当前位置:文档之家› 相似三角形中的射影定理知识讲解

相似三角形中的射影定理知识讲解

相似三角形中的射影定理知识讲解
相似三角形中的射影定理知识讲解

相似三角形

——相似直角三角形及射影定理【知识要点】

1、直角三角形的性质:

(1)直角三角形的两个锐角

(2)Rt

△ABC中,∠C=90o,则2+ 2= 2

(3)直角三角形的斜边上的中线长等于

(4)等腰直角三角形的两个锐角都是,且三边长的比值为

(5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为

2、直角三角形相似的判定定理(只能用于选择填空题)

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

3、双垂直型:

Rt△ABC中,∠C=90o,CD⊥AB于D,则

①∽∽

②射影定理:

CD2= ·AC2= ·BC2= ·

【常规题型】

1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD的长.

2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。B

A

精品文档

精品文档

【典型例题】

例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。

例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF

例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的

高,这时CAB DEF ??和是否相似?

【拓展练习】

1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF

A B A B C N

D

C

2017中考射影定理及其运用

相似三角形------射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?AD、 BC2=BD?AB或 AC2=AD?AB。 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD? AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DC B=∠A,则有△CDB∽△ACB,可得BC2=BD?AB;反之,若△ABC中, D为AB上一点,且有BC2=BD?AB,则有△CDB∽△ACB,可得到∠CD B=∠ACB,或∠DCB=∠A。 三、应用 例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H, 求证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900-∠C=∠HBD,联想到射影定理变式(2),可得 BD2=DH?DA,又BC=2BD,故有结论成立。 (证明略)

相似三角形之射影定理

相似三角形之射影定理 1、已知直角三角形ABC 中,斜边AB=5cm,BC=2cm ,D 为AC 上的一点,DE AB ⊥交AB 于E ,且AD=3.2cm ,则DE= ( ) A 、1.24cm B 、1.26cm C 、1.28cm D 、1.3cm 2、如图1-1,在Rt ABC 中,CD 是斜别AB 上的高,在图中六条线段中,你认为只要知道( )线段的长,就可以求其他线段的长 A 、1 B 、2 C 、3 D 、4 3、在Rt ABC 中,90BAC ∠= ,AD BC ⊥于点D ,若34AC AB =,则BD CD =( ) A 、34 B 、43 C 、169 D 、9 16 4、如图1-2,在矩形ABCD 中,1 ,3DE AC ADE CDE ⊥∠=∠,则EDB ∠=( ) A 、22.5 B 、30 C 、45 D 、60 【填空题】 5、ABC 中,90A ∠= ,AD BC ⊥于点D ,AD=6,BD=12,则CD= ,AC= , 22:AB AC = 。 6、如图2-1,在Rt ABC 中,90ACB ∠= ,CD AB ⊥, AC=6,AD=3.6,则BC= .

【解答题】 7、已知CD 是ABC 的高,,DE CA DF CB ⊥⊥,如图3-1,求证:CEF CBA ∽ 8、已知90CAB ∠= ,AD CB ⊥,ACE ,ABF 是正三角形,求证:DE DF ⊥ 9、如图3-2,矩形ABCD 中,AB=a ,BC=b ,M 是BC 的中点,DE AM ⊥,E 是垂足,求证: DE =

参考答案 1、C 2、B 3、C 4、C 5 、3,4:1 6、 8 7、证明:在Rt ADC 中,由射影定律得, 2CD CE AC = ,在R t B C 中, 2C D C F B C = ,CE BC CE AC CF BC CF AC ∴=∴ = 又ECF BCA ∠=∠ ,CEF CBA ∴ 8、证明:如图所示,在Rt BAC 中, 22,AC CD CB AB BD BC == AC CD AD AB AD BD ∴===== ,,AE AD AC AE AB AF BF BD ==∴ = 60,60,FBD ABD EAD CAD ABD CAD ∠=+∠∠=+∠∠=∠ 又 FBD EAD ∴∠=∠,,EAD FBD BDF ADE ∴ ∴∠=∠ 90FDE FDA ADE FDA BDF ∴∠=∠+∠=∠+∠= DE DF ∴⊥ 9、证明:在Rt AMB 和Rt ADE 中,AMB DAE ∠=∠,90ABM AED ∠=∠= 所以Rt AMB ~Rt ADE 所以AB AM DE AD = ,因为AB=a ,BC=b ,

初三《相似三角形》知识点总结

相似三角形知识点总结 知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。 如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。 相似三角形的比叫相似比 相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。 注意:(1)相似比是有顺序的。 (2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这 样写比较容易找到相似三角形的对应角和对应边。 (3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /, 相似比为k ,则△A /B /C /与△ABC 的相似比是1 k 知识点2、相似三角形与全等三角形的关系 (1)两个全等的三角形是相似比为1的相似三角形。 (2)两个等边三角形一定相似,两个等腰三角形不一定相似。 (3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。 知识点3、平行线分线段成比例定理 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理 (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l1∥l2∥l3, A D l1 B E l2 C F l3 可得 EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.

