程的动态特性

实验一被控过程的动态特性
实验一被控过程的动态特性

北京联合大学

实验报告

课程(项目)名称:过程控制

学院:自动化学院专业:自动化

班级:0910030203 学号:2009100302309 姓名:张希华成绩:

2012年11月14日

实验一被控过程的动态特性及PID调节器特性

一、实验目的:

1、了解Matlab的实验环境;

2、掌握Matlab创建模型的方法;

3、理解过程特征参数变化对其动态特性的影响;

4、理解PID调节器参数对其特性的影响。

二、实验内容:

1、观察下述8种对象模型的阶跃响应曲线;

⑴一阶惯性:K/(Ts+1);⑸一阶惯性加滞后:Ke-τs/(Ts+1);

⑵二阶惯性:K/[(T1s+1)(T2s+1)];⑹二阶惯性加滞后:Ke-τs/[(T1s+1)(T2s+1)];

⑶积分环节:1/T a s;⑺积分加纯滞后:e-τs/T a s;

⑷一阶惯性加积分:1/T a s(Ts+1);⑻积分一阶惯性加纯滞后:e-τs/T a s(Ts+1);

对象模型中的参数K和T由学生在实验中具体确定。

2、观察参数改变后对过程输出曲线的影响;

3、创建PID调节器模型,观察各种调节规律的输出曲线;

4、观察PID参数改变后对其输出曲线的影响;

5、打印所有输出曲线图形并注明各参数值;

三、实验步骤:

1、从“开始/程序”菜单,击Matlab图标,进入命令窗口,如下图:

2、点击按钮,或输入simulink后回车,进入Matlab仿真环境。

3、从linear库中找出相应传递函数,创建对象仿真模型;

⑴一阶惯性:K/(Ts+1)

在中找,自定义相关参数。

打印输出曲线,改变参数,观察曲线变化情况。

⑵二阶惯性:K/(T1s+1)(T2s+1);

在中找两个串在一起,自定相关参数(如上图)。

⑶积分环节:1/T a s;

在中找,在参数中设置Denominator第二项为0,

其他参数自定,打印输出曲线,改变参数,观察曲线变化情况。

⑷一阶惯性加积分:1/T a s(Ts+1);

在中找两个串在一起,自定相关参数(结合以上2,3)。

⑸一阶惯性加滞后:Ke-τs/(Ts+1);

在中找,在中找串在一起构成所需系统,

自定参数,观察输出曲线。

⑹二阶惯性加滞后:Ke-τs/(T1s+1)(T2s+1);

在中找两个,在中找一个串在一起构成所需系统, 自定参数,观察输出曲线。

⑺积分加纯滞后:e-τs/T a s;

在中找,在中找串在一起构成所需系统( 在transfer fcn参数中设置Denominator第二项为0)。

⑻积分一阶惯性加纯滞后:e-τs/T a s(Ts+1);

在中找两个,在中找一个串在一起构成所需系统, 自定参数,观察输出曲线( 在其中一个transfer fcn参数中设置Denominator第二项为0)。

4、从source库中找到step input作为输入;

5、从sinks库中找到scope 观察输出波形;

6、执行:在模型窗口simulation菜单下选择Start命令,即出现仿真模型的阶跃响应曲线。

7、在中用将每4个输出图形打在一张图里,共两张图。

8、分别对各传递函数进行参数修改,观察并记录对输出曲线的影响;

9、创建PID调节器模型,观察各种调节规律的输出曲线;

10、观察PID参数改变后对其输出曲线的影响;

11、打印各种输出曲线。

四、实验截图

①得到逻辑图如下图:

由仿真模型得到的输出波形如下:

②值修参数如下逻辑图:

由仿真模型得到的输出波形如下:

③加入延迟后,得到如下逻辑图:

由仿真模型得到的输出波形如下:

④改变参数后得到的逻辑图为:

由仿真模型得到的输出波形如下:

⑤创建PID调节器模型

PID过程调节

五、实验分析:

比例系数影响反应速度,越大速度性越好,但会使稳定性下降;加积分反应慢,震荡加剧,可是稳态误差降低至零;微分使超调量减小且对稳态误差无影响。

实验二 单回路P I D 控制系统组成及过程动态特性参数对控制质

量的影响

一、 实验目的:

1.熟悉Matlab 仿真环境;

2.理解单回路控制系统的组成;

3.理解给定值扰动和负荷扰动的过渡过程曲线;

4.掌握扰动通道、控制通道的静态参数和动态参数对控制质量的影响; 5.掌握扰动作用位置对控制质量的影响;

6.掌握对象的多个时间常数之间的关系对控制质量的影响;

二、 实验内容:

对如下图所示的单回路控制系统进行仿真。

进入仿真环境,建立如下仿真系统: 例:

其中,Step input 作为系统给定值;而Step1 input 作为外部干扰。 注:PID 模块后的比例环节可换为一阶环节。

具体步骤为: 1、

模块在

库中,

模块在

库中,

模块在

库中,

模块在

库中。

模块在

库的

中。

2、双击模块可以设定每个模块的参数,左键拖动鼠标产生连线,右键拖动鼠标可产生交接线。 PID 参数设定如下: (一)给定值扰动:

设置给定值阶跃扰动Step input 为某一值,设外部干扰Step1 input 为0,改变PID 控

制器的参数,从模块观察系统输出曲线,直到出现4:1衰减曲线。(如图)

