当前位置:文档之家› 卟啉—磁性四氧化三铁纳米粒子复合物研究进展

卟啉—磁性四氧化三铁纳米粒子复合物研究进展

卟啉—磁性四氧化三铁纳米粒子复合物研究进展
卟啉—磁性四氧化三铁纳米粒子复合物研究进展

卟啉—磁性四氧化三铁纳米粒子复合物研究进展

摘要:卟啉-磁性四氧化三铁纳米粒子复合物是一种新型多功能材料,同时具有卟啉的生物功能特性和四氧化三铁纳米粒子的磁特性,如利用磁分离方便地解决纳米催化剂难以分离和回收的问题,提高催化剂寿命。合成了众多卟啉一磁性四氧化三铁纳米粒子复合物,它们在诸多领域有着潜在的应用前景。结合文献,综述了近年来该类复合物的研究成果,概述了合成方法,及其在非均相催化氧化、光动力治疗及磁热疗等多个领域的进展,并展望了此类复合物的发展方向。

关键词:卟啉;Fe3O4纳米粒子;催化;光动力疗法;磁热疗;吸附剂

卟啉是卟吩外环带有取代基的同系物和衍生物的总称,是一类特殊的大环共轭芳香体系,因其特定的π共轭体系和配位功能,可应用于有机反应催化剂、治疗剂、光储存器件以及超分子化学等诸多领域。单纯的卟啉化合物应用于催化体系时,存在催化剂不易分离、回收困难、稳定性差等问题;应用于光动力治疗时,也存在靶向性不高、输运效率低等缺陷。解决上述问题的有效途径是将金属卟啉同载在有机或无机载体上,一方面载体的配位或吸附作用可延长催化剂寿命,另一方面病变细胞可能对某些载体产生选择性吸收,可提高了卟啉作为治疗剂的靶向性。

纳米粒子指尺寸在1~100nm之间的粒子,它所具有的独特的光、电、热、磁和化学性质,使其在新能源材料、生态环境材料、功能涂层材料以及高性能电子材料等领域发挥着不可替代的作用。磁性纳米粒子在无外加磁场时,对外不显示宏观磁性;在有外加磁场时,显示出一定的宏观磁化强度,这种特性使其在磁记录材料、磁性液体、催化以及生物医用领域有着广泛的应用前景。四氧化三铁(Fe3O4)纳米粒子是一种常见的磁性纳米粒子,含有该粒子的纳米磁性液体已在栓塞磁热疗、磁靶向药物输运、磁性免疫细胞的分离等方面广泛应用。

卟啉-磁性四氧化三铁纳米粒子复合物是将金属卟啉固载到四氧化三铁纳米粒子上的一类复合物,一方面,此类复合物仍具有卟啉化合物特定的π共轭体系和配位功能;另一方面,复合后的化合物具有优良的磁分离和靶向药物等性能,提高了催化剂的使用寿命,增强了药物治疗准确性。多年来,我们一直致力于磁性纳米粒子及铁卟啉复合物的制备及性质研究,在此,作者就该研究领域的研究成果及此类复合物的发展方向做一概述。

1 卟啉-磁性四氧化三铁纳米粒子复合物的制备方法

磁性Fe3O4纳米粒子制备的基本原理是二价铁盐和三价铁盐的化学共沉淀。在氮气保护下,将氨水滴入二价和三价铁盐混合溶液中,使其同时沉淀出来,形成Fe3O4纳米粒子。一般而言,纯的Fe3O4纳米粒子容易形成坚硬的聚集体,结构的变化会导致磁性质的改变。因此,通常需要对磁性Fe3O4纳米粒子进行保护。根据卟啉与磁性Fe3O4纳米粒子不同的连接方式,本文将卟啉一磁性Fe3O4纳米粒子复合物的制备方法归纳为以下几种:

纳米四氧化三铁的应用

纳米四氧化三铁的应用一、纳米四氧化三铁的简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO〃Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向 移动,粒径在一定范围之 内具有超顺磁性,以及在 外加交变电磁场作用下能 产生热量等特性,其化学 性能稳定,因而用途相当 广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过

在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、纳米四氧化三铁的配置方法 由于纳米四氧化三铁特殊的理化学性质 , 使其在实际应用中越来越广泛 , 而其制备方法和性质的研究也得到了深入的进展。磁性纳米微粒的制备方法主要有物理方法和化学方法。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀 , 易被氧化 , 且很难制备出10nm 以下的纳米微粒 , 所以在工业生产和试验中很少被采纳。 化学方法主要有共沉淀法、溶胶 - 凝胶法、微乳液法、水解法、水热法等。采用化学方法获得的纳米微粒的粒子一般质量较好 , 颗粒度较小 , 操作方法也较为容易 , 生产成本也较低 , 是目前研究、生产中主要采用的方法。

