当前位置:文档之家› 船闸平面设计

船闸平面设计

船闸平面设计
船闸平面设计

航道工程课程设计题目:西江某水利枢纽船闸总体设计

学院:船舶工程学院

专业:港口航道与海岸工程

学号:2011012125

姓名:薛天寒

日期:2015年1月

目录

1. 设计基础资料 (5)

1.1设计依据 (5)

1.2设计标准、规范 (5)

1.3设计背景 (5)

1.4设计资料 (6)

1.5设计船型 (7)

2.船闸总体设计 (7)

2.1船闸基本尺度的确定 (8)

2.1.1闸室有效长度 (8)

2.1.2闸室有效宽度 (9)

2.1.3船闸门槛最小水深 (10)

2.1.4船闸最小过水断面的断面系数 (11)

2.1.5闸首长度 (12)

2.2船闸各部分高程的确定 (12)

2.2.1闸门门顶高程 (12)

2.2.2闸室墙顶高程 (13)

2.2.3闸首墙顶高程 (14)

2.2.4闸首槛顶高程 (14)

2.2.5闸室底板顶部高程和引航道底部高程 (15)

2.2.6导航和靠船建筑物顶部高程 (15)

2.2.7引航道堤顶高程 (16)

2.3引航道平面布置及尺度确定 (17)

2.3.1引航道平面布置 (17)

2.3.2引航道尺度 (17)

2.4船闸通过能力计算 (20)

2.4.1船队进出闸时间 (20)

2.4.2闸门启闭时间 (20)

2.4.3闸室灌、泄水时间 (21)

2.4.4船舶、队进出闸门间隔时间 (21)

2.4.5船闸通过能力 (21)

2.5船闸耗水量计算 (22)

3.闸首、闸阀门及输水系统选择 (24)

3.1闸门的选型及基本尺度计算 (24)

3.1.1门扇长度l n (24)

3.1.2门扇厚度t n (24)

3.2输水系统初步设计 (24)

3.2.1输水阀门处廊道断面面积 (25)

3.3闸首结构初步设计 (25)

3.3.1闸首布置及构造 (26)

3.3.2边墩设计 (26)

4.闸室结构形式初步设计 (26)

5.船闸总体布置原则 (26)

6.船闸布置图 (27)

6.1船闸总平面布置图(附图1) (27)

6.2船闸纵断面布置图(附图2) (27)

1.设计基础资料

1.1设计依据

航道工程课程设计指导书

1.2设计标准、规范

船闸总体设计规范,JTJ305-2001,人民交通出版社

内河通航标准,GB50139-2004,中华人民共和国建设部

船闸闸阀门设计规范,JTJ308-2003,人民交通出版社

船闸水工建筑物设计规范,JTJ307-2001,人民交通出版社

船闸输水系统设计规范,JTJ306-2001,人民交通出版社

1.3设计背景

西江某水电枢纽是西江下游河段广西境内的最后一个规划梯级,枢纽横跨两岛三江,是一座以发电为主,兼有航运、灌溉等综合利用的大型水利枢纽工程。

根据交通部对西江航运的规划,航道等级将从Ⅲ级提高为Ⅱ级航道,因此船闸为满足不断增长的货运量需要,将原1号船闸规模由1000t 级扩大为2000t 级。

1.4设计资料

表1.4:设计资料数据一览表

14地形地质建基岩体主要为砂岩,岩体完整性较好,裂隙不甚发育。

15水文降雨量及气温资料从略。

1.5设计船型

表1.5 主要设计船型一览表

船队编号船型组队方式船队尺度(m)A1顶4×2000t2排2列186.0×32.4×2.6 B1顶2×2000t2排1列182.0×16.2×2.6 C1顶2×500t2排1列110.0×10.8×1.6 D货船1000t货船49.9×15.6×2.8 A为主要设计船队,B、C、D为兼顾船队。

A:

B:

C:

图1.5:主要设计船队示意图

2.船闸总体设计

2.1船闸基本尺度的确定 2.1.1闸室有效长度

根据《船闸总体设计规范》(JTJ305-2001):

3.1.5 船闸闸室有效长度不应小于按下式计算的长度,并取整数。

f c x l l L +=

式中 x L ——闸室有效长度(m);

c l ——设计船队、船舶计算长度(m),当一闸次只有一个船队或一艘船舶

单列过闸时,为设计最大船队、船舶的长度;当一闸次有两个或多个船队船舶纵向排列过闸时,则为各设计最大船队、船舶长度之和加上各船队、船舶间的停泊间隔长度;

f l ——富裕长度(m),顶推船队f l ≥2+0.06c l ;拖带船队f l ≥2+0.03c l ;

货船和其他船舶f l ≥4+0.05c l ;

根据设计船队尺度以及船闸设计标准进行过闸船型组合,船闸设计标准为一次通行过闸4×2000t 。

表2.1.1 闸室有效长度计算表

所以,闸室的有效长度取200m 。 2.1.2闸室有效宽度

根据《船闸总体设计规范》(JTJ305-2001):

3.1.8船闸闸首口门和闸室有效宽度不应小于按下列两公式计算的宽度,并宜采用现行国家标准 《内河通航标准》(GB50139-2004)中规定的8m ,12m ,16m ,23m ,34m 宽度。

f

c

x b

b B +=

c f b n b b )1(025.0-+?= 式中 B x ——船闸闸首口门和闸室有效宽度(m);

∑c

b

——同一闸次过闸船舶并列停泊于闸室的最大总宽度(m)。当只

有一个船队或一艘船舶单列过闸时,则为设计最大船队或船舶的宽度;

f b ——富裕宽度(m);

b ?——富裕宽度附加值(m),当b

c ≤7m 时,b ?≥lm ;当c b ≥7m 时,

b ? ≥1.2m ;

n ——过闸停泊在闸室的船舶的列数。

根据设计船队尺度以及船闸设计标准进行过闸船型组合:

表2.1.2 闸室有效宽度计算表

所以,闸室的有效宽度取34.0m。

2.1.3船闸门槛最小水深

根据《船闸总体设计规范》(JTJ305-2001):

3.1.9 船闸门槛最小水深应为设计最低通航水位至门槛顶部的最小水深,并应满足设汁船舶、船队满载时的最大吃水加富裕深度的要求,可按下式计算,闸室最小水深应为设计最低通航水位至闸室底板顶部的最小水深,其值应不小于门槛最小水深。设计采用的门槛最小水深和闸室最小水深,在满足计算的最小水深值基础上,应充分考虑船舶、船队采用变吃水多载时吃水增大以及相邻互通航道上较大吃水船舶、船队需通过船闸的因素,综合分析确定。

H

6.1

T

式中H——门槛最小水深(m);

T——设计船舶、船队满载时的最大吃水(m)。

则:

H≥1.6T=1.6×2.6=4.16m,取H=4.5m。

所以,船闸的门槛最小水深取4.5m。

综上,船闸尺度为:

闸室有效长度(m)闸室有效宽度度(m)船闸门槛最小水深(m) 20034 4.5组合1:

组合2:

组合3:

2.1.4船闸最小过水断面的断面系数

在确定船闸基本尺度时,还应考虑船闸最小过水断面的断面系数n的要求,根据实验和观察,若n过小,则船队(舶)过闸时,可能产生碰底现象。为保证船队(舶)安全顺利地进闸,一般要求:

≥Φ

Ω

=

n 1.5~2.0 式中 Φ——最大设计过闸船队满载吃水时水下部分断面面积 (m 2);