①修改Step input模块:

双击,对话框参数为:

②修改PID模块:

双击PID模块,出现如下对话框:

在此窗口下修改P、I、D参数。

反复调整P、I、D参数,使输出成为4:1衰减曲线。

(二)负荷扰动:

修改参数步骤与(一)相同,设Step input给定值扰动为0,负荷扰动Step1 input设置为某一值。

反复调整P、I、D参数,使输出成为4:1衰减曲线。

(三)观察扰动通道和控制通道参数对控制质量的影响:(调节器整定参数值不变)1.改变扰动通道静态参数和动态参数,观察输出波形的变化;

2.改变控制通道静态参数和动态参数,观察输出波形的变化;

3.改变扰动作用位置,观察输出波形的变化;

三、实验结果整理:

1、总结单回路仿真系统的基本组成部分。

给定、调节器、控制器、被控对象、测量变送、输出参数

2、分别在实验内容(一)、(二)所得到的仿真曲线上,标明并求出控制系统的各项性能指

标。

四、实验总结

改变控制通道静态参数和动态参数,输出波形稳定性无影响,改变扰动通道静态参数和动

态参数,扰动作用位置,都会影响输出的稳定性。

测试系统静态特性校准实验报告

实验一测试系统静态特性校准 一.实验目的 1.1 掌握压力传感器的原理 1.2掌握压力测量系统的组成 1.3掌握压力传感器静态校准实验和静态校准数据处理的一般方法 二.实验设备 本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,5位半数字电压表,直流稳压电源和采样电阻组成。图1-1实验系统方框图如下: 实验设备型号及精度 三.实验原理 在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6%Mpa信号调理器为压力传感器提供恒电源,将压力传感器输出的电压信号放大并转换为电流信号。信号处理器输出为二线制,4~20mA信号电源在250 采样电阻上转换为1~5V电压信号,由5位半数字电压表读出。

四.实验操作 4.1操作步骤 (1)用调整螺钉和水平仪将活塞压力计调至水平。 (2)核对砝码重量及个数,注意轻拿轻放。 (3)将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭。严禁未开油杯针阀时,用手轮抽油,以防破坏传感器。 (4)加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。反复1-2次,以消除压力传感器内部的迟滞。 (5)卸压后,重复(3)并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。 (6)按0.05Mpa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。 (7)加压至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。此后逐级卸载,并在电压表读出相应的电压值。 (8)卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。 (9)稍停1~2分钟,开始第二次循环,从(5)开始操作,共进行5次循环。 4.2 注意事项 保持砝码干燥,轻拿轻放,防止摔碰。 轻旋手轮和针阀,防止用力过猛。 正、反行程中,要求保证压力的单调性,如遇压力不足或压力超值,应重新进行循环。 当活塞压力计测量系统的活塞升起是,请注意杆的标记线与两侧固定支架上的标记对齐,同时,用手轻轻旋动托盘,以保持约30转/分的旋转速度,用此消除静摩擦,此后方可进行读数。 严禁未开油杯针阀时,用手轮抽油,以防破坏传感器;或在电压表输出值不变的情况下,严禁连续转动手轮数圈。 五.数据处理 1、实验数据

材料动态特性实验(南京理工大学)分析

南京理工大学 机械工程学院研究生研究型课程考试答卷 课程名称:材料动态特性实验 考试形式:□专题研究报告□论文√大作业□综合考试学生姓名:学号: 评阅人: 时间:年月日

材料动态特性实验 一.实验目的: 1、了解霍普金森杆的实验原理和实验步骤; 2、会用霍普金森杆测试材料动态力学性能。 二.实验原理: 分离式Hopkinson 压杆的工作原理如图1.1所示装置中有两段分离的弹性杆,分别为输入杆和输出杆,短试样夹在两杆之间。当压气枪发射一撞击杆(子弹),以一定速度撞击输入杆时,将产生一入射弹性应力脉冲,随着入射波传播通过试样,试样发生高速塑性变形,并相应地在输出杆中传播一透射弹性波,而在输入杆中则反射一反射弹性波。透射波由吸收杆捕获,并最后由阻尼器吸收。 图1.1 现在的Kolsky 杆装置示意图 根据压杆上电阻应变片所测得的入射波、反射波、透射波,以及一维应力波理论可得到如下的计算公式。 试样的平均应变率为: )00t r i l c εεεε--=( (1-1) 试样中的平均应变: dt l c t r i s ?--= )(00εεεε (1-2)