纳米晶软磁材料的应用

纳米晶软磁材料的应用 【摘要】本文首先回顾了纳米晶软磁材料的发展过程,介绍了纳米晶软磁材料的组织结构与磁特性,并介绍了纳米晶软磁合金的应用。 【关键词】纳米晶;软磁材料;铁芯;铁基合金 引言 八十年代以来,由于计算机网络和多媒体技术、高密度记录技术和高频微磁器件等的发展和需要,越来越要求所用各种元器件高质量、小型、轻量,这就要求制造这些器件所用的软磁合金等金属功能材料不断提高性能,向薄小且高稳定性发展[1]。正是根据这种需要,1988年日本的Yoshizawa等人首先发现,在Fe—Si—B非晶合金的基体中加人少量Cu和M(M=Nb,Fa,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有b.c.c结构的超细晶粒(D 约10nm)软磁合金[2]。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为Fe73.5CuNb3Si13.5B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe—M—B (M=Zr,Hf,Ta)系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[3]。由于Co基和Ni基易于形成K、λs、同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。故本文主要介绍铁基纳米晶软磁合金。铁基纳米晶合金是以铁元素为主,加人少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为l0—20纳米的微晶,弥散分布在非晶母体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8万)、低Hc(0.32A/M),高磁感下的高频损耗低(P0.5T/20kH=30W/kg),电阻率为80微欧厘米,比坡莫合金(50—60微欧厘米)高,经纵向或横向磁场处理,可得到高Br(0.9T)或低Br值(1000Gs)。是目前市场上综合性能最好的材料。 1 纳米晶软磁合金的性能 1.1 软磁合金的磁特性 对于纳米晶软磁合金,按性能要求,常分为高Bs型、高0型等。 (1)高型纳米晶合金,其成份至今局限于FeSiB系。以FeCuNbSiB系磁性最佳,其性能参数达到:在磁场0.08A/m下,相对磁导率达14万以上,矫顽力最低已达0 .16A/m,饱和磁感Bs高达135T,在频率lOOkHz和磁感0.2T下铁损低达250kW/1T。值得研究的是饱和磁致伸缩系数21×10-6,而不是0左右。 (2)高Bs型铁基纳米晶合金,其Fe含量在88at%以上,Bs值可达16~1.72T,典型成份为FeMB(M=Zr,Hf等)。对于FeZrB系合金,典型成份为

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性 一、实验目的 1.掌握共沉淀法合成无机功能材料的原理和方法。 2.掌握XRD、SEM进行无机材料的晶相,形态分析方法。 3.理解并测试磁性材料的基本性能参数。 二、实验原理 近年来,纳米Fe3O4颗粒的制备及性能研究受到广泛关注。Fe3O4纳米颗粒在磁记录、微波吸波、废水净化,特别是核磁共振成像、药物运输和热磁疗等生物学领域有着巨大的应用价值。纳米材料的粒径是影响其物理化学性质的重要因素,不同的应用领域对Fe3O4纳米颗粒的粒径有着不同的要求。因此制备尺寸和性能可调的纳米Fe3O4颗粒有着十分重要的意义。制备Fe3O4纳米颗粒的方法有很多:如沉淀法、水热和溶剂热法、微乳液法、溶胶-凝胶法等,但制备粒径可调的Fe3O4纳米颗粒的方法却并不多。其中一些方法涉及的反应条件苛刻而且工序复杂,给工业生产带来了极大的不便,寻求一种简便有效的方法来实现粒径调控的纳米Fe3O4颗粒的制备显得尤为重要。 沉淀法实在原料溶液中加入适当的沉淀剂,使得原料溶液中的阳离子形成各种形式的沉淀物的方法。沉淀颗粒的大小和形状可由反应条件来控制,然后再经过滤、洗涤、干燥,有时还需经过加热分解等工艺过程二得到陶瓷粉体。沉淀法又可分为直接沉淀法、共沉淀法和均匀沉淀法。 直接沉淀法是使溶液中的某一种金属阳离子发生化学反应二形成沉淀物,其优点是可以制备高纯度的氧化物粉体。 化学共沉淀法一般是把化学原料以溶液状态混合。并向溶液加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共同沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解。由于反应在液相中可以均匀进行,从而获得在微观线度中按化学计量比混合的产物。共沉淀法是制备含有两种或两种以上金属元素的复合氧化物粉体的重要方法。 Fe3O4纳米粒子付费共沉淀制备反应如下: Fe2++2Fe3++8OH—→Fe3O4+4H2O 在室温或者更高温度惰性氛围下,通过共沉淀Fe2+/Fe3+盐溶液合成Fe3O4,此法简便易得。磁性纳米粒子的粒径、形状及组成取决于所用盐的种类(如氯酸盐、硫酸盐、硝酸盐)、Fe2+/Fe3+的比率、反应温度、pH值以及介质的离子强度。 共沉淀法最大的困难是如何阻止粒子的团聚现象。近年来,通过使用有机添加剂作为固定剂或还原介质,在制备不同尺寸单分散磁性纳米粒子的方法上有了重大的改进。 三、实验设备及材料 实验设备:容量瓶,烧杯,分析天平,水浴锅,搅拌器,鼓风干燥箱,电动搅拌机,酸度计(ph试纸)

纳米四氧化三铁的应用

精心整理纳米四氧化三铁的应用 一、纳米四氧化三铁的简介 )前面 显+2与大, 胶溶化法和添加改性剂及分散剂的方 法,通过在颗粒表面形成吸附双电层结 构阻止纳米粒子团聚,制备稳定分散的 水基和有机基纳米磁性液体。制备的磁