Ω——最低通航水位时,闸室过水断面面积(m 2), H B x ?=Ω。

则:Ω=34×4.5=153m 2; Φ=32.4×2.6=84.24 m 2; n =1.82,符合安全要求。 2.1.5闸首长度

根据受力和结构特点,闸首在长度方向上一般由3段组成:

门前段长度l 1,当工作闸门采用人字闸门、检修门槽设于闸首外与导墙接缝时,门前段的长度最小,一般为1.0m 左右。

门龛段长度l 2,根据《船闸闸阀门设计规范》7.1.5,门龛长度由门扇长度和富余长度确定,其富余长度应考虑对闸门启闭力的影响,不宜小于1/20门扇长度。人字闸门轴线与船闸横轴线交角取22.5°,闸室有效宽度为34m ,则门扇长度可估算为(34÷2)÷cos22.5°=18.4m ,取20m 。取富余长度2m ,所以门龛长度为22.0m 。

闸门支持段长度l 3,约等于(0.4~2.1)倍的设计水头,设计水头取为18.85m ,所以闸门支持段长度取为10.0m 。

则:闸首长度为l 1+ l 2+ l 3=33.0m ,取34.0m 。 2.2船闸各部分高程的确定 2.2.1闸门门顶高程

根据《船闸总体设计规范》(JTJ305-2001):

4.2.1 船闸挡水前缘闸首工作闸闸门顶部高程应为上游校核高水位加安全超高值确定。

4.2.2 船闸非挡水前缘闸首的闸门顶部高程应为上游设计最高通航水位加安全超高值。

4.2.3 船闸闸门顶部最小的安全超高值,I-IV级船闸不应小于0.5m,V一VII 级船闸不应小于0.3m,对于有波浪或水面涌高情况的闸首门顶高程应另加波高或涌高影响值。

此船闸闸门是非挡水闸门,且船闸为Ⅱ级船闸,则安全超高值不小于0.5m。

则:上闸首闸门顶部高程=上游设计最高通航水位+安全超高值

=23.9m+0.5m

=24.4m(取24.5m)

下闸首闸门顶部高程=上游设计最高通航水位+安全超高值

=23.9m+0.5m

=24.4m(取24.5m)

2.2.2闸室墙顶高程

根据《船闸总体设计规范》(JTJ305-2001):

4.2.6 船闸闸室墙顶部高程应为上游设计最高通航水位加超高值,超高值不应小于设计过闸船舶、船队空载时的最大干舷高度。

最大干舷高度可参照下表:

长江分节驳船空载干舷高度

设计船队中最大驳船吨位在2000t,参考设计船队的满载吃水2.6m,出于安全考虑,取空载干舷高度为2.7m。

则:闸室墙顶高程=上游设计最高通航水位+超高

=23.9m+2.7m

=26.6m(取26.7m)

2.2.3闸首墙顶高程

根据《船闸总体设计规范》(JTJ305-2001):

4.2.4 船闸闸首墙顶部高程应根据闸门顶部高程和结构布置等要求确定,并不得低于闸门和闸室墙顶部高程。位于枢纽工程中的船闸,其挡水前缘的闸首顶部高程应不低于与相互连接的枢纽工程建筑物挡水前缘的顶部高程。

设结构安装高度为1m。

则:上闸首墙顶高程=门顶高程+结构安装高度

=24.5m+1.0m

=25.5m

下闸首墙顶高程=门顶高程+结构安装高度

=24.5m+1.0m

=25.5m

由于闸室墙顶高程为26.7m,所以取闸首墙顶高程为26.7m。

2.2.4闸首槛顶高程

根据《船闸总体设计规范》(JTJ305-2001):

4.2.5 船闸上、下闸首门槛的高度应有利于船闸运用和检修,顶部高程应为上、下游设计最低通航水位值减去门槛最小水深值。

4.2.9 船闸上、下游引航道和口门区及连接段的底部高程应为上、下游设计最低通航水位减去引航道设计最小水深值。

则:上闸首门槛的顶部高程=上游设计最低通航水位-门槛水深

=18.6m-4.5m

=14.1m

下闸首门槛的顶部高程=下游设计最低通航水位-门槛水深

=5.05m-4.5m

=0.55m。(取0.5m)

2.2.5闸室底板顶部高程和引航道底部高程

根据《船闸总体设计规范》(JTJ305-2001):

4.2.7 船闸闸室底板顶部高程不应高于上、下闸首门槛顶部高程。

则:取船闸闸室底板顶部高程为0.5m。

根据《船闸总体设计规范》(JTJ305-2001):

4.2.9船闸上、下游引航道和口门区及连接段的底部高程应为上、下游设计最低通航水位减去引航道设计最小水深值。

5.5.3 Ⅰ~Ⅳ级船闸引航道最小水深应按下式计算:

T

H50.1

式中H0——在设计最低通航水位时,引航道底宽内最小水深(m);

T——设计最大船舶、船队满载吃水(m)。

则:H0≥1.50T=3.9m(取4.0m)

上游引航道底部高程=上游设计最低通航水位-引航道设计最小水深值

=18.6-4=14.6m(取14.1m)

下游引航道底部高程=下游设计最低通航水位-引航道设计最小水深值

=5.05-4=1.05m

2.2.6导航和靠船建筑物顶部高程

根据《船闸总体设计规范》(JTJ305-2001):

4.2.8船闸上、下游导航和靠船建筑物的顶部高程应为上、下游设计最高通航水位加超高值,超高值不宜小于设计过闸船舶、船队空载时的最大干舷高度。

则:船队空载时最大干舷高度取为2.7m;

上游导航建筑物顶高程=上游设计最高通航水位+超高

=23.9m+2.7m

=26.6m(取26.7m)

下游导航建筑物顶高程=下游设计最高通航水位+超高

=23.8m+2.7m

=26.5m(取26.6m)

2.2.7引航道堤顶高程

本船闸引航道堤岸没有防洪功能,故取引航道堤顶高程=导航建筑物堤顶高程

则:上游引航道堤顶高程=26.7m;

下游引航道堤顶高程=26.6m。

综上,船闸各部分高程整理如下:

表2.2.7 船闸各部分高程表

2.3引航道平面布置及尺度确定 2.

3.1引航道平面布置

根据《船闸总体设计规范》(JTJ305-2001):

5.4.2 引航道的平面布置应根据船闸的级别、线数、设计船型船队、通过能力等,结合地形、地质水流、泥沙及上、下游航道等条件研究确定。

引航道的平面布置可采用反对称式、对称式、不对称式3种形式。 由于本船闸为Ⅱ级船闸,属于单线船闸,货运量较大,无明显单向货流,故采用反对称型引航道。船舶曲线出闸,直线进闸,进闸速度快,船闸的通过能力较大。

2.3.2引航道尺度

1.引航道的长度 1) 导航段长度1l :

c l l 1

式中 l 1——导航段长度(m);

l c ——设计船队(舶)的长度,对顶推船队为全船队长,对拖带船

队或单船为其中最大的船舶长度。

则:l c =186.0m ,l 1取190m 。 2) 调顺段长度2l

l 2 ≥(1.5~2.0)l c

则:l 2取300m 。 3) 停泊段长度3l

3l ≥c l

考虑到部分船队在停泊段重组,取2倍船长。 则:l 3取380m 。

综上,引航道直线段的总长度L = l 1+l 2+l 3=870m 。 4) 过渡段长度l 4及制动段长度l 4’

B l ?≥104,B ?为引航道宽度与航道宽度之差,航道宽为130 m ,引航道宽度120 m ,则B ?=10 m ,4l =100 m ;

