当前位置:文档之家› A值法测算理想大气环境容量的方法

A值法测算理想大气环境容量的方法

A值法测算理想大气环境容量的方法
A值法测算理想大气环境容量的方法

A 值法测算理想大气环境容量的方法

一、前言

从“九五”开始,我国开始实行《全国主要污染物排放总量控制计划》,这是我国环境保护的一项重大举措,也是保证实现环境保护目标的客观需要。为了更合理地制定总量控制目标和控制战略,使有限的大气环境容量资源得到合理的利用,促进城市大气污染物排污许可证制度的落实,为“十一五”城市环境保护规划提供技术支持,国家环保总局要求以城市为单位开展大气环境容量测算工作。

A-P 值控制法是以GB/T3840-91《制定地方大气污染物排放标准的技术方法》为依据,对区域大气污染进行宏观总量控制的一种方法。它首先利用基于箱模型的A 值法计算出控制区的某种污染物的理想容量,然后,采用P 值法,在区域内所有污染源的排污量之和不超过上述容量的约束条件下,确定出各个点源的允许排放量。显然,A-P 值法是一种地区系数法,其最大特点是简单易行,只要给出控制区总面积及各功能区面积,再根据当地总量控制系数就能很快算出该面积上的允许排放总量。本次湖南省8个非重点城市统一采用A-P 值法中的A 法进行各城市的理想环境容量测算。 二、A 值法的计算公式

A 值法计算公式如下:

S

S C C A Q i b n

i si )

(1

-=

=

式中:

Q—污染物年允许排放总量限值,即理想大气容量,104t/a;

A—地理区域性总量控制系数,104km2/a;

S—控制区域总面积,km2;

—城市第I个分区面积,km2;

S

i

—第I个区域某种污染物的年平均浓度限值,mg/m3;

C

si

—控制区的本地浓度。

C

b

三、几个概念的说明

1、控制区的确定

每个城市要应用A值法分别计算城市控制区和城区控制区的大气环境容量。城市控制区和城区控制区确定原则如下:

1)城市控制区:

覆盖全市行政区范围的,包括城市所辖所有县和区。

2)城区控制区:

城区控制区范围主要依据城市规划建成区确定的区域;考虑部分城市城郊正在建设或已发展成为工业园区,为加强统筹管理,也可合并到城区控制区。

2、I类、II类、III类A值控制区

根据国家所作的规定,为满足本次A值法测算理想环境容量的要求,将控制区分别划分为I类、II类、III类A值控制区,其确定原则如下:

1)I类A值控制区:

空气环境功能区划属一类功能区的地区。

郊区及农村地区。

2)II类A值控制区:

城区控制区内空气环境功能区划属二类功能区的地区。

3)III类A值控制区:

空气环境功能区划属三类功能区的地区。

划分时应注意的是:除城区控制区以外的城市控制区,其范围内的广大农村地区和郊区虽大气环境功能区划分为二类功能区,但在本次计算时,按国家规定,应按I类A值控制区进行计算。

四、A值法计算公式中各参数使用说明

1、容量控制系数(A)的确定

在用A值法计算城市(区)理想环境容量时,首先是对容量控制系数A值的确定。按照环境规划院推荐的A值法确定原则,湖南省容量控制系数A值取3.64。

)的确定

2、各控制区环境质量标准(C

si

各控制区环境质量标准值见表1。

表1 各控制区环境质量年均标准值单位:mg/m3

3、城市及城区控制区本底浓度(C

)的确定

b

本底浓度(C b)的确定原则如下:

1)一般情况下,城市或城区控制区的本底浓度按已设置的清洁对照点监测结果确定。

2)若由于城市发展,目前设置的清洁对照点的监测浓度已不能代表城市或城区的本底情况,在本次容量测算工作中,城市控制区的本底浓度,PM10、SO2、NO2分别按国家空气质量一级标准中年均值的一半确定。

3)城区控制区的本底浓度应高于城市控制区,其值可按城市控制区本底浓度的1.2-1.5倍确定。

4、根据以上原则确定参数后,根据A值法计算公式,分别得出城市控制区和城区控制区的环境容量核定结果。核算结果请按表2、表3填写。

表2:城区控制区理想环境容量核定结果

表3:城市控制区理想环境容量核定结果

水环境容量计算

水环境容量计算 水环境容量是水体在环境功能不受损害的前提下所能接纳的污染物最大允许排放量。分为稀释容量(稀E )和自净容量(自E )两部分: 稀释容量: ()r b Q C S E ?-?=4.86稀 式中:稀E -稀释容量,kg/d S -水质标准,mg/L ; b C -河流背景浓度,mg/L ; r Q -河流流量,m 3/s 。 自净容量: ??? ? ??-?-u kl t e SQ E 8640014.86=自 式中:自E -自净容量,kg/d S -水质标准,mg/L ; t Q -河流流量+废水流量,m 3/s ; l -河段长度,m ; k -综合衰减系数,1/d ; u -河流流速,m/s 。 水环境总容量:自稀E E E += 本次选取环境总量控制因子为COD 、NH 3-N 和TP 。 根据规划要求,区内生产废水和生活污水达标排放后进入园区新建的污水处理厂集中处理,处理达标后,尾水排入兴隆河。污水处理厂排入兴隆河的污水总共为1.2万t/d 。污水厂污染物排放浓度COD 为60mg/l 、NH 3-N 为8(15)mg/l 。 本次评价选取兴隆河排污口下游约4000m 河段计算环境容量。 地表水环境容量计算参数选取见表1。

表1 地表水环境容量计算参数选取表 水环境承载能力分析 (1)背景浓度 背景浓度选取排污口附近断面现状监测浓度平均值:COD 17mg/L、氨氮0.63mg/L、TP 17mg/L。 (2)计算结果 水环境容量计算结果见表2: 表2 地表水环境容量计算结果单位:kg/d (3)水环境承载能力分析 50%水环境容量可用于接纳本区域排污量。 根据计算结果进行分析,必要时提出解决方案。