试样中的平均应力: )(20t r i A AE εεεσ++= (1-3) 式中t r i εεε,,分别表示测试记录的入射、反射和透射波,C 0 是弹性纵波波速,C=5189m/s,L 0为试样的初始长度,E 为压杆的弹性模量,A/A 0为压杆与试样的 截面比。 由应力均匀化条件可知: r i t εεε+= (1-4) 将公式(l 一4)代入(1一l)!(l 一2)!(l 一3)式可得 t s E A A εσ0= (1-5) ?-=dt l c r s εε002 (1-6) 一般采用公式(l 一5)、(1一6)来计算材料的动态应力一应变行为。 该试验技术作了如下几个假定: (1)一维假定 弹性波(尤其是对短波而言)在细长杆中传播时,由于横向惯性效应,波会发生弥散,即波的传播速度和波长有关。Pochhammer 最早研究过波在无限长杆内的色散效应,但当入射波的波长(可由子弹的长度来控制,即波长为子弹长度的2倍)比输入杆的直径大很多时,即满足必/兄<<1时,杆的横向振动效应,除波头外,可作为高阶小量忽略不计。子弹和输入杆都假定处于一维应力状态,可直接利用一维应力波理论进行计算。 (2)均匀化假定 压缩脉冲通过试样时,在试样内发生了多次波的反射。由于压缩脉冲的持续作用时间比短试样中波的传播时间要长得多,使得试样中的应力很快趋向均匀化,因此可以忽略试样内部波的传播效应。 (3)不计导杆与试样端部的摩擦效应 由于试样和导杆加工时表面的不光滑,以及导杆横向变形的不均匀,在试样与输入杆的接触面会产生摩擦,这使得试样处于复杂的应力状态,给试验数据的

实验三 电容式传感器静、动态特性实验

实验三电容式传感器静、动态特性实验 一、实验目的: 1. 了解电容式传感器结构及其特点。 2. 了解电容传感器的动态性能的测量原理与方法。 二、需用器件与单元: 电容传感器、电容传感器实验模板、测微头、相敏检波、低通滤波模板、数显单元、直流稳压源、双踪示波器。 三、实验步骤: 1、按实验二的图2-1安装示意图将电容传感器接于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图3-1。 图3-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。 4、接入±15V电源,旋动测微头推进电容传感器动

极板位置,每间隔0.2mm记下位移X与输出电压值,填入表3-1。 5、根据表3-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。 6、传感器安装图同实验二图2-1,按图3-1接线。实验模板输出端V01 接滤波器输入端。滤波器输出端V,接示波器一个通道(示波器X轴为20ms/div、Y轴示输出大小而变)。调节传感器连接支架高度,使V01输出在零点附近。 7、主控箱低频振荡器输出端与振动源低频输入相接,振动频率选6~12Hz之间,幅度旋钮初始置0。 8、输入±15V电源到实验模板,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察示波器上显示的波形。 9、保持低频振荡器幅度旋钮不变,改变振动频率,可以用数显表测频率(将低频振荡器输出端与数显Fin输入口相接,数显表波段开关选择频率档)。从示波器测出传感器输出的V01峰-峰值。保持低频振荡器频率不变,改变幅度旋钮,测出传感器输出的V01峰-峰值。 四、思考题: 1、试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素? 2、为了进一步提高电容传器灵敏度,本实验用的传感器可作何改进设计?如何设计成所谓容栅传感器? 3、根据实验所提供的电容传感器尺寸,计算其电容量

测试装置动态特性仿真实验报告

测试装置动态特性仿真实验 班级:7391 学号:2009301828 姓名:张志鹏 一、实验目的 1、加深对一阶测量装置和二阶测量装置的幅频特性与相频特性的理解; 2、加深理解时间常数变化对一阶系统动态特性影响; 3、加深理解频率比和阻尼比变化对二阶系统动态特性影响; 4、使学生了解允许的测量误差与最优阻尼比的关系。 二、实验原理 1、 一阶测量装置动态特性 一阶测量装置是它的输入和输出关系可用一阶微分方程描述。一阶测量装置的频率响应函数为: 式中:S S 为测量装置的静态灵敏度;τ为测量装置的时间常数。 一阶测量装置的幅频特性和相频特性分别为: 可知,在规定S S =1的条件下,A (ω)就是测量装置的动态灵敏度。 当给定一个一阶测量装置,若时间常数τ确定,如果规定一个允许的幅值误差ε,则允许测量的信号最高频率ωH 也相应地确定。 为了恰当的选择一阶测量装置,必须首先对被测信号的幅值变化范围和频率成分有个初步了解。有根据地选择测量装置的时间常数τ,以保证A (ω)≥1-ε 能够满足。 2、二阶测量装置动态特性 二阶测量装置的幅频特性与相频特性如下: 幅频特性202220)/(4))/(1(/1)(ωωξωωω--=A 相频特性2200))/(1/()/(2()(ωωωωξφ--=arctg w Α(ω)是ξ和ω/0ω的函数,即具有不同的阻尼比ξ的测试装置当输入信??????ωτ+ωτ-ωτ+=ωτ+=ω22s s )(1j ) (11S j 11S )j (H ()()2 11 A ωτ+=ω()ωτ -=ωφarctan