5

l 用c l l ?=α5

估算,

α为顶推船队制动距离系数,一般取2.5~4.5,则=

5

l

3×186.0=558m ,取560 m 。

为减少引航道的工程量,过渡段l 4及制动段l 4’重合使用。 2.引航道的宽度

根据《船闸总体设计规范》(JTJ305-2001):

5.5.2.1 单线船闸引航道的宽度,应根据下列型式确定:反对称型引航道宽度:

2110b b b b B c c ?+?++≥

式中 B 0——设计最低通航水位时,设计最大船舶、船队满载吃水船底处的引

航道宽度(m);

b c ——设计最大船舶、船队的宽度(m); 1c b ——一侧等候过闸船舶、船队的总宽度(m); 1b ?——船舶、船队之间的富裕宽度,取1b ?= b c ; 2b ?——船舶、船队与岸之间的富裕宽度,取1b ?=0.5 b c ; 则:2110b b b b B c c ?+?++≥=113.4m ,取120m 。

图2.3.2 引航道尺度计算示意图

3.引航道最小水深

根据《船闸总体设计规范》(JTJ305-2001): 5.5.3Ⅰ~Ⅳ级船闸引航道最小水深应按下式计算:

50.10

≥T

H 式中 H 0——在设计最低通航水位时,引航道底宽内最小水深(m);

T ——设计最大船舶、船队满载吃水(m)。 则:H 0≥3.9m ,取H 0为4.0m 。

2.4船闸通过能力计算 2.4.1船队进出闸时间

船舶(队)进出闸时间,可根据其运行距离和进出闸速度确定。对单向过闸和双向过闸方式应分别计算:

1) 单向过闸,进闸为船舶、船队的船首自引航道中停靠位置至闸室内停泊位置之间的距离,单向出闸距离为船舶、船队的船尾自闸室内停泊位置至闸门外侧边缘的距离;

2) 双向进闸,距离是船舶、船队自引航道中停靠位置至闸室内停泊位置之间的距离,出闸为船舶、船队自闸室内停泊位置至靠船建筑物之间的距离。

单向进闸距离L 1=190m+300m+34m+186m=710m ; 单向出闸距离L 4=200m+34m=234m ;

双向进闸距离L 1’=190m+300m+34m+186m=710m; 双向出闸距离L 4’=190m+300m+34m+186m=710m; 根据《船闸总体设计规范》表6.1.5查得 单向进闸s m v /5.01= 单向出闸s m v /7.04= 双向进闸s m v /7.0'1= 双向出闸s m v /0.1'4= 则:==

111v L t 23.67min ==444v L

t 5.57min ==

'''111v L t 16.90min =='

'

'444v L t 11.83min 2.4.2闸门启闭时间

闸门的启、闭时间与闸门型式和闸首口门宽度有关,当闸首口门宽度大于23m 时,取为3~6min ,取为3 min 。

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

船闸设计实例

渠化工程课程设计木厂船闸工程设计 姓名: 学号: 年级: 班级: 学院: 完成时间:

第一章工程概况 1 自然条件 1.1地理位置 北运河水系位于海河流域北部,西界为永定河,东界为潮白河,南至海河,流域面积6166km2,其中山区面积为952km2,平原面积5214km2。以北京市通州区北关闸为界,北关闸以上称温榆河,以下始称北运河,河道全长141.9km。本次工程研究范围自北关闸至北辰区的屈家店闸,全长127km。 1.2河流水系 北运河是海河北系的重要行洪排涝通道,是著名的京杭大运河的一部分。北关闸闸上辟运潮减河,分泄部分洪水,在榆林庄闸纳凉水河和凤港减河,至木厂闸闸上又辟有青龙湾减河入潮白新河,土门楼以下纳龙凤新河,在筐儿港与北京排污河相交叉,屈家店闸上纳永定河洪水入永定新河,进入天津市区后纳子牙河,至大红桥入海河。 1.3气象 北运河流域属东亚暖温带大陆性季风气候区,四季分明。 多年平均气温11.3℃~12.7℃,1月份温度最低,月平均气温-5.0℃~-5.3℃,7月份温度最高,月平均气温25.8℃~26.1℃。无霜期206d左右,最大冻土深度62 cm~70cm,多年平均日照时数2651小时~2744小时。多年平均风速为3.0~3.5m/s,历年最大风速24 m/s。多年平均蒸发量1133mm~1200mm。多年平均降雨量561~585mm,汛期降雨量占全年的80%~85%,且多以暴雨形式出现在7、8月份。降雨年际变化也很明显,丰枯比达数倍之多。 1.4水文 根据1956~2005年共50年实测资料统计,通县站多年平均径流量为31940万m3,最大年径流量为145895万m3(1956年),最小年径流量为7576万m3(1981年)。 榆林庄站位于凉水河上,设立于1956年,控制流域面积684 km2,至今有连续的水文观测资料,2001年以前为汛期站。榆林庄站2005年实测径流为21172万m3。

市政桥梁设计中的隔震设计分析

市政桥梁设计中的隔震设计分析 隔震设计是市政桥梁安全性能的保障,维护市政桥梁工程的安全运行。目前,随着桥梁建设的发展,市政桥梁设计中提高了对隔震设计的重视度,有利于提高市政桥梁的安全性能,确保其在应用中的稳固性,最大程度的实现了市政桥梁隔震设计的价值。因此,本文通过对市政桥梁设计进行研究,分析隔震设计的具体应用。 标签:市政桥梁隔震设计安全性 市政桥梁工程比较特殊,属于公共建设项目,其在应用中面临着安全性的压力。由于市政桥梁工程的承载比较大,需深化隔震设计的应用,改善市政桥梁的基本性能,预防安全事故的发生。隔震设计是市政桥梁工程中最为关键的一项内容,保障市政桥梁的整体性,通过隔震设计实现了高效率的安全控制,保障市政桥梁设计的安全价值。 1市政桥梁设计中的隔震设计 市政桥梁设计中的隔震设计,主要体现在三个方面,结合市政桥梁设计的案例,重点分析隔震设计。 1.1隔震设计 隔震设计提高了市政桥梁的抗震水平,优化了市政桥梁的质量控制的条件。综合分析市政桥梁设计中的环境因素及需求,确保隔震设计的合理性,完善市政桥梁工程的隔震设计[1]。首先考察市政桥梁工程,规划隔震设计的周期,尽量结合地震对桥梁的影响,确定隔震的周期,用于吸收地震产生的震动能量,保护桥梁工程;然后是隔震施工技术的设计,促使其符合市政桥梁的实际要求,规避震后桥梁的位移、变形风险,同时降低震后修复的难度,落实隔震技术的功能性;最后是隔震的方法设计,隔震方法决定了市政桥梁抗震的能力,分析市政桥梁所处的地理环境,尤其是地质信息,为隔震方法的设计提供基础,依照市政桥梁的受力状态,维持隔震方法的相符性。 1.2装置设计 隔震装置是市政桥梁中的主要构件,保障隔震设计的稳定性。隔震装置具有一定的设计要求,目的是达到市政桥梁隔震的需求,积极应用到市政桥梁工程设计中。隔震装置应用时,需要严格计算刚度、阻尼等,一般在大型的市政桥梁中,还要引入弹性反应谱,致力于降低隔震装置计算中的难度,确保隔震装置达到一定的设计标准,利用隔震装置消除市政桥梁工程中潜在的变形风险,维护市政桥梁工程的整体性。近几年,市政桥梁设计的规范性及难度越来越高,增加了隔震装置的设计压力,隔震装置设计中应考虑桥梁施工的实际情况,评估市政桥梁的基本性能后,才能引入隔震装置,即使市政桥梁工程中出现地震风险,也能在隔