大气监测方案

大气监测方案 制定大气污染监测方案的程序为:大气污染监测方案的程序为:首先要根据监测目的进行调查研究,收集必要的基础资料,然后经过综合分析,确定监测项目,设计布点网络,选定采样频率、采样方法和监测技术,建立质量保证程序和措施,提出监测结果报告要求及进度计划等。 二、监测目的是: 1.通过对大气环境中主要污染物质进行定期或连续地监测,判断大气质量是否符合国家制订的大气质量标准,并为编写大气环境质量状况评价报告提供数据。 2.为研究大气质量的变化规律和发展趋势,开展大气污染的预测预报工作提供依据。 3.为政府部门执行有关环境保护法规,开展环境质量管理,环境科学研究及修订大气环境质量标准提供基础资料和依据。 三、有关资料的收集 污染源分布及排放情况包括:弄清污染源类型、数量、位置、排放的主要污染物及排放量、所用原料、燃料及消耗量等。另外,区别高低烟囱形成污染源的大小,一次污染物与二次污染物应区别清楚。 二)气象资料。对污染物在大气中的扩散、输送及变化情况有影响。主要有要收集监测区域的风向、风速、气温、气压、降水量、日照时间、相对湿度、温度的垂直梯度和逆温层底部高度等资料。 三) 地形资料。地形对当地的风向、风速和大气稳定情况等有影响。因此,是设置监测网点时应考虑的重要因素。 (四) 土地利用和功能分区情况:这也是设置监测网点时应考虑的重要因素之一。不同功能区的污染状况是不同的。如工业区、商业区、混合区、居民区等污染状况各不相同。(五) 人口分布及人群健康情况。环境保护的目的是维护自然和的生态平衡,保护人群的健康。因此,掌握监测区域的人口分布,居民和动植物受大气污染危害情况及流行性疾病等资料,对制订监测方案、分析判断监测结果是有益的。 第三章大气和废气监测 第二节大气污染监测方案的制定 大气污染监测方案的程序为:首先要根据监测目的进行调查研究,收集必要的基础资料,然后经过综合分析,确定监测项目,设计布点网络,选定采样频率、采样方法和监测技术,建立质量保证程序和措施,提出监测结果报告要求及进度计划等。 一、监测目的 1.通过对大气环境中主要污染物质进行定期或连续地监测,判断大气质量是否符合国家制订的大气质量标准,并为编写大气环境质量状况评价报告提供数据。 2.为研究大气质量的变化规律和发展趋势,开展大气污染的预测预报工作提供依据。 3.为政府部门执行有关环境保护法规,开展环境质量管理,环境科学研究及修订大气环境质量标准提供基础资料和依据。 二、有关资料的收集

大气环境质量监测分析方法

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 大气环境质量监测分析方法 大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。 关键字:大气环境质量监测分析方法 大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。 大气中常见的污染物有总悬浮颗粒物、降尘、可吸入颗粒物、二氧化硫、氮氧化物、总烃、铅、氟化物、臭氧和苯并[a]芘。 颗粒物质的测定:颗粒物质是大气污染物中数量最大、成分复杂、性质多样、Σ害较大的一种,它本身可以是有毒物质,还可以是其他有毒有害物质在大气中的运载体、催化剂或反应床。在某些情况下,颗粒物质与所吸附的气态或蒸气态物质结合,会产生比单个组分更大的协同毒性作用。所以,对颗粒物质的研究是控制大气污染的一个重要内容.大气中颗粒物质的检测项目有:总悬浮颗粒物的测定、可吸入颗粒物浓度及粒度分布的测定、降尘量的测定、颗粒中化学组分的测定。 其中,颗粒物浓度的测定最常用的是重量法,原理是:使一定体积的空气进入切割器,将大于某一粒径的微粒分离,小于这一粒径的微粒随着气流经分离器的出口被阻留在已恒重的滤膜上。根据采样前后滤膜的重量差及采样体积,计算出颗粒物浓度,以mg/m3表示(m3指标准状况下)。 二氧化硫的测定:大气中的含硫污染物主要有H2S、SO2、SO3、CS2、H2SO4和各种硫酸盐。他们主要来源于ú和石油燃料的燃烧、含硫矿石的冶炼、硫酸等化工产品生产排放的废气。

大气环境容量测算模型简介(环发[2003]141号)

附件二: 大气环境容量测算模型简介 说明:本部分内容是“重点城市大气环境容量核定工作方案”中提到的各推荐模型的简介,主要目的是为了使各城市了解各模型的功能和基本原理,同时,了解如选用该模型,都需要准备哪些输入数据,以便各城市根据本市的实际情况,提前准备。 第一部分大气扩散烟团轨迹模型 1 大气扩散烟团轨迹模型简介 该模型由国家环境保护总局环境规划院开发。 烟团扩散模型的特点是能够对污染源排放出的“烟团”在随时间、空间变化的非均匀性流场中的运动进行模拟,同时保持了高斯模型结构简单、易于计算的特点,模型包括以下几个主要部分。 1.1 三维风场的计算 首先利用风场调整模型,得到各预测时刻的风场,由于烟团模型中释放烟团的时间步长比观测间隔要小得多,为了给出每个时间步长的三维风场,我们采用线性插值的方法,利用前后两次的观测风场内插出其间隔时间内各个时间步长上的三维风场,内插公式如下: [] ()t t t n n i t V t V t V V i ? - =? - + = 1 21 2 1 ) ( ) ( ) (

式中: V(t 1)、V(t 2)—分别为第1和第2个观测时刻的风场值; t ?—烟团释放时间步长; n —为t 1、t 2间隔内的时间步长数目; V i —表示t 1、t 2间隔内第i 个时间步长上的风场值。 1.2 烟团轨迹的计算 位于源点的某污染源,在t 0时刻释放出第1个烟团,此烟团按t 0时刻源点处的风向风速运行,经一个时间步长t ?后在t 1时刻到达P 11,经过的距离为D 11,从t 1开始,第一个烟团按P 11处t 1时刻的风向风速走一个时间步长,在t 2时刻到达P 12,其间经过距离D 12,与此同时,在t 1时刻从源点释放出第2个烟团,按源点处t 1时刻的风向风速运行,在t 2时刻到达P 22,其经过的距离为D 22,以此类推,从t 0时刻经过j 个t ?,到t j 时刻共释放出了j 个烟团,这时,这j 个烟团的中心分别位于Pij ,i=1,2,…j ,设源的坐标为(Xs ,Ys ,Zs(t)),Zs(t)为t 时刻烟团的有效抬升高度,Pij 的坐标为(Xij ,Yij ,Zij ),u 、v 分别为风速在X 、Y 方向的分量,则有如下计算公式: t 1时刻: 2 11211111001100110011)()()](,,,[)](,,,[)](,,,[s s s s s s s s s s s s s s Y Y X X D D t t Z Y X t W Z Z t t Z Y X t V Y Y t t Z Y X t U X X -+-==??+=??+=??+= t 2时刻: 2222222222112211221122211122111211121121111111111121111111111211111111112)()()](,,,[)](,,,[)](,,,[)()(],,,[],,,[],,,[s s s s s s s s s s s s s s Y Y X X D D t t Z Y X t W Z Z t t Z Y X t V Y Y t t Z Y X t U X X Y Y X X D D D D t Z Y X t W Z Z t Z Y X t V Y Y t Z Y X t U X X -+-==??+=??+=??+=-+-+=+=??+=??+=??+=