性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、 泛, ,所 ,操 磁性 目前,制备磁性Fe3O4纳米颗粒方法的机理已研究得很透彻,归结起来一般分为两种。一是采用二价和三价铁盐,通过一定条件下的反应得到磁性Fe3O4纳米颗粒;另一种则是用三价铁盐,在一定条件下转变为三价的氢氧化物,最后通过烘干、煅烧等手段得到磁性Fe3O4纳米颗 粒。

(一)共沉淀法 沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中,加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。 (二)溶胶-凝胶法 溶胶-凝胶方法(Sol-Gel)是日本科学家Sugimoto等于上世纪90年代发展 ,油(OΠ , 对实验设备和制备条件方面的要求相对高一些,因而大多数也只停留在研究阶段。 三、纳米四氧化三铁的应用 当粒子的尺寸降至纳米量级时,由于纳米粒子的小尺寸效应、表面效

应、量子尺寸效应和宏观量子隧道效应等的影响,使其具有不同于常规体相材料的特殊的磁性质。这也使其在工业、生物医药等领域有着特殊的应用。(一)生物医药 磁性高分子微球(也称免疫磁性微球)是一种由磁性纳米颗粒和高分子骨架材料制备而成的生物医用材料,其中的高分子材料包括聚苯乙烯、硅烷、聚乙烯、聚丙烯酸、淀粉、葡聚糖、明胶、白蛋白、乙基纤维素等,骨架 .用 能长期稳定的存在,不产生沉淀与分离。目前,磁性流体已经广泛应用于选矿技术、精密研磨、磁性液体阻尼装置、磁性液体密封、磁性液体轴承、磁性液体印刷、磁性液体润滑、磁性液体燃料、磁性液体染料、磁性液体速度传感器和加速度传感器、磁性液体变频器、磁性液体陀螺仪、水下低

共沉淀制备四氧化三铁纳米磁性材料

共沉淀法制备四氧化三铁纳米磁性材料 纳米磁性材料是在20世纪70年代后逐渐产生、发展和壮大起来的一种新型磁性材料。它不同于常规磁性材料的主要原因是关联于磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等于大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。纳米磁性材料目前被广泛应用在磁性记忆材料、靶向药物载体、核磁共振造影增强剂及电化学生物传感器等方面。 一、实验目的 1.掌握共沉淀法制备纳米磁性材料的基本原理 2.掌握纳米磁性材料的表征方法 二、实验原理 将二价铁盐(Fe2+)和三价铁盐(Fe3+)按一定比例混合,加入沉淀剂(OH—),搅拌反应即得超微磁性Fe3O4粒子,反应式为:Fe2 + + Fe3 + + OH—→Fe (OH) 2 / Fe (OH) 3 (形成共沉淀) Fe (OH) 2 + Fe (OH) 3→FeOOH + Fe3O4(pH ≤7.5) FeOOH + Fe2 +→Fe3O4 + H+(pH ≥9.2) 总反应为:Fe2 + + 2Fe3 + + 8OH—→Fe3O4 +4H2O 实际制备中还有许多复杂的中间反应和副产物: Fe3O4 + 0.25O2 + 4.5H2O →3Fe (OH) 3 2Fe3O4 + 0.5O2→3Fe2O3 所以实验中二价铁适当过量,即[Fe3+]:[Fe2+]=1.75:1

此外,溶液的浓度、nFe2 +/Fe3 +的比值、反应和熟化温度、溶液的pH 值、洗涤方式等均对磁性微粒的粒径、形态、结构及性能有很大影响。 三、实验试剂与仪器 试剂: FeCL3。6 H2O FeSO4.7H2O NaOH 十二烷基苯磺酸钠 PH试纸无水乙醇 仪器:恒温水浴箱真空干燥箱 FA1604型电子天平激光粒度分布仪电子扫描显微镜 X射线分析仪离心机(强磁磁铁)100ml容量瓶、锥形瓶、烧杯、玻璃棒等玻璃仪器 四、实验步骤 1.称取13.90g FeSO4.7H2O,用一定的蒸馏水溶解,于100ml的容量瓶中配制Fe2+的溶液,置于65。C的恒温水浴中水浴加热; 称取23.67g FeCL3。6 H2O,用一定的蒸馏水溶解,于100ml的容量瓶中配制Fe3+ 的溶液,置于65。C的恒温水浴中水浴加热; 称取8gNaOH溶于一定的蒸馏水,于100ml容量瓶中配制NaOH溶液; 称取2g NaOH溶于一定的蒸馏水,于100ml容量瓶中配制NaOH溶液; 2.纳米Fe3O4的制备 1)取43.10ml 1.00mol/L Fe2+溶液和43.10ml 1.75 mol/L Fe3+溶液混合,保证[Fe3+]:[Fe2+]=1.75:1;快速搅拌, 滴加5 mol/L NaOH溶液至pH = 7,此时有棕色颗粒生成。再滴加0.5 mol/L NaOH溶液至规定