号频率相同时,应具有不同的幅值响应,反之,当不同的频率的简谐信号送入同一测试装置时它们的幅值响应也不相同,同理具有不同的阻尼比ξ的测试装置当输入信号频率相同时,应有不同的相位差。 (1).当ω=0时,Α(ω)=1;(2).当ω→∞,A (ω)=0;(3).当ξ≥0.707时随着输入信号频率的加大,Α(ω)单调的下降, ξ<0.707时Α(ω)的特性曲线上出现峰值点;(4)如果ξ=0,))/(1/(1))/(1(/1)(202 20ωωωωω-=-=A ,显然,其峰值点出现在ω=0ω处。其值为“∞”,当ξ从0向0.707变化过程中随着的加大其峰值点逐渐左移,并不断减小。 对以上二阶环节的幅频特性的结论论证如下: (1).当ω=0时A(ω)=1 (2).当ω→∞时,A(ω)=0 (3).要想得到A(ω)的峰值就要使202220)/(4))/(1(/1)(A ωωξ-ωω-=ω 中的202220)/(4))/(1(ωωξωω--取最小值。 令:t=20)/(ωω t t t f 224)1()(ξ+-= 对其求导可得t=1-22ξ时,f(t)取最小值.由于t=20)/(ωω≥0,所以1-22ξ≥0, 2ξ必须小于1/2时,f(t)才有最小值,即ξ>2/2时,A(ω)不出现峰值点;当ξ<2/2时4244)(ξξ-=t f ,f(t)对ξ求导得)21(82ξξ-,可以看出f(t): ξ属于[0, 2/2]时单调递增,于是得A(ω)的峰值点A 为4244/1)(/1ξξ-=t f ; 在ξ属于[0,2/2]递减。 (4).当ξ=0时 A=∞,t=20)/(ωω,ω/0ω=1,即ξ=0时A(ω)的峰值为∞,且必出现在ω/0ω=1时,当ξ=2/2时,t=0→ω=0,A(ω)=1. 还可以看出,在ξ属于[0,2/2]增大时t=1-22ξ就减小,即f(t)的峰值左平移。 (二)阻尼比的优化 在测量系统中,无论是一阶还是二阶系统的幅频特性都不能满足将信号中的所有频率都成比例的放大。于是希望测量装置的幅频特性在一段尽可能宽的范围内最接近于1。根据给定的测量误差,来选择最优的阻尼比。

螺栓联接静、动态特性实验报告

螺栓联接静、动态特性实验报告 专业班级 ___________ 姓名 ___________ 日期 2011-09-28 指导教师 ___________ 成绩 ___________ 一、实验条件: 1、试验台型号及主要技术参数 螺栓联接实验台型号: 主要技术参数: ①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。 ②、八角环材料为40Cr,弹性模量E=206000 N/mm2。L=105mm。 ③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形 计算长度L=88mm。 2、测试仪器的型号及规格 ①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2 二、实验数据及计算结果 1、螺栓联接实验台试验项目: 空心螺杆 2、螺栓组静态特性实验 实测值理论值 螺栓拉力螺栓扭矩八角环挺杆螺栓拉力螺栓扭矩八角环挺杆预紧形变值(μm) 33 109 33 109 预紧应变值(με) 136 235 154 7 206.25 预紧力(N) 4224.7 578 4113.7 111 6407 712.9 6407 0 预紧刚度(N/mm) 128021.6 38758.8 194150.4 58779.5 预紧标定值(με/N) 0.0321916 0.1287668 0.0374359 0.0630631 0.0212267 0.3282367 0.0240362 0 加载形变值(μm) 42 93 42 93 加载应变值(με) 158 272 119 54 262.5 加载力(N) 4908.1 668.1 4051.9 856.2 8154.4 825.1 5466.5 2687.9 加载刚度(N/mm) 128021.2 38758.7 194151.5 58779.8 加载标定值(με/N) 0.0321917 0.1287650 0.0293689 0.0630694 0.0192534 0.329657 0.0217689 0.02009

系统动态特性分析

系统动态特性分析。 (1)时域响应解析算法――部分分式展开法。 用拉氏变换法求系统的单位阶跃响应,可直接得出输出c(t)随时间t 变化的规律,对于高阶系统,输出的拉氏变换象函数为: s den num s s G s C 11)()(?=? = (21) 对函数c(s)进行部分分式展开,我们可以用num,[den,0]来表示c(s)的分子和分母。 例 15 给定系统的传递函数: 24 50351024 247)(23423+++++++=s s s s s s s s G 用以下命令对 s s G ) (进行部分分式展开。 >> num=[1,7,24,24] den=[1,10,35,50,24] [r,p,k]=residue(num,[den,0]) 输出结果为 r= p= k= -1.0000 -4.0000 [ ] 2.0000 -3.0000 -1.0000 -2.0000 -1.0000 -1.0000 1.0000 0 输出函数c(s)为: 01 11213241)(+++-+-+++-= s s s s s s C 拉氏变换得: 12)(234+--+-=----t t t t e e e e t c (2)单位阶跃响应的求法: 控制系统工具箱中给出了一个函数step()来直接求取线性系统的阶跃响应,如果已知传递函数为: den num s G = )( 则该函数可有以下几种调用格式: step(num,den) (22) step(num,den,t) (23) 或 step(G) (24) step(G,t) (25) 该函数将绘制出系统在单位阶跃输入条件下的动态响应图,同时给出稳态值。对于式23和25,t 为图像显示的时间长度,是用户指定的时间向量。式22和24的显示时间由系统根据输出曲线的形状自行设定。

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

实验 典型环节的动态特性实验报告

实验一典型环节的动态特性 一.实验目的 1.通过观察典型环节在单位阶跃信号作用下的相应曲线,熟悉它们的动态特性。 2.了解各典型环节中参数变化对其动态特性的影响。 二.实验内容 1.比例环节 G(S)= K 所选的几个不同参数值分别为K1= 33 ; K2= 34 ; K3= 35 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 2.积分环节