大气环境监测方法标准

标准编号标准名称实施日期 HJ 77.2-2008 环境空气和废气二噁英类的测定同位素稀释高分辨气相色谱-高分辨质谱 法 2009-4-1 国家环保总局公告 2007年第4号 环境空气质量监测规范(试行)2007-1-19 HJ/T 75—2007 固定污染源烟气排放连续监测技术规范(试行)2007-8-1 HJ/T 76—2007 固定污染源烟气排放连续监测系统技术要求及检测方法(试行)2007-8-1 HJ/T 373-2007 固定污染源监测质量保证与质量控制技术规范(试行)2008-1-1 HJ/T 397-2007 固定源废气监测技术规范2008-3-1 HJ/T 398-2007 固定污染源排放烟气黑度的测定林格曼烟气黑度图法2008-3-1 HJ/T 400-2007 车内挥发性有机物和醛酮类物质采样测定方法2008-3-1 HJ/T 174-2005 降雨自动采样器技术要求及检测方法2005-5-8 HJ/T 175-2005 降雨自动监测仪技术要求及检测方法2005-5-8 HJ/T 193-2005 环境空气质量自动监测技术规范2006-1-1 HJ/T 194-2005 环境空气质量手工监测技术规范2006-1-1 HJ/T 165-2004 酸沉降监测技术规范2004-12-9 HJ/T 167-2004 室内环境空气质量监测技术规范2004-12-9 HJ/T 93-2003 PM10采样器技术要求及检测方法2003-7-1 HJ/T 62-2001 饮食业油烟净化设备技术方法及检测技术规范(试行)2001-8-1 HJ/T 63.1-2001 大气固定污染源镍的测定火焰原子吸收分光光度法2001-11-1 HJ/T 63.2-2001 大气固定污染源镍的测定石墨炉原子吸收分光光度法2001-11-1 HJ/T 63.3-2001 大气固定污染源镍的测定丁二酮肟-正丁醇萃取分光光度法2001-11-1 HJ/T 64.1-2001 大气固定污染源镉的测定火焰原子吸收分光光度法2001-11-1 HJ/T 64.2-2001 大气固定污染源镉的测定石墨炉原子吸收分光光度法2001-11-1 HJ/T 64.3-2001 大气固定污染源镉的测定对-偶氮苯重氮氨基偶氮苯磺酸分光光度法2001-11-1 HJ/T 65-2001 大气固定污染源锡的测定石墨炉原子吸收分光光度法2001-11-1 HJ/T 66-2001 大气固定污染源氯苯类化合物的测定气相色谱法2001-11-1 HJ/T 67-2001 大气固定污染源氟化物的测定离子选择电极法2001-11-1 HJ/T 68-2001 大气固定污染源苯胺类的测定气相色谱法2001-11-1 HJ/T 69-2001 燃煤锅炉烟尘和二氧化硫排放总量核定技术方法—物料衡算法(试行)2001-11-1 HJ/T 77-2001 多氯代二苯并二恶英和多氯代二苯并呋喃的测定同位素稀释高分辨率毛细 管气相色谱/高分辨质谱法 2002-1-1 HJ/T 54-2000 车用压燃式发动机排气污染物测量方法2000-9-1 HJ/T 55-2000 大气污染物无组织排放监测技术导则2001-3-1 HJ/T 56-2000 固定污染源排气中二氧化硫的测定碘量法2001-3-1 HJ/T 57-2000 固定污染源排气中二氧化硫的测定定电位电解法2001-3-1 GB/T 12301-1999 船舱内非危险货物产生有害气体的检测方法2000-8-1 HJ/T 27-1999 固定污染源排气中氯化氢的测定硫氰酸汞分光光度法2000-1-1 HJ/T 28-1999 固定污染源排气中氰化氢的测定异烟酸-吡唑啉酮分光光度法2000-1-1 HJ/T 29-1999 固定污染源排气中铬酸雾的测定二苯基碳酰二肼分光光度法2000-1-1 HJ/T 30-1999 固定污染源排气中氯气的测定甲基橙分光光度法2000-1-1 HJ/T 31-1999 固定污染源排气中光气的测定苯胺紫外分光光度法2000-1-1 HJ/T 32-1999 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法2000-1-1

水环境容量计算方法

水环境容量计算方法 中国环境规划院李云生 2004.5 ?基本涵义 ?计算模型 ?计算步骤 ?校核方法 第一部分水环境容量的基本涵义 容量涵义 技术指南中的概念定义 ?在给定水域范围和水文条件,规定排污方式和水质目标的前提下,单位时间内该水域最大允许纳污量,称作水环境容量。 ?从上述定义可知,水环境容量主要决定于三个要素:水资源量、水环境功能区划和排污方式。 要素之一:水资源量 ?从某种意义上讲,水资源量是水环境容量基础; ?为了确保用水安全,水环境容量计算采用的是较高保证率的水文设计条件; ?并不是所有的水资源量都用来计算环境容量。 要素之二:水环境功能区 ?水环境功能区划体现人们对水环境质量的需求,反映了人们对水资源的态度:开发、利用或保护。 ?已划分水环境功能区的水域,要从时间、空间两个方面规范功能区达标标准; ?未划分水环境功能区的水域可不进行容量计算;若考虑计算,按较高功能标准进行(II类)。 要素之三:排污方式 ?排污口沿河(或其他水体)位置布设,对河流整体水环境容量影响较大; ?排污口排放方式(岸边或中心,浅水或深水),对局部的污染物稀释混合影响很大; ? ? 第二部分水环境容量的计算模型 ?1、流域概化模型 ?2、水动力学模型 ?3、污染源概化模型 ?4、水质模型 1、流域概化 ?将天然水域(河流、湖泊水库)概化成计算水域,例如天然河道可概化成顺直河道,复杂的河道地形可进行简化处理,非稳态水流可简化为稳态水流等。水域概化的结果,就是能够利用简单的数学模型来描述水质变化规律。同时,支流、排污口、取水口等影响水环境的因素也要进行相应概化。若排污口距离较近,可把多个排污口简化成集中的排污口。 2、水动力学模型 ?最枯月设计条件