高频磁性纳米材料的电磁性能调控及其在磁性电子器件中的应用

项目名称:高频磁性纳米材料的电磁性能调控及其在磁性电 子器件中的应用 首席科学家:薛德胜兰州大学 起止年限:2012.1至2016.8 依托部门:教育部 一、关键科学问题及研究内容 本项目根据电子信息技术中对GHz频段的高性能、微型化薄膜电感和近场抗电磁干扰器件用高频磁性纳米材料的迫切要求,通过磁性纳米材料与纳米结构的可控制备,突破Snoek理论极限的制约,探索提高磁性纳米材料高频性质的新机制,突破传统微波磁性材料不能同时保持高共振频率和高磁导率的瓶颈,获得1-5 GHz波段内高磁导率的高频磁性纳米材料;并针对高频磁性纳米材料在1-5 GHz电子信息传输和近场抗电磁干扰技术中的具体应用,探索保持优良高频磁性基础上的电磁匹配机制,突破电磁波的连续介质理论,设计并实现具有良好电磁匹配的可工作在1-5 GHz的微型化薄膜电感和近场抗电磁干扰器件。 针对GHz频率下,同时提高磁性纳米材料的共振频率和磁导率,以及获得优异性能的薄膜电感和近场抗电磁干扰器件,拟解决的关键科学问题包括: ●自然共振机制下,同时提高磁性纳米材料共振频率和磁导率的机制,以及双各向异性控制下大 幅度调控高频磁性的机制及磁化强度的动力学过程。 ●非自然共振机制下,提高磁性纳米材料共振频率和磁导率的机制,以及有效各向异性和体积共 同作用下的超顺磁阻塞共振频率对高频磁性的影响机制。 ●描述磁性纳米材料电磁性质的有效理论,以及核/壳结构的形态、相构成和各相的体积分数对 新型磁性/介电纳米材料的高频电磁耦合机制和匹配关系的宽范围调控机制。 ●分离介质对电磁波传输特性的影响机制,以及高性能薄膜电感和抗电磁干扰器件的设计理论和 器件研制。 主要研究内容包括: ●以高饱和磁化强度M s的铁基和钴基铁磁金属及合金为基础,制备磁性纳米薄膜、颗粒膜及多 层膜。通过溅射时外加磁场、倾斜溅射、反铁磁钉扎、衬底修饰等手段,在样品平面内产生单轴或单向磁各向异性。通过薄膜的微结构优化,降低矫顽力H c,提高磁导率 ;改变面内各向异性,探索大范围调控磁性纳米薄膜高频磁性的规律。 ●制备线度比(aspect ratio)大的片状软磁纳米颗粒,调整静态磁矩分布在薄片平面内,利用形 状调控垂直片状纳米颗粒平面的各向异性场,用磁场热处理、应力、取向等方式在片状纳米颗粒平面内产生和调节各向异性场。研究这两个各向异性场的比值与材料高频磁性的关系。寻找大幅度提高双各向异性片状磁性纳米颗粒的规律,探索提高高频磁性的新机制。 ●采用高温热解或还原的方法制备单分散、表面活性剂分子包覆的不同形状的铁基磁性纳米颗

磁性纳米粒子的制备与应用.

磁性纳米粒子的制备与应用 孙超 (上海大学环境与化工工程学院,上海200444) 摘要:磁性纳米材料(magnetic nanoparticle)是由Fe,Co,Ni等过渡金属及其氧化物组成的打下尺度介于1~100nm间的一种新型功能材料,磁性纳米材料具有磁性特征,还具有纳米材料的独特效应和生物亲和性,因而成为目前生物医学研究的热点之一。本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳米颗粒在医用载药方面的研究进展。 关键词:磁性纳米材料;氧化铁;载药 Preparation and Application of Magnetic Nanoparticles Sunchao (School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China) Abstract: Magnetic nanoparticles are a kind of magnetic material with diameter of l~1 00nm,which are made of transition metal and their oxide such as Fe、Co、Ni and so on.They are new type of functional materials with characterization of special effect,magnetic responsibility and bioaffinity,and have been one of hot spots in recent biomedicine research.This paper introduces the preparation of magnetic nanoparticles and some recent studies about drug loading of magnetic nanoparticles in medicine。 Key words: Magnetic nanoparticles;Iron oxide;Drug loading 1.引言