2018年船闸调度作业考试试题

盐城市阜宁船闸管理所 船闸调度作业考试试题 使用人员:船闸调度人员 考试方式: 闭 卷 答题时长:120分钟 阅卷成绩登记表(阅卷、核分填写) 一、单项选择题(每题1.5分,计30分) 1、风对船舶操纵的影响:( ) A 、有助推作用 B 、影响航速 C 、发生漂移、横倾、 偏转 D 、影响航速、发生漂移、横倾、偏转 2、确认船舶超载( ) A 、载重线下沿 B 、载重线上沿 C 、黑杆下沿 D 、货船围板下沿 3、救生衣完全浸没在淡水中______后,其浮力不应降低5%以上。( ) A 、12小时 B 、24小时 C 、36小时 D 、48小时 4、雾对船舶航行的影响 ( ) (1)了望 (2)吊向 (3)选择航路 (4)保持航向 A 、(1) B 、(1)(2) C 、(3) D 、(1)(2)(3)(4) 5、《内河交通安全管理条例》规定,船舶停泊时应留有_______的船员值班。( ) A 、全部 B 、1/3 C 、1/2 D 、足以保证船舶安全 6、船舶最大尺度的作用是( ) A 、靠泊、通过船闸和进出船坞的参考依据 B 、计算总载重量及总吨位的主要尺度 C 、计算装载吨位的主要尺度 D 、丈量登记吨位的主要参数 7、船闸必须配备______。( ) A 、消防 B 、救生器材 C 、抢险工具和物资 D 、ABC 8、为加强对船闸的管理和养护,确保船闸_______,充分发挥船闸的作用,更好地为过闸船舶和水运事 业服务。( ) A 、安全 B 、调度 C 、效益 D 、畅通 E 、AD 9、根据《内河交通安全管理条例》的规定,船舶 、浮动设施遇险,必须迅速将遇险的_____,向遇险地海事管理机构以及船舶、浮动设施所有人、经营人报告 。(1)时间、地点 (2)遇险状况 (3)遇险原因 (4)救助要求( ) A 、(1)(2)(3) B 、(1)(3)(4) C 、(1)(2)(3)(4) D 、(2)(3)(4) 10、我国现行船舶最低安全配员规则是为了确保船舶的船员配备,足以保证船舶安全_____( ) A 、航行 B 、停泊 C 、作业 D 、ABC 都是 11、船舶过往船闸报闸须交验:( ) (1)有效的船检证书 (2)船舶营运证书 (3)船舶国籍证书 (4)有效的船检、国籍、营运证书和船员适任证书或证件 A 、(1)(3) B 、(1)(2) C 、(2)(3) D 、(4) 12、船闸的工作原理是( )。 A 、杆干原理 B 、连通器原理 C 、浮力原理 13、船闸管理必须确立为_____的宗旨。( ) A 、效益 B 、方便 C 、航运服务 D 、社会服务 14、船闸的管理和操作人员,应严格遵守管理规章和操作规程,正确履行职责,并应努力做到( )。 A 、熟悉水工建筑、闸阀门和机电设备的基本构造和性能; B 、掌握船闸控制运用的水位、水深、流态等基本情况; C 、掌握船闸运行操作一般事故的应急处置措施; D 、掌握船闸和过往船舶之间联系的灯号、旗号及声号; E 、熟悉常过船闸的船舶(队)类型、特性、基本尺度、吨位及航行规律。 F 、ABCDE 15、船闸操作人员必须经过_____。( ) A 、学习 B 、考试 C 、专门培训 16、船闸应当提高使用效率,缩短船舶过闸时间;确有困难的,可合理定时开放,但船舶等待过闸的时间 一般应不超过____小时。( ) A 、8 B 、6 C 、4 D 、2 17、船闸建筑物及其设备的保养修理应当制度化,做到 _______;在保养修理的安排上,应尽量减少对通航的影响。( ) A 、经常养护 B 、及时修理 C 、AB 18、船闸保养分为____。( ) A 、一级保养 B 、高级保养 C 、例行保养和定期保养 D 、随便保养 19、船闸管理区域包括( )。 A 、上下游引航道 B 、待闸区 C 、闸室 D 、船舶锚地 E 、ABC F 、ABCD 20、干舷系指。( ) A 、在船长中点处从甲板线的下边缘向下量至有关载重线的下边缘的垂直距离。 B 、在船长中点处从甲板线的下边缘向下量至有关载重线的上边缘的垂直距离。 C 、在船长中点处从甲板线的上边缘向下量至有关载重线的下边缘的垂直距离。 D 、在船长中点处从甲板线的上边缘向下量至有关载重线的上边缘的垂直距离。 二、判断题(每题1分,计20分) 1、安全航速是指船舶能够采取适当而有效的避碰行动。( ) 2、船体有较小的破洞时,应用木楔进行堵漏。( ) 3、船上的应变部署由船长制定部署表和明确分工。( ) 单位: 部门:姓名:________________ ………………………………………装………………………………………订…………………………………线…………………………………

船闸设计开题报告

船闸设计开题报告 导语:开题报告是指开题者对科研课题的一种文字说明材料。下面是由整理的关于船闸设计开题报告。欢迎阅读! 题目乌江银盘高水头船闸输水系统设计 学院 专业港口航道与海岸工程 学生 学号 指导教师 一、选题目的与意义 本次毕业设计是我校港航工程专业的毕业生在校期间最后一次全面性、总结性的教学实践环节,它既是本专业学生在教师指导下运用所学知识与技能,解决具体问题的一次尝试,也是本专业学生走向工作岗位前的一次“实战演习”。 船闸是克服河流上建坝或天然形成的集中水位差的一种水工建筑物,它是由上下闸首、闸门、闸室等组成。闸室灌水和泄水,使水位升降,像一种特殊的水梯,但它不像普通电梯和升船机那样靠电力升降。船闸的闸首、闸室都是固定不动的水工建筑物,由闸首、闸门、闸室围成固定不动的闸箱,起挡水作用。船舶过闸时,由廊道和阀门构成的输水系统向闸室灌水,闸室水位上升;闸室向外泄水,闸室水位降落。停在闸室的船舶靠水的浮力,随闸室水位升降,与上游或下游水面齐平,达到克服水位差的目的,通常称过坝建筑物。因船舶过

闸是由水的浮力来升降的,因此,营运的费用比较低,是过船建筑物中的一种主要形式。 本次毕业设计选题是银盘高水头船闸输水系统设计,通过这次船闸输水系统设计可以让我们,巩固、联系、充实、加深、扩大所学基础理论和专业知识;训练其综合运用所学知识独立分析和解决实际工程问题的能力,同时训练其计算能力、绘图能力、论文撰写能力、语言表达能力、创新能力,培养学生的敬业和合作精神;初步掌握港航工程设计工作流程和方法;熟练运用计算机等工具提高工作效率;敢于创新,并能正确地将独创精神与科学态度相结合;养成严肃认真、刻苦钻研、事实求实的工作作风。 乌江是长江上游右岸最大支流,源于贵州省乌蒙山东麓,横贯贵州全境和渝东南,流经重庆市的酉阳、彭水、武隆、涪陵,河流全长1070km(干流全长710km),总落差2124m,流域面积87920km2,多年平均流量1690m3/s,多年平均径流量534亿m3。乌江重庆境内河段长约188km,总落差105.49m,平均比降0.56%,属于典型的山区河流。 拟建银盘水利枢纽位于乌江下游,距涪陵乌江河口里程约93km。枢纽工程以发电为主,兼顾航运、防洪等。枢纽主体工程由电站、船闸和泄洪闸等部分组成,大坝正常蓄水位215m,相应库容14.44亿m3。电站装机4台,单机容量150MW,总装机容量600MW,最大水头36.5m,最小水头8.8m,额定水头26.5m,多年平均有效发电量26.54亿度,建成后可向重庆电网提供大量电力。电站建成后,可渠化彭水~