G(S)= S T i 1 所选的几个不同参数值分别为T i1= 33 ; T i2= 33 ; T i3= 35 : 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 3.一阶惯性环节 G(S)= S T K c 1 令K不变(取K= 33 ),改变T c取值:T c1= 12 ;T c2= 14 ;T c3= 16 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 4. 实际微分环节 G(S)= S T S T K D D D 1 令K D 不变(取K D = 33 ),改变T D 取值:T D 1= 10 ;T D 2= 12 ;T D 3= 14 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 5.纯迟延环节 G(S)= S eτ- 所选的几个不同参数值分别为τ1= 2 ;τ2= 5 ;τ3= 8 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

6. 典型二阶环节 G(S)= 2 2 2n n n S S K ωξωω++ 令K 不变(取K = 33 ) ① 令ωn = 1 ,ξ取不同值:ξ1=0;ξ2= 0.2 ,ξ3= 0.4 (0<ξ<1);ξ4=1;ξ5= 3 (ξ≥1); 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): ②令ξ=0,ωn 取不同值:ωn 1= 1 ;ωn 2= 2 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

仪表的特性有静态特性和动态特性

仪表的特性有静态特性和动态特性 仪表的特性有静态特性和动态特性之分,它们所描述的是仪表的输出变量与输入变呈之间的对应关系。当输人变量处于稳定状态时,仪表的输出与翰人之间的关系称为睁态特性。这里仅介绍几个主要的静态特性指标。至于仪表的动态特性,因篇幅所限不予介绍,感兴趣的读者请参阅有关专著。 1.灵敏度 灵饭度是指仪表或装置在到达稳态后,输出增量与输人增量之比,即K=△Y/△X式中K —灵教度,△Y—输出变量y的增量,△X—输人变量x的增量。 对于带有指针和标度盘的仪表,灵敏度亦可直观地理解为单位输入变量所引起的指针偏转角度或位移盈。 当仪表的“输出一输入”关系为线性时,其灵放度K为一常数。反之,当仪表具有非线性特性时,其灵敏度将随着输入变量的变化而改变。 2线性度 一般说来,总是希望侧贴式液位开关具有线性特性,亦即其特性曲线最好为直线。但是,在对仪表进行校准时人们常常发现,那些理论上应具有线性特性的仪表,由于各种因素的影响,其实际特性曲线往往偏离了理论上的规定特性曲线(直线)。在高频红外碳硫分析仪检测技术中,采用线性度这一概念来描述仪表的校准曲线与规定直线之问的吻合程度。校准曲线与规定直线之间最大偏差的绝对值称为线性度误差,它表征线性度的大小。 3.回差 在外界条件不变的情况下,当输入变量上升(从小增大)和下降(从大减小)时,仪表对于同一输入所给出的两相应输出值不相等,二者(在全行程范围内)的最大差值即为回差,通常以输出量程的百分数表示回差是由于仪表内有吸收能量的元件(如弹性元件、磁化元件等)、机械结构中有间隙以及运动系统的魔擦等原因所造成的。 4.漂移 所谓漂移,指的是在一段时间内,仪表的输人一愉出关系所出现的非所期望的逐渐变化,这种变化不是由于外界影响而产生的,通常是由于在线微波水分仪弹性元件的时效、电子元件的老化等原因所造成的。 在规定的参比工作条件下,对一个恒定的输入在规定时间内的输出变化,称为“点漂”。 发生在仪表测量范围下限值七的点漂,称为始点漂移。当下限值为零时的始点漂移又称为零点漂移,简称零漂。 5重复性 在同一工作条件下,对同一输入值按同一方向连续多次测量时,所得输出值之间的相互一致程度称为重复性。 仪器仪表的重复性用全测量范围内的各输入值所测得的最大重复性误差来确定。所谓重复性误差,指的是对于高频红外碳硫分析仪全范围行程、在同一工作条件下、从同方向对同一输人值进行多次连续测量时,所获得的输出值的两个极限值之间的代数差或均方根误差。重复性误差通常以量程的百分数表示,它应不包括回差或漂移。

控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分 析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示:

对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。

当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示:

根据所连接的电路图可以知道其开环传递函数为: 其中,R x的单位为kΩ。系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为012,调节R x可以调节K,从而调节系统的性能。具体实验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为0.6s左右。 取,程序为:G=tf(50,[1,2*sqrt(2),50]); step(G)