四氧化三铁综述

四氧化三铁纳米的制备应用及表征 摘要:总结了磁性纳米Fe3O4粒子的制备方法,有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等,并讨论了磁性纳米Fe3O4粒子在磁性液体、生物医学、微波吸附材料磁记录材料、催化剂载体等领域的应用。简述了Fe3O4得表征手段,最后对纳米Fe3O4的研究前景进行了展望。 关键词:四氧化三铁;磁性纳米颗粒;制备;应用;表征 The Preparation and Application of Fe3O4 Magnetic Nano- particles 【Abstract】The chemical preparation methods were summarized including co-precipitation,sol-gel method, microemulsion , hydro-thermal method etc. Based on the recent progress , relative meritsof those methods were analyzed. The application of Fe3O4nano-particles in magnetic fluid , magnetic recording materials , catalytical and microwave materials and medicine were introduced. 【Key Words】Fe3O4; magnetic nanoparticle; preparation; progress Fe3O4磁性纳米颗粒由于具有与生物组织的相容性、与尺寸和形貌有关的电学和磁学性能,且具有好的亲水性、生物兼容性、无毒和高的化学稳定性,所以成为生物磁应用方面的理想材料使其在电子与生物敏感材料,尤其是生物医学领域被人们广泛关注【1】。应用于生物技术的纳米颗粒需要优良的物理、化学以及磁学特性【2】:(1)具有高磁化率,使材料的磁性较强,一般为铁磁性纳米颗粒;(2)颗粒尺寸为6~15 nm(当颗粒直径小于15 nm 时,就变为单磁畴磁体而具有超顺磁性并且饱和磁化强度很高),比表面积高;(3)具备超顺磁性等。另一方面,磁性纳米颗粒表面需要被特种有机物质修饰,才能具有独特的生物医学功能。磁性纳米微粒的制备方法主要有物理方法和化学方法【3-4】。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一般产品纯度低、颗粒分布不均匀,易被氧化,且很难制备出10nm以下的纳米微粒,所以在工业生产和试验中很少被采纳。化学方法主要有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等。采用化学方法获得的纳米微粒的粒子一般质量较好,颗粒度较小,操作方法也较为容易, 生产成本也较低, 是目前研究生产中主要采用的方法【5-8】。 1、制备方法 1.1共沉淀法 共沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中, 加入适当的沉淀剂, 使金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得纳米微粉. 共沉淀法是目前最普遍使用的方法, 其反应原理是: Fe2++ Fe3++ 8OH==Fe3O4+ 4H2O 付云芝【9】等采用共沉淀法制备出立方晶系的单分散、小粒径Fe3O4 颗粒。通过控制制备最佳条件为:铁盐溶液浓度为0. 5mol /L,沉淀剂溶液浓度为0. 2mo l/L,Fe2+:Fe3 +:OH- = 1. 00 :1. 00 :6. 00, 反应温度为30℃,搅拌速度为1000 r /m in. T. Fried【10】等在80℃氩气保护下将氨水缓慢滴加到FeCl2与FeCl3的混合溶液中得到纳米Fe3O4颗粒, 并使用油酸对其进行包覆,得到了平均粒径为2 nm 的Fe3O4颗粒膜。Yong- kang sun【11】等人采用部分限制共沉淀法,只是向酸化了的磁性纳米悬浮液中通入空气进行氧化的情况下制备了平均粒径为7 ~ 13 nm 的纳米Fe3O4。陈亭汝【12】等在搅拌速度较快的情况下,n ( Fe3+ ) /n( Fe2+ )为1. 8 :1,熟化温度70℃,熟化时间30min,以氨水作沉淀剂最佳pH值是9左右,可制得

铁基纳米晶合金

铁基纳米晶合金 为了得到对共模干扰最佳的抑制效果,共模电感铁芯必须具有高导磁率、优良的频率特性等。从前绝大多数采用铁氧体作为共模电感的铁芯材料,它具有极佳的频率特性和低成本的优势。但是,铁氧体也具有一些无法克服的弱点,例如温度特性差、饱和磁感低等,在应用时受到了一定限制。 近年来,铁基纳米晶合金的出现为共模电感增加了一种优良的铁芯材料。铁基纳米晶合金的制造工艺是:首先用快速凝固技术制成厚度大约20-30微米的非晶合金薄带,卷绕成铁芯后经过进一步加工形成纳米晶。与铁氧体相比,纳米晶合金具有一些独特的优势: 1.高饱和磁感应强度:铁基纳米晶合金的Bs达1.2T,是铁氧体的两倍以上。作为共模电感铁芯,一个重要的原则是铁芯不能磁化到饱和,否则电感量急剧降低。而在实际应用中,有不少场合的干扰强度较大(例如大功率变频电机),如果用普通的铁氧体作为共模电感,铁芯存在饱和的可能性,不能保证大强度干扰下的噪声抑制效果。由于纳米晶合金的高饱和磁感应强度,其抗饱和特性无疑明显优于铁氧体,使得纳米晶合金非常适用于抗大电流强干扰的场合。 2.高初始导磁率:纳米晶合金的初始导磁率可达10万,远远高于铁氧体,因此用纳米晶合金制造的共模电感在低磁场下具有大的阻抗和插入损耗,对弱干扰具有极好的抑制作用。这对于要求极小泄漏电流的抗弱干扰共模滤波器尤其适用。在某些特定场合(如医疗设备),设备通过对地电容(如人体)造成泄漏电流,容易形成共模干扰,而设备本身又对此要求极严。此时使用高导磁率的纳米晶合金制造共模电感可能是最佳选择。此外,纳米晶合金的高导磁率可以减少线圈匝数,降低寄生电容等分布参数,因而将由于分布参数引起的在插入损耗谱上的共振峰频率提高。同时,纳米晶铁芯的高导磁率使得共模电感具有更高的电感量和阻抗值,或者在同等电感量的前提下缩小铁芯的体积。 3.卓越的温度稳定性:铁基纳米晶合金的居里温度高达570oC以上。在有较大温度波动的情况下,纳米晶合金的性能变化率明显低于铁氧体,具有优良的稳定性,而且性能的变化接近于线性。一般地,纳米晶合金在-50oC----130oC的温度区间内,主要磁性能的变化率在10%以内。相比之下,铁氧体的居里温度一般在250oC以下,磁性能变化率有时达到100%以上,而且呈非线性,不易补偿。纳米晶合金的这种温度稳定性结合其特有的低损耗特性,为器件设计者提供了宽松的温度条件。而图3为不同材料的饱和磁感应强度的温度特性。

纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究 摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质, 已经引起众多专家学者的关注。纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。 关键词:纳米四氧化三铁;磁性;合成 近年来,有关磁性纳米粒子的制备方法与性质备受关注。然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。 1.实验部分 1.1 实验原理 化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。 1.2仪器与试剂 三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等 四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。1.3实验步骤 室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。高速搅拌下,向溶液中缓慢滴加0.1mol/L氢氧化钠溶液,至pH>11,继续搅拌1h使反应完全。反应结束后用磁铁进行固液分离,再用去离子水反复冲洗至中性,以除去多余电解质。在60℃下真空干燥24h. 1.5样品检验 相关资料

纳米四氧化三铁

纳米四氧化三铁 简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO-Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 制备方法 1、水热法制备纳米四氧化三铁(2012年) 聚乙二醇6000包被的四氧化三铁颗粒,采用X射线衍射法分析其构,用扫描电镜测量其直径及分布,用振动样品磁强计检测磁学参数。结果所 得样品为四氧化三铁晶体,粒径为200 nm,质量饱和磁场强度为79.8 em u/g Fe。结论:制备的样品粒径均一,分散性好,超顺磁性,水溶性好,可用于物理化学溶栓。 2、卟啉一磁性四氧化三铁纳米粒子的制备(2014年) 直接键合成法:卟啉与四氧化三铁纳米粒子表面直接形成化学键的制备方法。要求卟啉与四氧化三铁纳米粒子成键单元,如中心金属原子、羟基等。 用一锅高温合成法合成了单分散的油胺包覆四氧化三铁纳米粒子,在DMF 溶液中,原卟啉IX与多巴胺的偶联反应制备了连有多巴胺的原卟啉(PPD),然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD,然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD包覆的四氧化三铁纳米粒子 (PPDNP),其中粒度单一(<7nm),具有清晰的晶格和高的结晶度,在室温有明确的超顺磁性行为。

纳米四氧化三铁的制备及表面改性.

纳米四氧化三铁的制备与表面改性 化学与材料科学系 09级应用化学1班刘立君李淑媛 摘要:由于纳米Fe3O4在光学、电学、热学、磁学、力学等方面独特的性质,对它的研究越来越多,且在各个领域的应用也越来越广泛,因此本文详细介绍了纳米四氧化三铁的各种制备方法,对其制备工艺的优缺点、应用前景、产品性能进行了详细的比较;并综述了纳米四氧化三铁的表面改性的方法,如有机改性、无机改性、偶联改性、小分子改性、大分子改性等改性手法,以及表面改性后各种纳米Fe3O4的特征与用途前景。 关键词纳米Fe3O4 综述表面改性 1引言 四氧化三铁的性质:四氧化三铁在常温常压状态下是一种具有强磁性的黑色粉末状晶体,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁,二价铁离子被氧化成三价铁离子。四氧化三铁具有强磁性,四氧化三铁固体具有优良的导电性。因为在磁铁矿中,由于Fe2 +与 Fe3 +在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性能。X 射线研究表明,四氧化三铁是铁( III) 酸盐,即 Fe2 +( Fe3 +O2 -2)2,称为“偏铁酸亚铁”,化学式为Fe( FeO2)2。在四氧化三铁里,铁显两种价态,所以常常将四氧化三铁看成是由 FeO 与 Fe2O3组成的化合物,也可表示为 FeO·Fe2O3,但不能说是 FeO 与Fe2O3组成的混合物,它属于纯净物。常见的天然磁铁矿中主要成分是四氧化三铁的晶体。

磁性纳米粒子的性质:纳米材料指颗粒尺寸在1-100nm间的粒子,及由其聚集而成的纳米固体材料,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等,使得其与同组成的材料相比,显示独特的光学、电学、热学、磁学、力学及化学性质。当磁性纳米材料的尺寸减小到纳米尺度时,尺寸和形状这两个关键参数强烈影响着其磁性能,使磁性纳米粒子呈现超顺磁性,高矫顽力,低居里温度和高磁化率,同时,磁性纳米粒子具有以下几方面的特性:第一,磁性纳米粒子具有可控性的粒径(从几纳米到几十纳米),小于或相当于细胞(10-100nm),病毒(20-450nm),蛋白质(5-50nm),基因(Znm宽10-100nm长)的尺度,这表明磁性纳米粒子能够接近我们所感兴趣的生物实体.事实上,它们可以被生物分子修饰后连接到生物实体上,由此提供了一种可控的标一记方法;第二,磁性纳米粒子的磁性遵从库仑定律,能够通过外加磁场加以控制;第三,磁性纳米粒子能够对磁场的周期性变化产生响应,从激励场获得能量,由此微粒能够被加热,从而可用于热疗,传输大量的热能到靶区,如肿瘤;第四,磁性纳米粒子可从尿液及大便中排泄,其中经肾脏排出较多,肠道排出较少。这也使其在工业、电子信息、生物医药等领域都有着特殊的应用。常用的磁性纳米材料有金属合金及其金属氧化物,由于镍、钴等存在毒性,在生物、医药等方面受到严格的限制,而铁的氧化物(Fe3O4,γ一Fe2O3)因其低毒(LD50约2000mg/kg体重,远远高于目前临床应用剂量)、易得等特点被广泛推用。 2四氧化三铁纳米粒子的制备方法