西江某水利枢纽船闸总体设计

航道工程课程设计 题目:西江某水利枢纽船闸总体设计 目录 1. 设计基础资料 (3) 1.1设计依据 (3) 1.2设计标准、规范 (3) 1.3设计背景 (3) 1.4设计资料 (4) 1.5设计船型 (4) 2.船闸总体设计 (5) 2.1船闸基本尺度的确定 (5) 2.1.1闸室有效长度 (5) 2.1.2闸室有效宽度 (6) 2.1.3船闸门槛最小水深 (7)

2.1.4船闸最小过水断面的断面系数 (7) 2.1.5闸首长度 (8) 2.2船闸各部分高程的确定 (9) 2.2.1闸门门顶高程 (9) 2.2.2闸室墙顶高程 (9) 2.2.3闸首墙顶高程 (10) 2.2.4闸首槛顶高程 (10) 2.2.5闸室底板顶部高程和引航道底部高程 (10) 2.2.6导航和靠船建筑物顶部高程 (11) 2.2.7引航道堤顶高程 (11) 2.3引航道平面布置及尺度确定 (12) 2.3.1引航道平面布置 (12) 2.3.2引航道尺度 (12) 2.4船闸通过能力计算 (14) 2.4.1船队进出闸时间 (14) 2.4.2闸门启闭时间 (14) 2.4.3闸室灌、泄水时间 (15) 2.4.4船舶、队进出闸门间隔时间 (15) 2.4.5船闸通过能力 (15) 2.5船闸耗水量计算 (16) 3.闸首、闸阀门及输水系统选择 (17) 3.1闸门的选型及基本尺度计算 (17) 3.1.1门扇长度l n (17) 3.1.2门扇厚度t n (17) 3.2输水系统初步设计 (17) 3.2.1输水阀门处廊道断面面积 (18) 3.3闸首结构初步设计 (18) 3.3.1闸首布置及构造 (18) 3.3.2边墩设计 (19) 4.闸室结构形式初步设计 (19) 5.船闸总体布置原则 (19) 6.船闸布置图 (20) 6.1船闸总平面布置图(附图1) (20) 6.2船闸纵断面布置图(附图2) (20)

船闸自动化控制简介

船闸自动化控制方案 2015-09-01 船闸自动化控制系统采用现在主流的工业网络控制计算机、视频采集及处理、

现场智能仪器、光纤通讯等先进技术、采用分层分布式计算机监控结构,组成船闸计算机监控系统。系统能实现实时信息自动采集、传输、处理入库、动态监测监控、动态现场视频监视、远程数据传输、计算机系统故障自动恢复等功能, 可大大提高船闸的自动化管理水平。系统主要由水位传感器、闸门传感器、电机状态检测单元、现场摄像机、视频录像机、船闸手动集控屏、中控室工控机操作台等组成。系统采用现地触摸液晶屏和液晶显示器显示,手动控制和自动控制并存但相互独立,互为冗余备份,全部数据具备断电记忆功能,水位及闸门传感器采用绝对多轴角编码器,工作安全可靠。系统可长期安全可靠连续运行。 安全可靠和先进实用 除选择技术先进、实用、操作方便外,绝对可靠,能在汛期根据上下游水位有效控制闸门开度的自动控制系统。选择具有成熟和先进的分布式计算机控制系统。在生产过程中信息集中管理,操作可集中进行,也可现地进行,使控制危险分散,提高系统的可靠性。 信息分层管理和控制权限分级 本闸门控制系统分为两层,即主控层、现地控制层。 现地控制层根据采集到的信息自动或手动控制闸门设备按一定的程序可靠运行。 主控层负责信息的集中管理和监控,提供可视性人机界面,对系统进行远程控制,处理可能发生的故障和紧急状态,保持系统的整体协调。 现地控制层具有优先级,主控层其次。 系统的开放性和可扩展性 整个系统采用分层分布的网络结构,其网络通讯协议是国际公认的、开放的, 可

以很方便的对系统进行扩展和连接,系统的软硬件均采用模块化设计。使监控系统更能适将来功能的增加和规模的扩充。 经济性和可扩展性说明 在满足工程需要的前提下,选用性能价格比高的控制设备和控制软件。采用的设备充分考虑到易升级换代,并且在升级时可出最大限度地保护原有的硬件设备和软件投次,采用模块化结构,便于维护、检修和升级。同时,根据当前技术发展,采用一些先进的模块组合代替高成本的过时组合,最大地实现系统经济性和可扩展性。网络化组网接口说明 为实现区域化集中控制,预留标准以太网接口,以支持与远程控制终端的连 接,可实现经授权的多远程终端监测查看相关数据,可以同其它设备一起组成区域化测控网络。 系统完成的功能要求如下: 1、现地控制单元主要由LCU现地控制单元对船闸的上下游闸门的冲水阀的启闭,上下游水位、启闭机、电压电流数据的采集和各项动作是安全保护进行控制。 2、中控室计算机控制单元主要是有1-2台工业计算机加上计算机保护设备和通信设备组成,在计算机中安装想要的组态控制软件,实现对船闸的远程自动化控制。 3、视频监控单元是通过在船闸现在个关键点安装相应的工业摄像机,通过光纤汇集到中控室的硬盘录像机中,在监控拼接大屏中显示出来。实现对船闸各个关键点的实时监控和录像。从而保证远控船闸的安全。 4、船闸收费调度系统,是一个专门针对船闸设计的船舶收费调度软件。此软件不但可以记录通过船闸各船舶的信息,还可以打印相关票据,并且按照登记缴费的顺序和船舶的大小与闸室的大小进行合理的调度,提高船闸的通过效率。

船闸工程施工组织设计-1

船闸工程施工组织设计 第一章综述 1.1项目概况 松花江干流大顶子山航电枢纽工程位于哈尔滨市下游46km处,是松花江干流规划7个梯级航运枢纽工程中的第一个梯级,该工程的建设对改善哈市水环境、发挥航运、发电、水产养殖及旅游业的综合效益有着十分重要的意义。 航电枢纽主要由船闸、泄洪闸、电站、土坝、坝顶公路桥、连接段及生产生活辅助设施等建筑物组成,船闸作为航电枢纽工程的一部分,左侧紧邻泄洪闸、右侧与岸相接。 1.2闸位布臵 大顶子山船闸闸位位于松花江右岸侧,船闸纵轴线和枢纽大坝中轴线夹角89.5°。 1.3工程组成内容和建设规模、标准 1.3.1工程组成内容 船闸工程由上下闸首、闸室、上下游导航墙、上下游靠船墩、上下游隔流堤、跨闸室公路桥等部分组成。见《cz-01船闸结构图》。 1.3.2建设规模、标准 本船闸为Ⅲ级通航建筑物。 主体结构水工建筑物级别为:上闸首:一级水工建筑物;下闸首、闸室:二级水工建设物;导航墙、靠船墩、隔流堤:三级水工建筑物,临时工程:四级水工建筑物。 船闸基本尺寸为28×180×3.5m(口门窗×闸室长×最小槛上水