水环境容量计算方法研究及应用

水环境容量计算方法研究及应用 赵君 (河海大学,江苏 南京 210098) E-mail:zsmzyq@https://www.doczj.com/doc/7d1486817.html, 摘要:一维稳态条件下计算水环境容量的3种方法,即段首控制方法、段尾控制方法和功能区段尾控制方法。本文通过分析比较各方法的优劣及其相互联系,针对曹娥江支流--长乐河的具体情况,采用段首控制对其水环境容量进行计算,系统地将各方法的物理含义及其适用奈件推广到实际中。计算结果证明了方法的可靠性。 关键词:水环境容量;段首控制;段尾控制;功能区段末控制 1 计算方法 1.1基本概念和方程 水环境容量是在给定水域范围和水文条件,规定排污方式和水质目标的前提下,单位时间内该水域最大允许纳污量,称作水环境容量。水环境容量具有资源性、区域性、系统性、发展需要性四个基本特征,其大小主要与水域特性、环境功能要求、污染物质以及排污方式有关,这些因素直接影响入流污染物的稀释能力以及污染物质在水体中的时空分布。由于河流具有对污染物质的稀释、输移、降解能力,因此河流环境容量可分为以下三个组成部分: 输移容量:污染物在水体中随水流的对流运动产生的输移量,它只与水力要素和水质目标有关,因此输移容量是有限的不可再生的。较大的输移容量并不代表较大的允许排放量。对保守物质来说,河段总的环境容量只由输移容量组成。 稀释容量:当水体本底水质浓度低于水质标准时,由于对流及扩散作用,使排入的污染物逐步均匀分布到整个水体,其浓度达到标准浓度的限值时,水体所增加的污染物容量。稀释容量在数量上等于标准浓度时的输移容量与本底浓度时输移容量的差值,也称差值容量。 自净容量:由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量称为自净容量。自净容量是反映水体对污染物的自净能力,也称同化容量。自净容量是水环境容量中最重要的组成部分,河流水环境容量的计算关键在于自净容量的计算。它是可不断再生的量。 河流是我国最常见、最基本的纳污水域。河流的水环境容量占在我国的很大的比重。污染物进入河流后,在一定范围内经过平流输移、纵向离散和横向混合后达到充分混合,或者根据水质管理的精度要求,允许不考虑混合过程而假定在

大气环境质量现状监测方案

、大气环境质量现状监测方案 1、监测布点 相山开发区20年统计的主导风向为东东北(NNE )风。根据《环境影响评价技术导则大气环境》(HJ2.2-20018),结合规划区特点和当地环境特征,拟在评价区及主导风向下风向5km范围内共布设1-2个现状监测点(根据规划范围确定)。各监测点名称、方位见表, 具体位置见图。 图1规划区大气监测布点图 2、监测因子 根据开发区现有企业和拟进入的企业类型,选择特征因子进行监测,具体包括:HCI (小时值、日均值)、硫酸雾(小时值、日均值)、氟化物(小时值、日均值)、苯(小时值、日均值)、HCN(30min平均、24小时平均)、甲醛(小时值)、TVOC(8小时平均)、Pb (日均值)、锡(日均值)、臭气浓度(小时值)进行监测。 同步记录监测点位坐标、总云量、低云量、气压、气温、风向及风速

3、监测时间和频次 大气监测应在最不利季节监测,鉴于北方地区供暖期内空气质量相对更差一些,因此,应在开始供暖后尽快安排监测。 按照《环境影响评价技术导则大气环境》(HJ2.2-20018)要求,监测时次满足所用标 准的取值时间要求,小时监测取2:00,8:00,14:00,20:00 4 个时段,日均值监测20 小时以上。所有点位和所有因子连续监测7 天。 监测方法选择监测因子对应的环境质量标准或者参考标准所推荐的监测方法。 采样按HJ664 及相关评价标准规定的环境监测技术规范执行。

二、地表水环境质量监测 1、监测布点 根据《环境影响评价技术导则地表水环境》(HJ2.3-2018 ),本次规划环评布设11点监测点位,具体见下表2。

解析大气环境监测布点方法

解析大气环境监测布点方法 【摘要】大气环境监测是预防大气污染、进行大气保护的前提,大气环境对人类生活的质量甚至安全有着直接影响,大气环境监测的主要内容有选择监测项目、选择监测布点、试样采集、项目分析、处理监测数据,文章重点分析了大气环境监测布点的方法。 【关键词】大气环境监测;大气保护;布点方法 大气环境监测主要是对环境中的污染物按照实际需要进行定时定点观测,观测不同种类污染物的分布规律,进而进行环境评估、预报和研究。通过大气环境监测,对大气环境进行判断,评估是否符合国家标准,对外预报大气环境质量,分析大气污染发展的趋势,为环境质量状况研究提供依据。大气环境监测的对象主要是大气中的氮氧化物、硫氧化物、碳氧化物、臭氧、挥发性有机物等分子状污染物和可吸入颗粒物(PM10)、总悬浮颗粒物、细颗粒物等颗粒状污染物。在我国的监测历史并不太长,从学科角度来看,大气环境监测属于环境科学的分支学科,对环境科学的发展具有基础性的作用。 1.大气环境监测的意义 2007年国家环保总局公告《环境空气质量监测规范(试行)》实施以来,我国的大气环境监测取得了很大的进展,但是随着我国工业化、城镇化程度的不断推进,我国大城市的大气环境问题不容乐观,已经影响到了人民的健康水平,对我国的大气环境监测工作提出了新的要求和挑战。进行大气环境监测的意义主要体现在三个方面:第一,对人的意义。人作为社会活动主体最基本的权利是生存权,大城市的大气环境在无形中对人的身体产生极大的影响,恶劣的大气环境甚至威胁人的生命,因此,对大气环境进行日常监测是保证人的生存权的最基本的要求。第二,对动植物的意义。动植物动过光合作用或呼吸作用来存活,在这个过程中与空气进行融合;空气中的污染物对周围环境,如土壤、水等的不良影响也会导致动植物受害,甚至导致动物大批死亡,植物大量枯萎。第三,对社会环境的意义。大气污染物通过对人、动植物的影响,最终会导致活动的承受体——社会环境不断恶化,大气监测最后是通过对社会环境的监测观察来实现,通过对社会环境中不同时空、不同种类污染物的浓度进行监测,最后有利于对污染浓度进行有效控制,保持社会的可持续发展。 2.大气环境监测布点的方法 监测点的布设,应尽量全面、客观、真实反映评价范围内的环境空气质量。大气环境监测布点方法不是一成不变的,根据污染物浓度、环境人口的密集度、工业发展水平、重要动植物分布、河流水源地的重要程度、监测地形、监测地气候环境等等进行监测布点分析和选择。 2.1大气环境监测布点点位选取的原则