油酸修饰的四氧化三铁磁性纳米颗粒

无论是三氧化二铁还是四氧化三铁等都是常用的磁性纳米材料,其中又以纳米磁性四氧化三铁应用尤其广泛。而随着纳米技术的进步由各种各样大分子修饰的四氧化三铁磁性纳米材料的应用也在逐渐增加,本次就分享油酸修饰的四氧化三铁磁性纳米颗粒。 油酸修饰的磁性Fe3O4纳米颗粒(OA@Fe3O4),具有优异的磁性、分散性和稳定性,可广泛应用于纳米探针构建、磁共振造影与分子影像、磁热疗、药物载体及靶向诊疗一体化研究等。OA@Fe3O4纳米颗粒为油溶性,可分散在环己烷、氯仿、四氢呋喃等溶剂中,用于掺杂水包油纳米乳、修饰纳米脂质体、构建磁性纳米药物等。高温热解法所制备的油酸修饰的磁性Fe3O4纳米颗粒,磁性更强、尺寸更均一。 油酸修饰的四氧化三铁磁性纳米颗粒制备方法主要有:微乳液法、水热合成法、热分解铁有机物法、化学共沉淀合成法、凝胶-溶胶法等。四氧化三铁纳米颗粒通过表面修饰过程可以降低磁性纳米粒子的表面能,从而改善提高磁性纳米粒子的分散性,还可以通过特定的修饰方法引入功能性基团实现磁性纳米微粒的

功能化。 经油酸修饰的四氧化三铁磁性纳米粒子晶体的晶体结构为反立方的尖晶石型结构。用方程d=Xk/(Bcos0)可估算出四氧化三铁磁性纳米粒子的晶体粒径,在方程中λ=0.15406,0为衍射角,β为半峰宽,k=0.89。有研究表明油酸修饰未改变磁性四氧化三铁纳米粒子晶体结构;修饰后的磁性四氧化三铁纳米粒子的粒径约2Inm;其饱和磁化强度在50ermu/g以上,磁响应性能佳、具有超顺磁性。 以上是对油酸修饰的四氧化三铁磁性纳米颗粒的相关介绍,下面介绍一家生产纳米材料的公司。南京东纳生物科技有限公司,是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂

11.2 磁性Fe304纳米粒子

磁性Fe304纳米粒子 1 磁性Fe304纳米粒子的表面修饰及功能化 与磁性Fe304纳米粒子尺寸相关联的一个不可避免的问题是其在较长一段时间内固有的不稳定性,这主要表现在两个方面:(1)分散性的降低,小粒径的纳米粒子聚集并形成大的颗粒以降低表面能,从而降低了粒子的分散性能;(2)磁性能的损耗,裸的磁性Fe304纳米粒子由于其高化学活性容易在空气中氧化,进而损失部分磁性能。因此,在Fe304纳米粒子的应用中(后)重要的是要制定一个保护策略来保护Fe304不受损坏。尤其在生物医学应用方面,需要获得亲水性的纳米Fe304颗粒,因为大多数生物介质是接近中性的水溶液,因此更有必要对Fe304颗粒表面进行有效的修饰及功能化。近年来,各种材料已被用来对Fe304颗粒表面进行修饰及功能化,主要分为有机材料和无机材料(图3.1)。 图3.1 Fe304颗粒表面修饰及功能化材料分类图 1.1 有机材料修饰 表面经一些有机材料修饰后的磁性纳米粒子主要用于磁记录,电磁屏蔽,磁共振成像,尤其是生物领域的药物靶向,磁性细胞分离,生物监测等。外加高磁场下磁性纳米粒子的稳定性对其在生物体内应用以及其他领域的应用是非常重要的。采用有机材料对磁性纳米粒子的表面修饰及功能化的方法有很多,包括原位涂层法和合成后涂层法。此外,为防止团聚及确保纳米粒子具有好的生物相容性,使用不同的有机材料对磁性纳米粒子表面进行修饰,比如葡萄糖,淀粉,聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),聚乙烯亚胺(PEI),特别是一些亲水性的有机材料。 1.1.1 小分子及表面活性剂