深),上、下游主导航墙及调顺段各长390m,上、下游靠船段各长160m(上、下游靠船墩各8个),上游分隔堤长645m(包括导航墙及靠船墩),下游分隔直线长550m(包括导航墙及靠船墩),之后接700m 长的圆弧段(半径1500m),隔流堤下接1476m长的抛石顺坝。 上、下闸首闸门为钢质平板人字门,阀门为钢质平板提升门,闸、阀门启闭机均采用液压直推式启闭机。上、下闸首检修闸门采用钢质叠梁门,检修闸门的吊装设备采用立柱桥式起重机。电气控制系统采用集散控制系统,主要设备采用PLC和工控机,配电采用电网管理系统进行监测。 1.4船闸建筑物各部位高程 船闸建筑物各部位高程 1.5主要工程数量、材料和设备

水运工程技术规范强制性条文(船闸总体设计规范)

水运工程技术规范强制性条文(CZ1) CZ1 《船闸总体设计规范》(JTJ 305—2001) 1.0.4 船闸总体设计应从全局出发,统筹兼顾,以河流航运规划和航道定级为依据,并与枢纽总体设计相协调,处理好通航与水利、水电、过木、过鱼和城市建设的关系,做到水资源综合利用,远近结合,留有发展余地,节约用地,节约能源。 1.0.5 船闸设计应做好环境保护,环境质量、污染物排放指标等均应符合国家有关规定;消防和安全的技术措施及其设施的选择与配套,应做到与主体工程同时设计、同时施工、同时投产使用。 1.0.7 船闸总体设计必须依据可靠的水文、气象、地形、地质及经济等基本资料,确保工程质量。2.1.1 船闸应按设计最大船舶吨级分为7 级,其分级指标见表2.1.1。 船闸分级指标表2.1.1 注:设计最大船舶吨级系指通过船闸的最大船舶载重吨(DWT);当为船队通过时,指组成船队的最大驳船载重吨(DWT)。 3.1.1 新建、扩建和改建的船闸级别与建设规模,应依据船闸所在航道的定级或规划等级,近期与远期客货运输量、船型、船队的情况,地形、地质、水文以及施工条件,近期、远期和设计水平年内各个不同时期的运输要求等,通过经济技术比较,综合分析确定。 3.1.2* 船闸的设计水平年应根据船闸的不同条件采用船闸建成后的20~30 年。 3.1.4* 船闸的有效长度、有效宽度和门槛最小水深,必须满足船舶安全进出闸和停泊的条件。3.1.7* 当闸室墙底设置护角时,护角在闸室有效宽度内的高度,不得影响船舶、船队的安全。3.1.9* 船闸门槛最小水深应为设计最低通航水位至门槛顶部的最小水深,并应满足设计船舶、船队满载时的最大吃水加富裕深度的要求,可按式(3.1.9)计算。 4.1.1 船闸上下游设计最高通航水位、设计最低通航水位、校核高水位、校核低水位、检修水位和施工水位,应根据水文特征、航运要求、船闸级别、有关水利枢纽和航运渠化梯级运用调度情况,考虑航道冲淤变化影响、两岸自然条件和综合利用要求等因素,综合研究确定。 4.2.1 船闸挡水前缘闸首的闸门顶部高程应为上游校核高水位加安全超高确定。对溢洪船闸的闸门顶部高程应为上游设计最高通航水位加安全超高。 4.2.2 船闸非挡水前缘闸首的闸门顶部高程应为上游设计最高通航水位加安全超高。 4.2.3 船闸闸门顶部最小的安全超高值,I~Ⅳ级船闸不应小于0.5m,V~ⅥI 级船闸不应小于0.3m,对于有波浪或水面涌高情况的闸首门顶高程应另加波高或涌高影响值。 4.2.4 船闸闸首墙顶部高程应根据闸门顶部高程和结构布置等要求确定,并不得低于闸门和闸室墙顶部高程。位于枢纽工程中的船闸,其挡水前缘的闸首顶部高程应不低于与相互连接的枢纽工程建筑物挡水前缘的顶部高程。 4.2.5 船闸上、下闸首门槛的高度应有利于船闸运用和检修,顶部高程应为上、下游设计最低通航水位值减去门槛最小水深值。 4.2.6 船闸闸室墙顶部高程应为上游设计最高通航水位加超高值,超高值不应小于设计过闸船舶、船队空载时的最大干舷高度。 4.2.7 船闸闸室底板顶部高程不应高于上、下闸首门槛顶部高程。 4.2.8 船闸上、下游导航和靠船建筑物的顶部高程应为上、下游设计最高通航水位加超高值,超高值不宜小于设计过闸船舶、船队空载时的最大干舷高度。 4.2.9 船闸上、下游引航道和口门区及连接段的底部高程应为上、下游设计最低通航水位减去引航道设计最小水深值。

研华船闸调度系统方案

盐河杨庄船闸调度系统方案 系统架构如下: 系统采用WebAccess + Quantum PLC的方式进行搭配,完成整个杨庄船闸系统的调度。 该PLC控制系统能直接和上位机相连,并使用WebAccess软件控制,能在线编程和操作控制,使船闸的控制更为直观。 系统采取程控与分散运行相结合,正常程序运行情况下,系统自动控制闸阀门的开关动作,并具备多重自动保护功能,自动检测动力、控制电源的电压、电流,闸阀门电机电流,自动形成数据库存入计算机,系统管理员能准确了解系统在过去任意时刻动力、控制电压、电流数值,以及电机运行时电流大小情况。由于在上下游闸首及闸室安

放水位传感器,能实时观测船闸三级水位,保证船闸安全运行。 同时,在上下游闸首分别配置一套广播系统,上位机可进行自动广播,操作全部可在操作面板上进行。对通航信号指示灯系统根据船闸运行的实际状况自动进行切换控制。上位机平时显示闸阀门状态画面及三级水位,需要时,可进入报表界面,参数记录界面及故障报报警界面。 控制系统采用施耐德电动操作机构,可实现远程遥控分合闸。在船闸遇特殊情况需断开所有动力电源时,操作员按任一个“急停”按钮后,系统立即断开船闸所有动力电源。在故障排除后,只需按“合闸”按钮,系统自动合上动力电源。此外,考虑到今后扩展、联网的需要,系统的所有开关量、模拟量输入、输出模块留有一定的空余点数,所有控制电缆均留有一定的未用芯数,所有动力电缆的容量也留有一定的裕度。使得一旦系统的功能需要进一步完善,现有的PLC输入输出点及电缆能在一定范围内满足要求。 Quantum PLC 的硬件配置基本如下: CPU模块:140CPU43412A; 电源模块:140CPS11420(双电源冗余); 以太网模块:140NOE77111; 开关量输入模块:140DDI35300 模拟量输入模块:140ACI04000 继电器输出模块:140DRA84000

4-船闸总体设计

第四章 船闸总体设计 第一节 船闸规模 一、船闸基本尺度 船闸基本尺度是指船闸正常通航过程中,闸室可供船舶安全停泊和通过的尺度,包括闸室有效长度、有效宽度和门槛水深。 闸室有效长度、有效宽度和门槛水深必须满足船舶安全进出闸和停泊的条件,并应满足下列要求: (1) 船闸设计水平年内各阶段的通过能力满足过闸船舶总吨位数量和客货运量要求; (2) 满足设计船队,能一次过闸; (3) 满足现有运输船舶和其他船舶过闸的要求。 1.闸室有效长度 闸室有效长度,是指船舶过闸时,闸室内可供船舶安全停泊的长度。闸室有效长度起止边界按下列规则确定: 它的上游边界应取下列最下游界面(图4-1):帷墙的下游面;上闸首门龛的下游边缘;采用头部输水时镇静段的末端;其他伸向下游构件占用闸室长度的下游边缘。 它的下游边界应取下列最上游界面(图4-1):下闸首门龛的上游边缘;防撞设备的上游边缘;双向水头采用头部输水时镇静段长的一端;其他伸向上游构件占用闸室长度的上游边缘。 图4-1 船闸有效长度示意图 闸室有效长度x L 等于设计最大船队长度加富裕长度,即 f c x l l L += (4-1) 式中 x L —— 闸室有效长度(m ), c l —— 设计船队、船舶计算长度(m );当一闸次只有一个船队或一艘船单列过闸 时,为设计最大船队、船舶长度;当一闸次有两个或多个船队船舶纵向排