水环境容量估算

根据《规划环境影响评价技术导则 总纲》(HJ 130-2014),规划环评应“在充分考虑累积环境影响的情况下,动态分析不同规划时段可供规划实施利用的资源量、环境容量及总量控制指标”。本章就上述内容展开分析。 14.1 环境容量分析 14.1.1 水环境容量估算 《规划环境影响评价技术导则 总纲》(HJ 130-2014)中未详细给出环境容量的计算方法,故本次评价参考《开发区区域环境影响评价技术导则》(HJ /T 131-2003)附录B 的2.4条和2.5条,采用水质模型建立污染物排放和受纳水体水质之间的输入响应关系,并应考虑多点排污的叠加影响,以受纳水体水质按功能达标为前提,估算其最大允许排放量。 14.1.1.1 估算指标 按照各级环境保护规划,国家将化学需氧量(COD )、氨氮(NH 3-N )作为水污染物总量控制指标,因此本次水环境容量估算的指标也定为上述两项。 14.1.1.2 控制单元划分及其所对应的环境功能区划 水环境容量计算的控制单元一般是在综合考虑混合过程段长度及重点污染源排放口、大型水工构筑物、水质控制断面等因素的基础上进行划分。河流岸边排污的混合过程段长度计算采用如下公式: ()()()2 1 0065.0058.06.04.0gHI B H Bu a B L +-= 式中:L ——混合过程段的长度,m B ——河流宽度,m H ——平均水深,m I ——平均坡度,无量纲 u ——平均流速,m /s a ——排放口到岸边的距离,m

根据其水文参数,滃江干流枯水期岸边排放污染物情况的混合过程段长度计算结果如表14.1-1所示。 表14.1-1滃江干流岸边排放污染物情况的混合过程段长度计算一览表 清远华侨工业园的废水排放受纳水体最终均为滃江。根据调查,园区附近的滃江干流上主要建有3座低水头径流式水电站,分别为红桥水电站、英华水电站及狮子口水电站;此外,大镇水汇入口处为滃江干流的水质交界断面,该断面上游江段的水质控制目标为Ⅲ类,其下游江段的水质控制目标为Ⅱ类。清远华侨工业园内的东华镇污水处理厂排污口位于滃江一级支流虾公坑,规划建设的英华污水处理厂和五石污水处理厂排污口均拟设于省道347线跨江大桥至英华水电站之间的江段附近。根据上述情况,本次水环境容量估算的控制单元定为以下5段: (1)滃江干流自红桥水电站至省道347线跨江大桥之间的江段,河流长度约为6.3 km(因前述计算出的混合过程段长度约为4.6 km,故以下计算中本单元长度取为4.6 km),末端断面水质控制目标为Ⅲ类。 (2)滃江干流自省道347线跨江大桥至英华水电站之间的江段,河流长度约为4.5 km,末端断面水质控制目标为Ⅲ类。 (3)滃江干流自英华水电站至虾公坑汇入口之间的江段,河流长度约为4.9 km(因前述计算出的混合过程段长度约为4.6 km,故以下计算中本单元长度取为4.6 km),末端断面水质控制目标为Ⅲ类。 (4)滃江干流自虾公坑汇入口至大镇水汇入口之间的江段,河流长度约为3.4 km,末端断面水质控制目标为Ⅱ类。 (5)滃江干流自大镇水汇入口至楣头(该处有跨滃江桥梁)之间的江段,河流长度约为5.4 km(因前述计算出的混合过程段长度约为4.6 km,故以下计算中本单元长度取为4.6 km),末端断面水质控制目标为Ⅱ类。

校园大气环境监测方案

首都师大学空气环境监测案 院系: 姓名: 学号:

一、监测目的 1、通过实验进一步巩固所学知识,深入了解空气环境中各污染因子的具体采样法、分析法、误差分析及数据处理等法。 2、对校园的空气环境进行监测,评价校园的空气环境质量,为研究校园空气环境质量变化及制订校园环境保护规划提供基础数据。 3、根据污染物或其他影响环境质量因素的分布,追踪污染路线,寻找污染源,为校园环境污染的治理提供依据。 4、培养团结协作精神及综合分析与处理问题的能力。 二、背景介绍 1、学校简介 首都师大学本部位于北京市海淀区西三环北路105号,具体地理位置如下图所示,附近车流量较大。学校占地约1,500亩,建筑总面积约63万平米。学生总数29,632人。

2、学校功能区分布 人口密集分布区主要有教学楼,图书馆,实验楼,操场,餐厅,宿舍及校医院。具体功能区分布见下图: 3、空气环境资料收集: 空气污染受气象、季节、地形、地貌等因素的强烈影响而随时间变化,因此应对校园各种空气污染源、空气污染物排放状况及自然与社会环境特征进行调查,并对空气污染物排放作初步估算。 1)气象资料收集: 主要收集校园所在地气象站(台)近年的气象数据,包括风向、风速、 气温、气压、降水量、相对湿度等,具体调查容如表1所示。 表1 气象资料调查

2)校园边空气污染源调查: 一般大学校园位于交通干线旁,有的交通干线还穿越大学校园,因此校 园边空气污染源主要调查汽车尾气排放情况,汽车尾气中主要含有NO X、CO、烟尘等污染物。调查形式如表2所示。 表2 校园边各路段汽车流量调查 3)污染物分布及排污情况 烹饪废气排放 学校食堂校外小吃店污染源的污染物主要是烹饪油烟和天然气燃烧废气。主要污染物有烹饪食品产生的醛、酮、烃、脂肪酸、醇、酯、酯、杂环化合物、芳香族化合物和燃气燃烧废气中的CO和甲醛。因此增加的选测项目有非甲烷烃、芳香烃、苯乙烯、甲醛、异氰酸甲酯和CO。 试验室废气

1、A-P值法在大气环境容量测算中的应用__徐大海

城市大气污染物(以SO 2为例)排放总量控制A-P 值法简介 一、采用A-P 值法确定总量控制区允许排放总量时所需的资料 1.总量控制区面积S 2.总量控制区内的功能分区的面积S i 3.功能分区的控制浓度(标准浓度限值)C i 二、采用A-P 值法确定总量控制区允许排放总量(万吨/年)的步骤 1. 根据总量控制区所在地区,按GB/T13201-91表1查取总量控制系数A 值(取中值) 2. 按功能分区的控制浓度(标准年平均浓度限值)C i 3. 确定各个功能区总量控制系数A i 值 i i C A A ?= 4. 确定各个功能区允许排放总量: S S A Q i i ai = 5. 根据总量控制区所在地区,按GB/T13201-91表1查取低源分担率α值,确 定各个功能区低矮源(面源)允许排放总量: ai bi Q Q ?=α 6. 计算总量控制区允许排放总量a Q 和低矮面源允许排放总量b Q ∑==n i ai a Q Q 1,∑==n i bi b Q Q 1 7. 如果计算出的a Q 值小于上级部门的指令允许排放总量,则在总量控制区内就使用该a Q 值可以继续采用A-P 值法确定总量控制区内各个功能分区内的点源允许排放量,也可以在该市的辖区内适当增加控制区面积(即增加新的开发区)以使A-P 值法计算的a Q 值与指令总量接近,但是不得超过指令值。 8. 如果计算出的a Q 值大于上级部门的指令允许排放总量,则在总量控制区内用下式计算出A 值后,再从本节第3条向下继续计算。 ∑==n i i i S S C Q A 1)/(指令