相似三角形---射影定理的运用

相似三角形--- 射影定理的运用

相似三角形 - 射- 影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论(这里暂且称之为射影定理的推广),而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路” 时,“柳暗花明又一村” 地迎刃而解。下面结合例子从它的变式推广上谈谈其应用。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt △ABC中,若CD为高,2则有CD2=BD?AD、BC2=BD?AB或AC2=AD?AB。(证明略) 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 (证明略) 2.一般化,若△ABC不为直角三角形满足一定条件时,类似地仍有部分结论成立。射影定理变式(2)) 如图(2):△ABC中,D 为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可,当点D后文简称: 中,D为AB上一点,且有BC2=BD?AB,则有△

得BC2=BD?AB;反之,若△ABC

CDB∽△ACB,可得到∠CDB=∠ACB,或∠ DCB=∠A。 (证明略) 三、应用 例1如图(3),已知:等腰三角形ABC 中,AB=AC,高AD、BE交于点H,求 证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900- ∠C = ∠ HBD,联想到射影定理变式(2),可得BD 2=DH?DA,又BC=2BD,故有结论成 立。 (证明略) 例2如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分,求DC。 分析:易得到∠DBC=∠ABD=∠ D CE,满足射影定理变式(2)的条件,故 有CD2=DE?DB,易求得DC=8 (解略) 例3 已知:如图(5),△ABC中, AD平分∠BAC,AD的垂直平分线交A B于点E,交AD于点H,交AC于点G,交BC的延长线于点F, 求证:DF2=CF?B 证明:连AF,∵F垂直平分AD, ∴FA=FD,FAD=∠FDA, ∵AD平分∠BF H ∠ A

(完整版)相似三角形中的射影定理

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= ·AC2= ·BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。 B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的 高,这时CAB DEF ??和是否相似? 【拓展练习】 1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF A B A B C N D C

相似三角形知识点归纳(全)

《相似三角形》—中考考点归纳与典型例题 知识点1 有关相似形得概念 (1)形状相同得图形叫相似图形,在相似多边形中,最简单得就是相似三角形、 (2)如果两个边数相同得多边形得对应角相等,对应边成比例,这两个多边形叫做相似多 边形、相似多边形对应边长度得比叫做相似比(相似系数)、 知识点2 比例线段得相关概念、比例得性质 (1)定义: 在四条线段中,如果得比等于得比,那么这四条线段叫做成比例线段,简称比例线段、 注:①比例线段就是有顺序得,如果说就是得第四比例项,那么应得比例式为:、 ② 核心内容: (2)黄金分割:把线段分成两条线段,且使就是得比例中项,即,叫做把线段黄金分割,点叫做线段得黄金分割点,其中≈0、618、即 简记为: 注:①黄金三角形:顶角就是360 得等腰三角形 ②黄金矩形:宽与长得比等于黄金数得矩形 (3)合、分比性质:。 注:实际上,比例得合比性质可扩展为:比例式中等号左右两个比得前项,后项之间 发生同样与差变化比例仍成立、如:等等、 (4)等比性质:如果, 那么、 知识点3 比例线段得有关定理 平行线分线段成比例定理:三条平行线截两条直线, 已知A D∥BE ∥C F, 可得 AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF ===== 或或或或等。 特别在三角形中: 由DE ∥B C可得: 知识点4 相似三角形得概念 (1)定义:对应角相等,对应边成比例得三角形,叫做相似三角形、相似用符号“∽”表示,读作“相似于” 。相似三角形对应边得比叫做相似比(或相似系数)、相似三角形对应角相等,对应边成比例、 注:①对应性:即把表示对应顶点得字母写在对应位置上 ②顺序性:相似三角形得相似比就是有顺序得。 ③两个三角形形状一样,但大小不一定一样、 ④全等三角形就是相似比为1得相似三角形、 (2)三角形相似得判定方法 B