列过闸时, 则等于各设计最大船队、船舶长度之和加上各船队、船舶间 的停泊间隔长度; f l —— 闸室的富裕长度(m ),与船队的尺度、队型和吨位有关,是确定闸室有效 长度的一项重要参数,根据船闸实践和船舶操纵性能,可取: 对于顶推船队:c f l l 06.02+≥; 对于拖带船队:c f l l 03.02+≥; 对于机动驳和其他船舶:c f l l 05.04+≥。 2.闸室有效宽度 闸室有效宽度,是指闸室内两侧墙面最突出部分之间的最小距离,为闸室两侧闸墙面间的最小净宽度。对于斜坡式闸室,其有效宽度为两侧垂直靠船设施之间的最小距离。 闸室有效宽度可按下式计算: f c x b b B +=∑ (4-2) c f b n b b )1(025.0-+?= (4-3) 式中:x B —— 船闸闸首口门和闸室有效宽度(m ); ∑c b ——同一闸次过闸船舶并列停泊于闸室的最大总宽度(m )。当只有一个船队或一艘船舶单列过闸时,则为设计最大船队或船舶的宽度c b ; f b ——富裕宽度(m ); b ?——富裕宽度附加值(m ) ,当c b ≤7m 时,b ?≥1m ;当c b >7m 时,b ?≥1.2m ; n ——过闸停泊在闸室的船舶的列数。 值得注意的是:闸室的有效宽度应不得小于按公式计算的值,并宜根据计算结果套用现行国家标准《内河通航标准》中规定的8m 、12m 、16m 、23m 、34m 宽度。 3.门槛最小水深 门槛最小水深指在设计最低通航水位时门槛上的最小深度,与船舶(队)最大吃水和进闸速度有关,对船舶(队)操纵性和工程造价有较大影响,船闸运用和模型试验表明,增加富裕深度比增加富裕宽度有利。船舶(队)进、出闸时水被挤出或补充主要从船底下流入,如富裕深度小了,则影响水量的补充,增加船舶下沉量。我国船闸设计规范采用门槛水深大于等于设计最大船舶(队)满载吃水的1.6倍,即: T H ≥1.6 (4-4) 式中 H ——门槛最小水深(m ) T ——设计船舶、船队满载时的最大吃水(m )。

桥梁抗震设计讲解

SPCP课题研究论文 课题名称:桥梁震害研究 学生姓名:陈哲许江伟张盼盼李文娟 指导老师:郭青伟郑文豫 所在院系:土木建筑工程学院 年纪专业:14级土木工程 10班

目录 1前言 (4) 2地震对桥梁结构的影响 (4) 2.1引言 (4) 2.2场地运动引起的结构震动(第一种) (4) 2.3场地相对位移引起的结构的变形(第二种影响) (5) 3桥梁的震害原因 (5) 4桥梁的震害现象 (6) 4.1地表断裂 (6) 4.2滑坡 (7) 4.3沙土液化 (7) 4.4软土震陷 (7) 5桥梁震害破坏形式 (7) 6桥梁震害分析 (8) 7桥梁的抗震措施 (8) 7.1桥的选址 (8) 7.2桥位选择 (8) 7.3桥型选择 (8) 7.4桥孔布置 (8) 7.5基础处理 (9) 7.6桥墩处理 (9)

7.7基础抗震措施 (10) 7.8桥台抗震措施 (10) 7.9桥墩抗震措施 (11) 7.10结点抗震措施 (11) 7.11桥梁抗震设计及措施 (11) 8桥梁抗震设计的几点建议 (12) 8.1设计建议 (12) 8.2大型建筑工程强制安装强震仪 (13) 8.3健全工程质量评估装置 (13) 8.4广泛采用减震、隔震技术 (13) 8.5提高国家的抗震标准 (14) 9结论 (14)

1前言 桥梁作为城市的主要交通动脉和重要的社会基础设施,不仅仅具有投资大、公共性强等特点,而且维护管理也显得特别困难。因此,在抗震防灾、危机管理系统中,桥梁成立一种重要的组成部分。因为对于提高其抗震能力是加强区域安全。减轻地震损失的一项重要举措。特别是近年来,我国交通建设事业发展较为迅速,桥梁不管是在数量方面还是延伸长度方面都增长较快,可以说城市高架桥在大中城市已经成为了主要的交通动脉。给居民日常生活活动带来了很多的方便,为国民经济中起到了重要的作用。但是在地震的强烈影响下,桥梁设施会遭到巨大的破坏,甚至倒塌,其所带来的影响常常超过了桥梁因改建或维修所需要的巨额财政支出,由此可见,在我过公路交通建设中,必须加强桥梁的抗震能力,以减少一些损失。 2地震对桥梁结构的影响 2.1引言 地震对桥梁结构的破坏,其主要有以下两种方式:其一种是场地相对位移从而引起的强制变形,第二种就是场地运动发生的结构物震动。前者是由于支点强制变形引起的过大的相对变形或超静定内力致使结构的安全性受到影响,而后者则是以惯性力的方式把地震荷载施加在结构物上,从而导致安全性收到影响。 2.2场地运动引起的结构震动(第一种) 地震时,桥梁结构物遭受到的地震运动主要是因为震源产生的地震波先通过地壳逐渐传入至地下的深层基岩,然后由深层基岩传到地表面土层的场地,因此建筑物在地基上的桥梁结构物在场地运动的影响下而产生震动进而产生变形。对于柔性结构的地震影响来说,不仅仅取决于同场地的震动外,而且还取决于相对于地基的震动但是刚性结构的地震影响应则主要由场地的运动决定。 所以,桥梁结构物受地震惯性力的影响程度不仅仅取决于场地运动的特性,同