用该a Q 值可以继续采用A-P 值法确定总量控制区内各个功能分区内的点源允许排放量, 三、采用A-P 值法确定总量控制区内各个功能分区内的点源允许排放量的步骤 1. 根据总量控制区所在地区,按GB/T13201-91表1查取总量控制系数P 值 2. 按以下公式计算各个功能区内所有点源的初始允许排放量(吨/小时) 2610e i pii H C P Q ???=- e H -点源的有效高度(烟囱的实体高度加上抬升高度), 这里C i 用标准日平均浓度限值 3. 按点源的实体高度分类为低架源(排气筒高度小于30米)、中架源(排气筒高度大于或等于30米但小于100米)、高架源(排气筒高度大于或等于100米) 4. 在功能分区内,将属于中架源的点源初始允许排放量相加,并乘以8760小时得到中架源的年初始允许排放总量Q mi ,并用(万吨/年)表示 5. 计算各个功能分区内的点源调整系数βi m i bi ai i Q Q Q /)(-=β 如果1>i β,则取1=i β 6. 在总量控制区内,将属于中架源的点源初始排放量相加,并乘以8760小时得到中架源的年初始允许排放总量Q m ;将属于高架源的点源初始排放量相加,并乘以8760小时得到高架源的年初始允许排放总量Q c ,二者都用(万吨/年)表示。 7. 计算总量控制区内的点源调整系数β )/()(c m b a Q Q Q Q +-=β 如果1>β,则取1=β 8. 再按以下公式计算各个功能区内所有点源的最终允许排放量(吨/小时) i pii e i i pi Q H C P Q ββββ??=?????=-2610 四、列出总量控制区和各个功能分区的允许排放总量、低矮面源允许排放总量和各个点源的允许排放量清单 五、将城市大气污染物排放总量控制A-P 值法试用于控制pm10时,低源分担率α值在长江以北可适当放宽到0.4,在长江以南可适当放宽到0.5 城市大气污染物(以SO 2为例)排放总量控制A-P 值法简介结束。

大气环境监测系统

大气环境监测系统技术解决方案 一、背景 说起分布式大气检测仪(采用圣凯安大气监测传感器),虽然它在市场上只是一个新面孔,可在咱们圣凯安科技的产品体系里却已经算是老前辈了,公司在这方面的技术储备早就有了,三年前也诞生了雏形产品,只是当时的市场定位不够清晰,所以市场开发就一直处于停滞状态。随着人们环保意识的不断提高,市场需求更加明显,产品推广计划就再次被提上了日程。就在这个关键时刻,深圳市圣凯安科技总经理的李警,隐隐约约感觉到这是一个发展方向,同时也是考验自己综合能力的一次机遇,就开始了最初的市场摸索。 当时的大气监测项目部,说是一个部门,实际上就李警一个人,他亲自带着雏形产品到高新区环保局咨询后,发现这个产品只能监测PM2.5、Pm10,根本就满足不了市场需求。为了研发出产销对路的产品,公司决定组建了临时协同小组,由大气监测项目部联合智慧城市板块、智慧安全板块以及研究院等单位共同对硬件设备和软件平台进行重新规划设计。经过研发人员两个月的技术攻关,前前后后经历了无数次升级和改良,共推出了两个版本的样品,最终才有了咱们现在称之为“小型空气站”的二代产品。这款新品不仅完全满足了市场需求,可以检测PM2.5、PM10、一氧化碳、臭氧、二氧化硫、氮氧化物6项空气参数,而且还具备便携性强、性价比高的优势,非常适合多点布位。以前在一个区只能建立一个点,这个点的数据却代表整个区,现在通过多点布位能够监测整个面,还能通过数据分析迅速确认污染源的类型、位置等信息,为后期治理提供了高度精确的决策性依据。 这款产品一经推出就获得了高新区环保局的高度认可,并在4天时间内完成了14台小型空气站的多点布位,实现了对高新区全区大气质量的网格化监测。随后又相继在全国范围内完成了近70台小型空气站的多点布位,总

A值法测算理想大气环境容量的方法

A 值法测算理想大气环境容量的方法 一、前言 从“九五”开始,我国开始实行《全国主要污染物排放总量控制计划》,这是我国环境保护的一项重大举措,也是保证实现环境保护目标的客观需要。为了更合理地制定总量控制目标和控制战略,使有限的大气环境容量资源得到合理的利用,促进城市大气污染物排污许可证制度的落实,为“十一五”城市环境保护规划提供技术支持,国家环保总局要求以城市为单位开展大气环境容量测算工作。 A-P 值控制法是以GB/T3840-91《制定地方大气污染物排放标准的技术方法》为依据,对区域大气污染进行宏观总量控制的一种方法。它首先利用基于箱模型的A 值法计算出控制区的某种污染物的理想容量,然后,采用P 值法,在区域内所有污染源的排污量之和不超过上述容量的约束条件下,确定出各个点源的允许排放量。显然,A-P 值法是一种地区系数法,其最大特点是简单易行,只要给出控制区总面积及各功能区面积,再根据当地总量控制系数就能很快算出该面积上的允许排放总量。本次湖南省8个非重点城市统一采用A-P 值法中的A 法进行各城市的理想环境容量测算。 二、A 值法的计算公式 A 值法计算公式如下: S S C C A Q i b n i si ) (1 -= ∑ =

式中: Q—污染物年允许排放总量限值,即理想大气容量,104t/a; A—地理区域性总量控制系数,104km2/a; S—控制区域总面积,km2; —城市第I个分区面积,km2; S i —第I个区域某种污染物的年平均浓度限值,mg/m3; C si —控制区的本地浓度。 C b 三、几个概念的说明 1、控制区的确定 每个城市要应用A值法分别计算城市控制区和城区控制区的大气环境容量。城市控制区和城区控制区确定原则如下: 1)城市控制区: 覆盖全市行政区范围的,包括城市所辖所有县和区。 2)城区控制区: 城区控制区范围主要依据城市规划建成区确定的区域;考虑部分城市城郊正在建设或已发展成为工业园区,为加强统筹管理,也可合并到城区控制区。 2、I类、II类、III类A值控制区 根据国家所作的规定,为满足本次A值法测算理想环境容量的要求,将控制区分别划分为I类、II类、III类A值控制区,其确定原则如下:

大气环境在线监测解决方案

大气环境在线监测解决方案 扬尘监测的背景与政策要求 目前,日益复杂的大气污染状况,正对传统的大气污染源监测方式提出了新的挑战。当前实施的环境空气国控点监测系统监测点位数量有限、成本高昂,以点代面的方法导致时效性不足,达不到精细化管控的目标,且无法实现对监测体系中时空动态趋势分析、污染减排评估、污染来源追踪、环境预警预报等能力的深度挖掘。 结合国务院办公厅关于生态环境监测网络建设的要求,凯陆电子以丰富的气体检测领域经验,开发了一套可实现高密度网格化布局的低成本、多参数集成的紧凑型微型环境空气监测系统,其网格化的监测体系能够全覆盖监测区域,并实现高分辨率的大气污染监测,同时结合信息化大数据的应用,实现污染来源追踪、预警预报等功能,为环境污染防控提供更为及时有效的决策支持。 空气质量监测站的功能主要是对空气中的常规污染因子和气象参数进行24小时连续在线的监测,将分析出的数据提供给环保局作为空气质量好坏参考,并辅助环保决策,其中待监测因子包括:污染极细颗粒物(PM2.5,PM10),二氧化硫,一氧化碳,硫化氢,氮氧化物,挥发性有机污染物,总悬浮颗粒物,铅,苯,气象参数,能见度等。 1.细颗粒物指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物,也称 PM2.5、可入肺颗粒物。它能较长时间悬浮于空气中,其在空气中含量(浓度)越高,就代表空气污染越严重。PM10是指能在大气中长期飘浮的悬浮物质,其粒径为小于10微米的微粒。 2.二氧化硫是最常见的硫氧化物,无色气体,有强烈刺激性气味,是大气主要污染物 之一。 3.一氧化碳进入人体之后会和血液中的血红蛋白结合,产生碳氧血红蛋白,进而使血

地表水水环境容量计算方法回顾与展望_董飞

第25卷第3期 2014年5月水科学进展ADVANCES IN WATERSCIENCE Vol.25,No.3May ,2014 地表水水环境容量计算方法回顾与展望 董飞1,2,刘晓波1,2,彭文启1,2,吴文强 1,2(1.中国水利水电科学研究院水环境研究所,北京100038; 2.流域水循环模拟与调控国家重点实验室,北京100038) 摘要:为厘清中国地表水水环境容量计算方法演变历史,探讨计算方法发展趋势,在系统调研大量水环境容量研 究文献基础上,详细梳理水环境容量从概念引入到研究至今的过程,归纳出中国地表水水环境容量研究过程中产 生的五大类计算方法:公式法、模型试错法、系统最优化法(线性规划法和随机规划法)、概率稀释模型法和未确 知数学法。解析了各类方法的基本思路、产生过程及应用进展,评述了各类方法的优缺点及适用范围。通过与国 外水环境容量计算方法的比较,基于水环境系统复杂性及中国水资源管理特点与应用需求,认为中国应强化对概 率稀释模型法、未确知数学法及随机规划法等3种方法的研究和改进。 关键词:地表水;水环境容量;计算方法;概率稀释模型;系统最优化;未确知数学 中图分类号:TV131,X143;G353.11文献标志码:A 文章编号:1001- 6791(2014)03-0451-13收稿日期:2013- 10-11;网络出版时间:2014-04-10网络出版地址:http ://https://www.doczj.com/doc/7d1486817.html, /kcms /detail /32.1309.P.20140410.0950.010.html 基金项目:国家自然科学基金资助项目(51209230);水体污染控制与治理科技重大专项(2013ZX07501- 004)作者简介:董飞(1983—),男,山东淄博人,博士研究生,主要从事流域容量总量控制理论与方法等研究。 E-mail :dongfei99999@https://www.doczj.com/doc/7d1486817.html, 通信作者:彭文启,E- mail :pwq@https://www.doczj.com/doc/7d1486817.html, 环境容量是环境科学的基本理论问题之一,是环境管理的重要实际应用问题之一[1]。水环境容量是环 境容量的重要组成部分,是容量总量技术体系的核心内容之一。随着中国水环境管理体系从浓度控制、目标 总量控制向容量总量控制的转变,实现流域水质目标管理 [2]与水功能区限制纳污红线管理[3],水环境容量理论及计算方法研究的重要性更加凸显。 早在20世纪70年代后期,随着环境容量概念的引入,中国学者即开始了对水环境容量的研究[4]。在经 过短时期的对水环境容量基本概念的强烈争论后,迅速实现从基本理论到实际应用,从定性研究到定量化计 算的转变[5];同时注重吸收欧美等国的研究成果[6]。随着研究的不断深入,特别是水环境数学模型应用及 计算机技术的不断进步,逐渐形成了公式法 [7]、系统最优化法[5]、概率稀释模型法[6]、模型试错法[8]等计算方法,盲数理论等不确定性数学方法也引入其中[9]。在地表水方面,水环境容量计算中所用的水环境数学模型从Streeter- Phelps 简单模型[5]发展到WASP 、Delft 3D 等大型综合模型软件[10],计算区域从河段、河流发展到河口、湖库、河网、流域[11],计算维数从一维发展到二维和三维[12],计算条件从稳态发展到动 态[13],所针对的污染物从易降解有机物、重金属发展到营养盐等[7]。近年来,常见关于水环境容量总体研究进展的文献 [14-15],然而未有专门系统论述水环境容量计算方法研究进展的文献;同时,文献中通常将中国水环境容量计算方法分为3类或4类 [8,10],笔者认为这难以对水环境容量计算方法作全面概括,本研究旨在弥补这一不足。以地表水水环境容量为重点,兼顾海洋水环境容量,大量调研中外文献,系统研究中国在地表水水环境容量计算方面从起步到当前的各种方法;同时对照欧美国家的计算方法,对中国地表水水环境容量计算方法进行重新归类。在解析各类计算方法研究及应用情况的基础上,对各类计算方法的优缺点及适用范围作了评述。在比较分析国内外计算方法特征的基础上,结合各类计算方法对复杂水环境系统的适应性及中国水资源管理特点对水环境容量计算的需求,对中国今后地表水水环境容量计算方法的发展趋势作了展望。DOI:10.14042/https://www.doczj.com/doc/7d1486817.html,ki.32.1309.2014.03.020

校园空气环境监测方案

校园空气环境监测方案 1.监测目的: ①通过实验进一步巩固课本知识,深入了解空气环境中各污染因子的具体采样方法、分析方法、误差分析及数据处理等方法。 ②对校园的空气环境定期监测,评价校园的空气环境质量,为研究校园空气环境质量变化及制订校园环境保护规划提供基础数据。 ③根据污染物或其他影响环境质量因素的分布,追踪污染路线,寻找污染源,为校园环境污染的治理提供依据。 ④培养团结协作精神及综合分析与处理问题的能力。 2.空气环境监测调查和资料收集: 空气污染受气象、季节、地形、地貌等因素的强烈影响而随时间变化,因此应对校园内各种空气污染源、空气污染物排放状况及自然与社会环境特征进行调查,并对空气污染物排放作初步估算。 、 ①校园内空气污染源调查:主要调查校园内空气污染物的排放源、数量、燃料种类和污染物名称及排放方式等,为空气环境监测项目的选择提供依据,可按表1的方式进行调查。 表1 校园内空气污染源调查 ②校园周边空气污染源调查:一般大学校园位于交通干线旁,有的交通干线还穿越大学校园,因此校园周边空气污染源主要调查汽车尾气排放情况,汽车尾气中主要含有NO X、CO、烟尘等污染物。调查形式如表7所示。