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

2017中考射影定理及其运用

相似三角形----射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1) : R t^ABC中,若CD为高, 贝U有C D 2=BD? AD、 BC 2=BD ?AB或 AC 2 =AD ?AB。 二、变式推广 1 ?逆用如图(1):若AABC中,CD为高,且有DC 2 =BD? AD或AC 2 =AD ?AB或BC 2 = BD ?AB,则有ZDCB = ZA或/ACD = /B,均可等到AABC为 直角三角形。 2 ?—般化,若AABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2) : △ABC中,D 为AB上一点,若ZCDB = ZACB,或/DC B = ZA,则有△CDBs^ACB,可得B C 2 =BD?AB ;反之,若AABC 中, D为AB上一点,且有BC 2 =BD ?AB,则有△CDBs^ACB,可得到/CD B=/ACB,或/DCB=/Ao 三、应用 例1 如图(3),已知:等腰三角形ABC中,AB = AC,高AD、BE交于点H, 求证:4DH ?DA=BC 2 分析:易证/BAD = /CAD =90°-/C = /HBD,联想到射影定理变式(2),可得BD 2 =DH ?DA,又BC=2BD,故有结论成立。 (证明略) 例2 如图(4):已知OO中,D为弧AC中点,过点D的弦BD被弦AC分为4和12 两部分,求DC。 分析:易得到/DBC = /ABD = /DCE, 满足射影定理变式(2)的条件,故有CD 2 =DE ?DB,

最新相似三角形常见题型解法归纳.优选

A字形,A’形,8字形,蝴蝶形,双垂直,旋转形 双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD∽△CDB→AD:CD=CD:BD→CD 2=AD?BD ⑵△ACD∽△ABC→AC:AB=AD:AC→AC2=AD?AB ⑶△CDB∽△ABC→BC:AC=BD:BC→BC2=BD?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB?CD=AC?BC→比例式证明等积式(比例式)策略 1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形三点定形法 2、间接法:⑴3种代换①等线段代换;②等比代换;③等积代换; ⑵创造条件①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若d c b a, , ,是四条线段,欲证 d c b a =,可先证得 f e b a =(f e,是两条线段)然 后证 d c f e =,这里把 f e 叫做中间比。 ①∠ABC=∠ADE.求证:AB·AE=AC·AD ②△ABC中,AB=AC,△DEF是等边三角形,求证:BD?CN=BM?CE. ③等边三角形ABC中,P为BC上任一点,AP的垂直平分线交AB、AC于M、N两点。 求证:BP?PC=BM?CN D C A word.

相似三角形知识点讲解及专项练习

相似三角形知识点讲解及专项练习 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型. 示意图 结论 E D C B A 反A 型: 如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE · AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) O D C B A 反X 型: 如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC . “类射影”与射影模型 示意图 结论 相似三角形证明方法 模块一 相似三角形6大证明技巧 专题

类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =? 通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 比例式的证明方法 模块二

相似三角形知识点总结

相似三角形知识点总结 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =? = ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比 例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 4. 相似三角形的判定: ①两角对应相等,两个三角形相似 ②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似 ④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似 ⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

相似射影定理及角平分线定理打印稿

相似三角形(二)(射影定理及角平分线的性质) 射影定理: 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt △ABC 中,∠C=90o,则 2 + 2 = 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是 ,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于 ,且三边长的比值为 2、直角三角形相似的判定定理: 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt △ABC 中,∠C=90o,CD ⊥AB 于D ,则 ① ∽ ∽ ②S △ABC = 2 2 ③射影定理: CD 2 = · AC 2= · BC 2= · 【常规题型】 1、已知:如图,△ABC 中,∠ACB=90°,CD⊥AB 于D , S△ABC=20,AB=10。求AD 、BD 的长. B A

2、已知,△ABC 中,∠ACB=90°,CD⊥AB 于D 。(1)若AD=8,BD=2,求AC 的长。(2)若AC=12,BC=16,求CD 、AD 的长。 【典型例题】 例1.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例2.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例3.已知:如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F 。 求证:AE ·BF ·AB =CD 3 A M C D C

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识 知识点一:放缩与相似 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m : n (或n m b a = ) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例 d c b a =(或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例 d c b a =(或a :b = c : d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为a b b a = (或 a:b =b:c 时,我们把b 叫做a 和d 的比 例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

(完整版)相似三角形知识点梳理

相似三角形知识点汇总 重点、难点分析: 1、相似三角形的判定性质是本节的重点也是难点. 2、利用相似三角形性质判定解决实际应用的问题是难点。 一、重要定理 (比例的有关性质): 二、有关知识点: 1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。 2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。 3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。 4.相似三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 5.相似三角形的判定定理: 6.直角三角形相似: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。 8. 相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2 反比性质:c d a b = 更比性质:d b c a a c b d ==或 合比性质:d d c b b a ±=± ?=?=bc ad d c b a (比例基本定理)

相似三角形判定的基本模型 A字型X字型反A字型反8字型 母子型旋转型双垂直三垂直相似三角形判定的变化模型 C B E D A

初三数学相似三角形知识点归纳

初三数学相似三角形知 识点归纳 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

初三数学《相似三角形》知识提纲 (孟老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作: c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质: bc ad d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 4、黄金分割: n m b a =

把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC= 2 1 5-≈, (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = ,= , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: 图(2) 图(3) 图(4) 图(5) 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A 型 X 型 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD = ==或或.