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

什么是汽轮机调节系统的静态特性和动态特性

1.什么是汽轮机调节系统的静态特性和动态特性? 答:调节系统的工作特性有两种,即动态特性和静态特性。在稳定工况下,汽轮机的功率和转速之间的关系即为调节系统的静态特性。从一个稳定工况过渡到另一个稳定工况的过渡过程的特性叫做调节系统的动态特性,是指在过渡过程中机组的功率、转速、调节汽门的开度等参数随时间的变化规律。 2.汽封的作用是什么?轴封的作用是什么? 答:为了避免动、静部件之间的碰撞,必须留有适当的间隙,这些间隙的存在势必导致漏汽,为此必须加装密封装置----汽封。根据汽封在汽轮机中所处位置可分为:轴端汽封(简称轴封)、隔板汽封和围带汽封(通流部分汽封)三类。 轴封是汽封的一种。汽轮机轴封的作用是阻止汽缸内的蒸汽向外漏泄,低压缸排汽侧轴封是防止外界空气漏入汽缸。 3.低油压保护装置的作用是什么? 答:润滑油油压过低,将导致润滑油膜破坏,不但要损坏轴瓦。而且能造成动静之间摩擦等恶性事故,因此,在汽轮机的油系统中都装有润滑油低油压保护装置。 低油压保护装置一般具备以下作用: ⑴润滑油压低于正常要求数值时,首先发出信号,提醒运行人员注意并及时采取措施。 ⑵油压继续下降至某数值时,自动投入辅助油泵(交流、直流油泵),以提高油压。 ⑶辅助油泵起动后,油压仍继续下跌到某一数值应掉闸停机,再低时并停止盘车。 当汽轮机主油泵出口油压过低时,将危及调节及保护系统的工作,一般当该油压低至某一数值时,高压辅助油泵(调速油泵)自起动投入运行,以维持汽轮机的正常运行。 4.直流锅炉有何优缺点? 答:直流锅炉与自然循环锅炉相比主要优点是: (1)原则上它可适用于任何压力,但从水动力稳定性考虑,一般在高压以上(更多是超高压以上)才采用。 (2)节省钢材。它没有汽包、并可采用小直径蒸发管,使钢材消耗量明显下降。 (3)锅炉启、停时间短。它没有厚壁的汽包,在启、停时,需要加热、冷却的时间短.从而缩短了启、停时间。 (4)制造、运输、安装方便。 (5)受热面布置灵活。工质在管内强制流动.有利于传热及适合炉膛形状而灵活布置。

螺栓联接的静动态特性

实验一 受轴向载荷螺栓联接的静态特性 螺栓联接是广泛应用于各种机械设备中的一种重要联接形式,受预紧力和轴向工作载荷的螺栓联接中,最常见的应用实例是气缸盖与气缸体的联接,如图1-1所示。螺栓受到的总拉力F 0除了与预紧力F '和工作载荷F 有关外,还受到螺栓刚度C 1和C 2被联接件刚度等因素的影响。图6-2为一螺栓和被联接件的受力与变形示意图。 图1-1 气缸盖与气缸体的联接 图1-2 螺栓和被联接件受力、变形情况 (a)螺母未拧紧 (b)螺母已拧紧 (c)螺栓承受工作载荷 图1-2(a)所示为螺栓刚好拧好到与被联接件相接触的的状态,此时螺栓和被联接件均未受力,因此无变形发生。 图1-2(b)所示为螺母已拧紧,但联接未受工作载荷的状态,此时螺栓受预紧力F '的拉伸作用,其伸长量为1δ;而被联接件则在力F '的作用下被压缩,其压缩量为2δ。 图1-2(c)所示为联接承受工作载荷F 时的情况,此时螺栓所受的拉力由F '增大至F 0 (螺栓的总拉力),螺栓的伸长量由1δ增大至11δδ?+;与此同时,被联接件则因螺栓伸长而被 放松,其压缩变形减少了2δ?,减小到2δ''(222δδδ?-='',2δ''为剩余变形量);被联接 件的压力由F '减少至F ''(剩余预紧力)。根据联结的变形协调条件,压缩变形的减少量2δ?应等于螺栓拉伸变形的增加量1δ?,即21δδ?=?。 一、 实验目的 本实验通过计算和测量螺栓受力情况及静动态特性参数达到以下目的: 1. 了解螺栓联接在拧紧过程中各部分的受力情况; 2. 计算螺栓相对刚度并绘制螺栓连接的受力变形图; 3. 验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响; 4. 通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、 实验设备及工作原理 1. 单螺栓连接实验台(如图1-3所示)

某装备结构动态特性分析

技术篇 2007年 第十期 某装备结构动态特性分析 霍 红 (中北大学,太原 030051) 摘 要:利用试验模态分析法获得了某机枪结构的模态参数,分析了机枪的动态特性,并通过基于模态试验的灵敏度分析方法,获得了影响该机枪动态特性的敏感部位,为改善机枪动态特性提供了依据. 关键词:机枪;灵敏度分析;动态特性;分析 中图分类号:TP302.7 文献标识码:A 文章编号:1005 8354(2007)10 0001 02 Analysis on structural dyna m ic characteristics for certai n equi p m e nt HUO H ong (N orth U n i ve rs i ty o f Ch i na ,T a i yuan 030051,Chi na) Abstract :A ccor ding to modal analysism etho d,modal parametersw ere derived and structural dynam ic charac teristics were analyzed.U sing sensitivit y analysis of model test ,t he dyna m ic characteristics and sensitive p oints of a m achine gun were obt ained.These woul d be used to i m prove dyna m ic propert y of t hemachine gun. K ey words :machine gun;sensitivity analysis ;struct ural dyna m ic characteristics ;analysis 收稿日期:2007 08 22 作者简介:霍红(1968 ),女,实验师,研究方向:火炮、自动武器与弹药工程. 0 引 言 当今为提高自动武器的机动性,广泛采用弹性枪架,但随着重量的减轻,武器系统的振动加剧.而武器系统的振动又直接影响到射击精度,特别是弹丸出膛 口时的横向位移、横向速度以及弹丸初始扰动等对武器射击精度影响尤其明显 [1] .为此,需掌握武器系统 的固有特性,为分析和优化机枪的动力学特性提供依据,以提高其射击精度.而系统固有特性一般可由理论分析方法和试验方法获得,前者是利用有限元分析法,后者是利用试验模态分析法,随着试验技术的发展和测量仪器精度的提高,利用试验模态分析法得到的结果越来越受到重视,并且常常作为验证有限元模型正确性的主要依据,所以,常采用理论分析和试验两种方法相结合建立模型 [1,2] ,以获得接近实际的结 果,为进一步分析如结构修改设计及结构动力特性优化设计提供良好的基础.本文以某机枪为例,采用试验模态分析法识别机枪系统的模态参数和分析其动 态特性,并在此基础上进行了灵敏度分析,获得机枪动力学特性对各参数变化的灵敏度,为机枪的动力学特性优化设计提供依据. 1 机枪结构试验模态分析 1.1 模态测试系统 模态测试系统基本由以下几部分组成:激励部分、信号测量和数据采集部分、信号分析和频响函数 估计部分 [3] .其测试系统框图见图1所示. 图1 机枪模态试验系统框图 1