③气象资料收集:主要收集校园所在地气象站(台)近年的气象数据,包括风向、风 速、气温、气压、降水量、相对湿度等,具体调查内容如表3所示。 3.空气环境监测项目的筛选: 根据《大气环境质量标准》(GB 3095—1996)和校园及其周边的空气污染物排放情况来筛选监测项目,高等学校一般无特征污染物排放,结合空气污染源调查结果,可选TSP、PM10、 SO2、NO X、CO等作为空气环境监测项目。 3.1 必测项目

大气环境容量的管理与利用

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IntroductionofPCCPInstallationTechnologyinTunnel WANGHong-xian ABSTRACT:ThispaperintroducesthestructureandworkingprincipleofakindoflargediameterPCCPinstallationvehicleintheburden-beamlong-tunnel,andprobesintotheconstructionmethodofPCCPinstallationintunnel.KEYWORDS:long-tunnel;PCCP;transportationandinstallationtechnology 环境容量是在环境管理中实行污染物浓度控制时提出的概念。污染物浓度控制的法令规定了各个污染源排放污染物的允许浓度标准,但没有规定排入环境中的污染物的数量,也没有考虑环境净化和容纳的能力,这样在污染源集中的城市和工矿区,尽管各个污染源排放的污染物达到(包括稀释排放达到的)浓度控制标准,但由于污染物排放的总量过大,仍然会使环境受到严重污染。因此,在环境管理上开始采用总量控制法,即把各个污染源排入某一环境的污染物总量限制在一定的数值之内。采用总量控制法,必须研究环境容量问题。 1大气环境容量的定义 容量是在一定空间容纳某种物质的能力。环境容量是指某一环境区 域内对人类活动造成影响的最大容纳量。就污染而言,污染物存在的数量超过最大容纳量,这一环境的生态平衡和正常功能就会遭到破坏。大气环境容量是指在一特定区域内,一定的气象条件、一定的自然边界条件以及一定排放源结果条件下,在满足该区域大气环境质量目标前提下,区域内所有大气污染源向大气中排放围绕物的总和(即总量)。大气环境容量是一种特殊的环境资源,它与其他自然资源在使用上有着明显的差异。 鉴于环境条件和污染物排放的复杂性,准确计算一定空间环境的大气环境容量是十分困难的,因为大气是没有边界的,一定空间区域内外的污染物会互相影响、传输、扩散。在做一定的假设后,可借助数学模型模拟估算一定条件下的大气环境容量。 确定一个地区后,根据国家标准用A-P值法很容易得到该城市的一个大气环境容量,主要考虑的是当地的区域面积和多年平均风速,也就是通风量。这个大气环境容量定义为理想大气环境容量。实际大气环境容量是指:对于一定地区,根据其自然净化能力,在特定的污染源布局和气象条件下,为达到环境目标值所允许的大气污染物最大排放量总和,也就是平常所说的城市区域大气环境总量;环境目标值即所确定的相应等级的国家或地方环境大气环境质量标准。这个大气环境容量是可以执行的,一般要小于理想大气环境容量。在确定地区空间内,大气环境容量并不是唯一的常量。在大气的环境目标值确定以后,当污染源的排放量一定时,大气环境容量可以随污染源的位置和排放高度、气象条件、季节、地形条件等的不同而变化。对于整个城市来说,它的实际环境容量比理论环境容量(均匀混合后的容量)要小,因为城市包含了不能布局污染源的区域。 2大气环境容量的管理与利用 环境容量主要应用于环境质量控制,并作为工农业规划的一种依 据。任一环境,它的环境容量越大,可接纳的污染物就越多,反之则越少。污染物的排放必须与环境容量相适应,如果超出环境容量,就要采取措施,如降低排放浓度,减少排放量,或者增加环境保护设施等。因此为了更好地管理与利用环境容量,必须采取以下对策。 2.1强化法制管理和落实管理规章 (1)落实国家环保政策,建立和完善环境管理制度,依据环境保护的 相关法律、法规、政策强化管理,加大执法力度。特别要加强对各规划区内新、改、扩建项目的影响评价和审批,严格执行“三同时”制度,禁止乱建乱设,防止对规划区环境资源的过度利用与消耗。 (2)建立完善的在线监测与大气环境自动监测系统。及时掌握污染源排污和大气环境质量的动态变化,结合环境容量的利用程度,预警大气环境的警戒水平和相应污染源的排污控制警告,把环境管理信息化、快捷化提高到一个新的水平。 (3)加快环境保护宣传教育的信息化建设。充分利用网络、电视、报纸等媒体进行宣传报道,提高公众参与的意识和积极性;同时通过媒体的鼓励、批评与监督等作用,强化企业社会意识和环境责任感,通过公众、媒体和政府多方参与的互动效果,取得深化全社会保护大气环境的良好效益。 2.2提高空气资源与环境容量合理利用的观念和意识 空气资源属自然资源,具有很强的资源性。空气环境容量是一种有 价自然资源,其价值体现在对排放污染物的缓冲与降解作用,即容纳一定量的污染物也能满足人类生产、生活和生态系统的需要,这就充分地体现了它广泛的经济性与社会性。但空气的环境容量是有限的,再生也是较为困难的,一旦污染负荷超过空气环境容量,使其恢复是十分缓慢与艰难的。因此必须结合市场经济和以人为本发展经济的观念,从根本上提高全社会保护空气资源和保护空气环境的意识。 2.3认识空气资源的可贵性并合理利用空气环境容量 空气处在陆域以上的空间系统中,陆域与空域、上风向与下风向、低 空与高空构成了不同的空间生态系统,因此,在确定局部陆域以上大气环境容量时,必须从保护空气资源的角度出发,合理协调陆域内各层次及不同空间的空气环境容量。合理利用空气环境容量,就是要不仅考虑本区域条件,同时要兼顾更大区域整体特征,保证大区域内的生态与环境系统永久保持空气资源的永续利用。 大气环境容量的管理与利用 王 娟,马青兰 (太原理工大学,山西太原,030024) 摘 要:阐明了大气环境容量的定义,指出了大气环境容量的管理与利用的途径。 关键词:环境管理;大气环境容量;管理利用中图分类号:X32 文献标识码:A 225

相关主题
文本预览
相关文档 最新文档