杭甬运河船闸自动控制与监控系统

2009年9月 第9期总第432期 水运工程 Port&WaterwayEngineering Sep.2009 No.9SerialNo.432杭甬运河船闸自动控制与监控系统 崔优凯,李勇伟,耿驰远 (浙江省交通规划设计研究院,浙江杭州310006) 摘要:以通明船闸为例,介绍了杭甬运河上的船闸自动控制与监控系统,包括船闸运行自动控制系统、船闸运行视频监控系统、船闸过闸调度与收费系统。该系统保证船闸的正常运行,具有数据采集与处理,运行监视,控制操作,自诊断和冗余切换等主要功能。 关键词:船闸;机电;调度;收费;PLC 中图分类号:U641.3+4文献标志码:A文章编号:1002—4972(2009)09—0151—05 AutomaticcontrolandmonitoringsystemforHangzhou-NingboCanalLock CUIYou-kai,LIYong-wei,GENGChi-yuan (ZhejiangProvincialPlanning,Design&ResearchInstituteofCommunications,Hangzhou310006,China)Abstract:ThispaperdescribestheautomaticcontrolandmonitoringsystemforlocksonHangzhou—-NingboCanal,includingtheautomaticcontrolsystem,thevideomonitoringsystem,aswellasthedispatchingandtollcollectingsystem. Keywords:lock;electrical&mechanicalsystem;dispatching;toll;PLC 1概述 杭甬运河起自杭州三堡船闸,沿钱塘江上行入浦阳江,南萧山新坝船闸进萧绍内河途经萧山、绍兴、上虞、余姚,终于宁波镇海,全长238km,全线按内河四Ⅳ级航道标准建设,建成后可通行500吨级船舶。 杭甬运河分杭州、绍兴、宁波3段建设。杭州段设三堡和新坝2座船闸;绍兴段设塘角、通明、大厍3座船闸;宁波段设蜀山、姚江、大通3座船闸。 自动控制与监控等机电工程是船闸建设的重要组成部分,也是船闸正常运行的关键设施之一。各船闸均设置了自动控制与监控中心和过闸操作控制中心,分别位于船闸管理所的智能控制中心管理室和各船闸运行集控室内(如通明船闸设在上闸首3楼)。过闸操作控制中心负责指挥和监控船只的过闸运行,自动控制与监控中心负责协调和管理上、下闸首集控单元,收集现场有关的信息并作相应处理和存储,负责闸区监控以及调度、收费管理等工作。自动控制与监控系统主要包括自动控制、监控、调度与收费。 每个船闸控制和监控系统目前暂时独立运行,控制系统为全线所有船闸和航道管控一体化的联网预留了接口。由于各船闸自动控制与监控系统基本相同,故本文以通明船闸为例对该系统作详细介绍。 通明船闸自动控制与监控系统于2006年开始设计,经施T安装调试,于2008年底建成投入使用。 2自动控制系统 2.1系统构成 根据集中控制和就地分散控制相结合的总体 收稿日期:2009—08—10 作者简介:崔优凯(197卜),女,高级工程师,从事交通机电设计。

船闸毕业设计文献综述模板概要

文献综述模板 一、引言 通过再次阅读《航道工程学》,我对水运规划及其在国民经济的用了更为深刻 的认识,水运(包括内河运输和海洋运输是交通运输业中的一个重要组成部分,它对 现 代工农业的发展,改善人民生活和促进国际经济贸易与文化的交流都起着重要的作 用。现代交通运输业由铁路、公路、水运、航空和管道等运输方式组成。 目前,世界上凡是工农业生产较为发达的国家,其水运也都比较发达。例如美国、德国、荷兰和俄罗斯等国,基本上都已建成一个四通八达的内河航道网。绝大多数天然河流对水运的发展不利,因此河流渠化是促进水运事业发展的必要手段之。 目前世界船闸是使船舶通过航道中有集中水位落差河段的一种通航建筑物。主要由闸室、闸首、输水系统和引航道等组成。采用集中输水系统的船闸,其输水系统设在闸首;采用分散输水系统的船闸,在闸室内设有输水廊道系统。在引航道内设有导航建筑物和靠船建筑物。其工作原理是船闸通过输水系统调整闸室内的水位,使其与上游水位或下游水位齐平,船舶便能从上(下游驶往下(上游。 二、船闸的输水系统 为了充分了解船闸的输水系统以及各项水力计算,查阅了《渠化工程学》、 《航道工程学》、《船闸设计》、《岳池县富流滩电航工程船闸可行性研究报告》、《水力学》等专著的相关部分内容。 船闸输水系统(filling and emptying system of navigation lock是为船闸闸室灌水和泄水的设施;由进水口、输水廊道、阀门段、出水口及消能工等构成。输水系统按灌泄水方式可分为集中输水系统和分散输水系统两大基本类型。输水系统类型的选择主要根据作用在船闸上的水头的大小、要求的输水时间的长短以及其他技术经济指标等因素确定。一般来说,当作用在船闸上的水头较大、要求的输水时间较短时,宜采用分散

第二章桥梁抗震设计基本要求.

第二章桥梁抗震设计基本要求 主要内容:桥梁抗震设计基本原则、桥梁抗震设计流程,桥梁抗震设防标准、地震动输入的选择、桥梁抗震概念设计。 基本要求:掌握桥梁抗震设计基本原则、理解和掌握桥梁抗震设防标准、掌握地震动输入的选择要求、掌握桥梁抗震概念设计基本原则。 重点:桥梁抗震设防标准的确定、地震动输入的选择和桥梁抗震概念设计。难点:桥梁抗震设防标准的确定。 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标(课件) 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选

船闸自动化控制简介

船闸自动化控制方案 简 介 2015-09-01

船闸自动化控制系统采用现在主流的工业网络控制计算机、视频采集及处理、现场智能仪器、光纤通讯等先进技术、采用分层分布式计算机监控结构,组成船闸计算机监控系统。系统能实现实时信息自动采集、传输、处理入库、动态监测监控、动态现场视频监视、远程数据传输、计算机系统故障自动恢复等功能,可大大提高船闸的自动化管理水平。系统主要由水位传感器、闸门传感器、电机状态检测单元、现场摄像机、视频录像机、船闸手动集控屏、中控室工控机操作台等组成。系统采用现地触摸液晶屏和液晶显示器显示,手动控制和自动控制并存但相互独立,互为冗余备份,全部数据具备断电记忆功能,水位及闸门传感器采用绝对多轴角编码器,工作安全可靠。系统可长期安全可靠连续运行。 安全可靠和先进实用 除选择技术先进、实用、操作方便外,绝对可靠,能在汛期根据上下游水位有效控制闸门开度的自动控制系统。选择具有成熟和先进的分布式计算机控制系统。在生产过程中信息集中管理,操作可集中进行,也可现地进行,使控制危险分散,提高系统的可靠性。 信息分层管理和控制权限分级 本闸门控制系统分为两层,即主控层、现地控制层。 现地控制层根据采集到的信息自动或手动控制闸门设备按一定的程序可靠运行。 主控层负责信息的集中管理和监控,提供可视性人机界面,对系统进行远程控制,处理可能发生的故障和紧急状态,保持系统的整体协调。 现地控制层具有优先级,主控层其次。 系统的开放性和可扩展性

整个系统采用分层分布的网络结构,其网络通讯协议是国际公认的、开放的,可以很方便的对系统进行扩展和连接,系统的软硬件均采用模块化设计。使监控系统更能适将来功能的增加和规模的扩充。 经济性和可扩展性说明 在满足工程需要的前提下,选用性能价格比高的控制设备和控制软件。采用的设备充分考虑到易升级换代,并且在升级时可出最大限度地保护原有的硬件设备和软件投次,采用模块化结构,便于维护、检修和升级。同时,根据当前技术发展,采用一些先进的模块组合代替高成本的过时组合,最大地实现系统经济性和可扩展性。 网络化组网接口说明 为实现区域化集中控制,预留标准以太网接口,以支持与远程控制终端的连接,可实现经授权的多远程终端监测查看相关数据,可以同其它设备一起组成区域化测控网络。 系统完成的功能要求如下: 1、现地控制单元主要由LCU现地控制单元对船闸的上下游闸门的冲水阀的启闭,上下游水位、启闭机、电压电流数据的采集和各项动作是安全保护进行控制。 2、中控室计算机控制单元主要是有1-2台工业计算机加上计算机保护设备和通信设备组成,在计算机中安装想要的组态控制软件,实现对船闸的远程自动化控制。 3、视频监控单元是通过在船闸现在个关键点安装相应的工业摄像机,通过光纤汇集到中控室的硬盘录像机中,在监控拼接大屏中显示出来。实现对船闸各

相关主题
文本预览
相关文档 最新文档