发电机动态特性试验

近期我公司#1发电机测温元件对地电压异常升高(最高达380V左右),经联系电科院进行端部动态特性试验,现将具体实验过程介绍如下: 3.1试验目的:检验发电机定子绕组端部振动特 性,发电机运行中是否避开了100HZ的共振频 率。一般发电机在设计制造时,端部绕组的结构 均避开了100HZ,但在运行时因线棒绝缘、绑绳、 垫块、支架等绝缘材料受电、热作用,绝缘和机 械性能逐渐降低,因振动磨损、绑扎紧固件之间 连接紧度也会改变,故端部振动特性也随之发生 变化,其端部固有频率呈下降趋势,逐渐接近 100HZ,导致端部绕组处于谐振状态,即使很小的激振力也会诱发较大的振动,导致端部绝缘磨损,发生发电机绕组短路、断线、断裂等事故。所以对于大型发电机进行定子绕组端部动态特性试验是十分必要的。 3.2试验方法:一般多采用一点激振多点响应法,在发电机励端、汽端、中部分别进行测量。即用力锤定点敲击定子绕组端部上的某点,向绕组端部提供一个瞬态冲击力,动态信号分析仪拾取端部绕组上各测点的振动响应值,再经模态分析软件分析处理,便得到定子绕组端部模态参数:频率、振型和阻尼等模态参数。具体方法为:将试验用仪器(AZ804-A、AZ308)接好线后,先在发电机励磁侧定子绕组端部任选一点,将带有数据线的加速度计用橡皮泥或其它粘性物体固定在定子绕组端部,注意固定时尽量靠近发电机定子绕组端部,以不下滑为宜。用另一带有数据线的橡皮锤在临近加速度计的发电机定子端部进行敲击,每个线棒敲击4次取平均值,之后按照顺序每隔一个线棒敲击4次,每个线棒敲击后取平均值,待沿发电机圆周敲击一遍后便得到每次敲击时的振动值和频率,取每次敲击时的峰值,由测试软件

双容水箱液位静动态特性测试(实验一)

青岛科技大学实验报告 年月日 姓名专业班级同组者 课程实验项目双容水箱液位静、动态特性测试 一、实验目的 1. 熟悉双容水箱的数学模型及其阶跃响应曲线。 2. 根据由实际测得双容液位的阶跃响应曲线,确定其传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2.计算机、MCGS工控组态软件、RS232/485转换器1只、串口线1根 3. 万用表 1只 三、实验原理 图1 双容水箱对象特性结构图 由图1所示,被控对象由两个水箱相串联连接,由于有两个贮水的容积,故称其为双容对象。被控制量是下水箱的液位,当输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2所示。由图2可见,上水箱液位的响应曲线为一单调的指数函数(图2(a)),而下水箱液位的响应曲线则呈S形状(图2(b))。显然,多了一个水箱,液位响应就更加滞后。 图2 双容液位阶跃响应曲线 图3 双容液位特性参数计算 在图3所示的阶跃响应曲线上求取,利用下面的近似公式计算式

,从而得到双容对象的传递函数为。 四、实验内容与步骤 1、打开上位机,按照线路图接线。 2、检查线路,接通总电源和相关仪表的电源。 3、把调节器设置于手动位置,手动改变输出值到阀位65%,观察实时和历史曲线,使上水箱和中水箱的液位处于某一平衡位置。 4、突增/减调节器的手动输出量(建议增加到75%),重新达到平衡,作为一次阶跃输入,测得。减小手动阀位输出量到65%,使中水箱的液位由原平衡状态开始变化,经过一定的调节时间后,液位h2进入另一个平衡状态,测得。 5、两次参数求平均求得系统参数,并打印历史曲线。 五、实验要求 请给出实验的调节过程及调节参数,并附上历史曲线,分析实验结果,给出双容液位广义对象的传递函数表达式。

机械动力学与动态特性分析

课程名称:机械动力学与动态特性分析 任课老师:蒙艳玫 学院:机械工程学院 专业:机械制造及其自动化 姓名:韦荣发 学号: 1211301011

1、用机械网络分析一下系统的简化模型: 碎石机(用双重动力减震器) 画出上述系统的机械网络图,设计和分析减振效果 解:(1)由上图可得其机械网络图,如图1-1所示。 图1-1 (2)设计与分析 由图1-1机械网络图可知,整个系统会因偏心质量而发生振动,已知偏心质量m ,偏心距为e ,因此,激振力为: 由以上条件,根据基尔霍夫 节点定律列出位移响应方程: pcos wt (1)