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识 知识点一:放缩与相似 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m : n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例 d c b a =(或a :b =c :d )中a 、d 叫做比例外项。 5、比例项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例项。 6、第四比例项:在比例 d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例项相等,即比例为 a b b a =(或a:b =b: c 时,我们把b 叫做a 和 d 的比例 中项。

相似三角形基本知识点及典型例题

相似三角形 一、知识点梳理 ★知识点一:比例线段 1、比例:如果两个数的比值与另两个数的比值相等,就说这四个数成比例,通常我们把 a, b,c,d 四 a c 个实数成比例表示成: 或者a : b=c : d ,期中b , c 称为比例内项,a ,d 称为比例外项。 b d a c a c 等式两边同乘以 bd ,可得ad=bc ,反过来等式 ad=bc 同除以bd ,可得 =一 b d b d 2、比例线段:在四条线段 a,b,c,d 中,如果a 和b 的比等于c 和d 的比, a,b,c,d 叫做成比例线段,简称比例线段。 a b 3、比例中项:如果三个数a, b, c 满足比例式 ,那么b 叫做a 、c 的比例中项, 此时有b = ac 。 b c 那么这四条线段 4、黄金分割:如果点 P 把线段AB 分成两条线段 AP 和 PB,使 AP AP 帀,那么称线段AB 被点P 黄 金分割,点P 叫做线段AB 的黄金分割点,比值叫做黄金比。 全二长二 ? 0.618 2 5、比例式变形: a c a_ b c_d b d - b 或旦亠 b b d a c ” ■ * * b _d 一 =b ,(交换内项) c -交换外项) b a d 聖?(同时交换内外项) c a 3,那么a r e a 仁如果b = 3 a + b 卄 a 3 “a + b“,+ 0 2、若,贝U 的值是 b 5 b 8 3 3 B C 、- D 5 5 2 3、若 4x=5y,则 x : y = 例 4、 x —yz yz_x 5、已知g = y ,则j 的值为 13 7 y 例6、如果x : y :z = 1 : 3 : 5,那么 x 3y z x_3y z

2021年.中考射影定理及其运用

*欧阳光明*创编 2021.03.07 相似三角形------射影定理的推广及应用 欧阳光明(2021.03.07) 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?AD、 BC2=BD?AB或 AC2=AD?AB。 二、变式推广 1.逆用如图(1):若△ABC中,CD为 高,且有DC2=BD?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若 ∠CDB=∠ACB,或∠DCB=∠A,则有△CD B∽△ACB,可得BC2=BD?AB;反之,若△A BC中,D为AB上一点,且有BC2=BD?AB, 则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DC

B=∠A。 三、应用 例1 如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H,求证:4DH?DA=BC 2 分析: 易证∠BAD=∠CAD=900-∠C =∠HBD ,联想到射影定理变式(2),可得BD2=DH?DA,又BC= 2BD,故有结论成立。 (证明略) 例2 如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分, 求DC。 分析:易得到∠DBC=∠ABD=∠DCE,满足射影定理变式(2)的条件,故有CD2 =DE?DB,易求得DC=8 (解略) 例3 已知:如图(5),△ABC中,AD平分∠BA C,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F, 求证:DF2=CF?BF。 证明:连AF, ∵FH垂直平分 AD, ∴FA=FD, ∠FAD=∠FDA, ∵AD平分∠BAC,∴∠CAD=∠BA D, ∴∠FAD-∠CAD=∠FDA-∠BA D, ∵∠B=∠FDA-∠BAD, ∴∠FAC=∠B,又∠AFC 公共, ∴△AFC∽△BFA,∴BFAF=AFC F , ∴AF2=CF?BF,∴DF2 =CF?BF。

相似三角形中的射影定理

相似三角形中的射影定 理 -CAL-FENGHAI.-(YICAI)-Company One1

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= · AC2= · BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD 的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o ,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF A B M C N D C

(完整版)相似三角形知识点大总结

相似三角形知识点大总结 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b = .②()a c a b c d b d ==在比例式::中, a 、d 叫比例外项, b 、 c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2 b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-= ≈0.618AB .即 AC BC AB AC == 简记为:长短=全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2 ::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项): ()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=??, 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=. (4)合、分比性质:a c a b c d b d b d ±±=?=.

相关主题
文本预览
相关文档 最新文档