经适当的表面改性后,磁性纳米粒子的表面带有一些特殊官能团(例如-OH,-COOH,-NH2,-SH),有利于通过连接不同的生物活性分子做进一步修饰从而适应各种应用。 作为小分子,硅烷常被用来修饰磁性纳米粒子及对裸露的磁核表面有效官能团化,常见的硅烷修饰剂有3-氨基丙基三乙氧基硅烷(APTES),p-氨基苯基三甲氧基硅烷(APTS)及巯基丙基三甲氧基硅烷(MPTES)。Shen等人报道了采用一步水热法将APTS加入到含有Fe2+的溶液中,134℃下反应3h制备了可用于生物医学领域的APTS修饰的磁性氧化铁纳米粒子(Fe304@APTS)。细胞毒性和溶血分析结果表明氧化铁纳米粒子表面上的氨基基团乙酰化后显著改善了粒子的细胞相容性和血液相容性。此外,Wu等人研究发现,APTES在对Fe304纳米粒子进行表面修饰的过程中能够有效维持纳米粒子的形貌,而MPTES修饰时会导致磁化强度值的减少。 此外,对于亲油性磁性纳米粒子一般都具有很好的单分散性,而常见的赋予磁性纳米粒子亲油性的表面修饰剂主要有油酸及油胺。通常情况下,油酸及油胺用在高温热分解反应过程中,例如,Salas等人研究发现,高温分解油酸铁化合物能够得到超顺磁性纳米晶体,且粒子的尺寸约为10nm,能稳定地分散在非极性溶剂中。 为直接获得亲水性磁性纳米粒子,一种方法就是在反应过程中加入小分子(如氨基酸,柠檬酸,维生素,环糊精等)。比如,Gao等人使用改进的一步溶剂热法制备了平均粒径为195nm的亲水性超顺磁性纳米团簇凝胶。反应中含有磺酸酯和羧酸酯基的阴离子聚电解质聚(4-苯乙烯磺酸-共-马来酸)钠盐(PSSMA)作为稳定剂,经PSSMA修饰的磁性纳米团簇能够很好的分散在水溶液、磷酸盐缓冲溶液(PBS)及乙醇中。 1.1.2 聚合物 与小分子及表面活性剂相比,聚合物不仅能够提供多官能团以及更好的胶体稳定性,还能对有关磁性纳米粒子在生物学(即药代动力学和生物分布)方面的应用起到了显著的作用。此外,大量的天然及合成的生物可降解的聚合物,如聚天冬氨酸盐,多糖,明胶,淀粉,藻酸盐,聚丙烯酸(PAA),聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),壳聚糖以及聚甲基丙烯酸甲酯(PMMA)等,是目前使用较多的用于磁性纳米粒子表面功能化的聚合物。 Dresco等人报道了采用单个反相微乳液法制备了聚合物包覆的磁性纳米粒子。首先,在含有水/双(2-乙基己基)钠/甲苯的反相微乳液中合成Fe304纳米粒子,然后将水,单体(甲基丙烯酸和羟乙基甲基丙烯酸酯),交联剂(N,N’-亚甲基二(丙烯酰胺))及引发剂(2,2’-偶氮二(异丁腈))加入到反应体系中,55℃下通氮气反应。聚合反应结束后,经过量丙酮/甲醇混合物(9:1)析出收集。所制得的产物具有超顺磁性性能,粒径约为80nm且粒径分布窄,

四氧化三铁的制备

四氧化三铁纳米片的制备及其对液体石蜡摩擦学的改性 张锡凤1)刘晓光1)程晓农2)殷恒波1)曹智娟1)郝伟1)严冲2) 1) 江苏大学化学化工学院,江苏镇江212013 2) 江苏大学材料科学与工程学院,江苏镇江212013 摘要:采用液相化学氧化法,在水体系中,以硫酸亚铁为母体,水合肼为氧化剂,加入吐温-80(Tween-80)为修饰剂,合成了厚约20nm、长约152nm的四氧化三铁纳米片。通过X-射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和高浓度激光粒度仪对四氧化三铁纳米片进行了表征。将四氧化三铁纳米片加到基础油液体石蜡(LP)中,在UNT-Ⅱ摩擦磨损实验机上考察其作为LP添加剂后的摩擦磨损性能,采用SEM分析了磨损表面形貌和表面膜元素组成及含量。结果表明:与不加四氧化三铁纳米片的LP相比,添加后较大程度的降低了摩擦系数,并获得较小的磨痕直径,显著改善了LP的摩擦性能。 关键词:四氧化三铁,纳米片,化学还原法,摩擦学 Preparation of Fe3O4 Nanopiece and Modification Tribological Property of Liquid Paraffin as Its Additive ZHANG Xifeng1, LIU Xiaoguang1, CHENG Xiaonong2, YIN Hengbo1, Cao zhijuan1, HAO Wei1, Y AN Chong2 (1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013; 2. School of Material Science and Engineering, Jiangsu University, Zhenjiang, 21201 3. ) Abstract: 20nm thick and 152nm length Fe3O4Nanopieces were synthesized using ferrous sulfate as precursor in water systems, hydrazine hydrate as reductant, polyethylene sorbitan monooleate (Tween-80)as modifier. The as-prepared Fe3O4Nanopieces were characterized by transmission electron micrographs (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM), high concentration laser granularity scatter analyzer. The anti-wear and friction reducing performance of Fe3O4nanopieces as liquid paraffin additive was investigated on UNT-Ⅱball-on-plate friction and wear testers. The worn surface morphology and composition of surface film were analyzed by means of scanning electron microscope (SEM). Compared with pure liquid paraffin, the results indicate that the tribological property of liquid paraffin with Fe3O4 nanopieces is improved, the friction coefficients are decreased, and the worn diameter is lesser. key words: ferroso-ferric oxide; nanowires; synthesis (chemical); tribological property granularity scatter 纳米金属材料的晶粒尺寸与形貌、表面状态和微结构直接影响到纳米金属的物化性质与用途。目前纳米金属的形貌控制合成与应用研究尚处于起步阶段,通过形貌控制可选择性地合成出四面体、立方体、棒以及三棱柱等形貌、尺寸和结构可控的纳米金属,以及进行纳米分子结构的重组装是人们的研究热点,具有深远的理论意义及应用价值。 纳米Fe3O4具有与生物组织的相容性以及与尺寸和形貌有关的电学和磁学性能,使它在

相关主题
文本预览
相关文档 最新文档