导纳阵为: 所以,若要消除m2、K2系统的振动,即在m2点激振时,其位移响应等于零, 则其自导纳H22=0,所以,。所以: 即,,此频率就是反共振频率,当激振力的频率等于该频率时,m2 和m3的位移等于零.因此在设计减振器时,只要合理的选择减振器的质量、刚度,使它在单独振动时的固有频率等于激振力的频率,就能够消碎石机的振动。 2、结合实际研究课题,以一实际结构或机器为对象, (1)作FRFS测试分析,试述: 1)目的 结合甘蔗实地种植情况和蔗地地形, 利用ADAMS View建立一个轮式小型甘蔗收割机的样机模型, 对其行走转向性能进行仿真分析, 并在平路面基础上建立了田间常见障碍物模型,进一步对收割机越障性能进行仿真研究; 通过虚拟仿真和物理试验相结合的方法,分析比较了不同轴承及间距对刀轴刚性及甘蔗断面切割质盆的影响,并在此基础上提出了一种高刚性的轴承布局方法,为设计低破头率的小型甘蔗联合收获机切割器提供了依据. 2)方法、原理 ①选用多体动力学仿真软件ADAMS View作为仿真分析的软件平台 ②将切割器的结构在Pro/E软件中建立三维实体模型,然后将模型导入到ANSYS软件中,将轴承利用弹性单元进行模拟 3)实验装置,过程 选用多体动力学仿真软件ADAMS View作为仿真分析的软件平台, 对轮胎、悬架转向盘和地面进行。简化建模。模型中所用到的是全局坐标系: 坐标原点在两前轮中心连线中点, 收割机前进方向为X轴负向, 垂直水平面向上为Y轴正向, Z轴正向由右手定则确定, 其质量和转动惯量与实际底盘相同。根据甘蔗种植情

材料动态特性实验报告,SHPB实验报告

机械工程学院研究生研究型课程考试答卷 课程名称:材料动态特性实验(SHPB实验) 考试形式:□专题研究报告□论文√大作业□综合考试 序号分项类别得分1 2 3 4 总分 评阅人: 时间:年月日

材料动态特性实验 实验目的: 1、了解霍普金森杆的实验原理和实验步骤; 2、会用霍普金森杆测试材料动态力学性能。 1.SHPB 组成: Kolsky 在Hopkinson 压杆技术的基础上提出采用分离式 Hop-kinson 压杆 SHPB )技术来测定材料在一定应变率范围的动态应力 ── 应变行为 ,该实验的理论基础是一维应力波理论, 它通过测定压杆上的应变来推导试样材料的应力 ── 应变关系, 是研究材料动态力学性能最基本的实验方法之一。为了测出A3钢(又称Q235钢)的屈服极限、弹性模量以及其他性能参数。用SHPB 实验就行数据测量。SHPB 的实现装置如下图: 分离式Hopkinson 压杆装置示意图 它由压缩气枪、撞击杆、测时仪、输入杆(入射杆)、超动态应变仪、试件、透射杆、吸收杆、阻尼器和数据处理系统组成。 2.实验原理: SHPB 技术建立在两个基本假定的前提上: (1)杆中应力波是一维波; (2)试件应力/应变沿其长度均匀分布。 根据垂直入射应力波在界面出的反射、透射原理和上述假定由: 应力相等:)()()(t t t T R I σσσ=+ (1) 应变相等:)()()(t t t T R I εεε=+ (2)

式中()I t σ和()R t σ分别为入射杆的入射应力和反射应力,()T t σ为透射杆的透射应力, ()I t ε和()R t ε为入射杆的入射应变和反射应变,()T t ε为透射杆的透射应变。 图1 输入杆-试件-输出杆相对位置 如图2所示,在满足一维应力波假定的条件下,一旦测得试件与输入杆的界面X 1处的应力,可理论推导得: []112()(,)(,)(,)2S I R T S A t X t X t X t A σσσσ=++ (3) S R I T S S L t X v t X v t X v L t X v t X v t ),(),(),(),(),()(11212--=-=ε (4) []??--==t R I T S t S S dt t X v t X v t X v L dt t 01120),(),(),(1)(εε (5) 式中:A 为压杆的横截面积,s A 为试件的横截面积, S L 为试件的长度。()S t σ、()S t ε和()S t ε为试件的平均应力、应变和应变率,1(,)I v X t 、1(,)R v X t 分别为入射应力波在界面X 1处的入射质点速度和反射质点速度,2(,)T v X t 为透射应力波在2X 处的透射质点速度。 在弹性压杆的情况下,由一维应力波分析可知,应变与应力和质点速度之间存在如下线性关系: ()()()[]()()()()()[]()()???????===-=+=====+=+==) ,(,,) ,(),(,,,),(,,),(),(,,,2022211011112222111111t X C t X v t X v v t X t X C t X v t X v t X v v t X E t X t X t X t X E t X t X t X T T R I R I T T R I R I εεεεσσσεεσσσσ (6) 可见,上述问题就转化为如何测界面X 1处的入射应变波),(1t X I ε和反射应变波),(1t X R ε,以及界面2X 处的透射应力波),(2t X T ε 。因为,只要压杆保持弹性

相关主题
文本预览
相关文档 最新文档