当前位置:文档之家› 千题百炼——高考数学100个热点问题(二):第52炼 证明等差等比数列

千题百炼——高考数学100个热点问题(二):第52炼 证明等差等比数列

千题百炼——高考数学100个热点问题(二):第52炼 证明等差等比数列
千题百炼——高考数学100个热点问题(二):第52炼 证明等差等比数列

第52炼 等差等比数列的证明

在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识:

1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),

1

n n

a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比)

(3)前n 项和:2n S An Bn =+(等差),n

n S k q

k =-(等比)

(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)

(2)也可利用等差等比中项来进行证明,即n N *

?∈,均有:

122n n n a a a ++=+ (等差) 2

12n n n a a a ++=? (等比)

二、典型例题:

例1:已知数列{}n a 的首项1133,,521

n

n n a a a n N a *+=

=∈+. 求证:数列11n a ??

-?

???

为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在

1

n

a 这样的倒数,所以考虑递推公式两边同取倒数:113121

213n n n n n n

a a a a a a +++=

?=+

112133n n a a +=+,在考虑构造“1-”:112111111333n n n

a a a +?

?

-=+-=-

???

即数列11n a ??-?

???

是公比为1

3的等比数列

思路二:代入法:将所证数列视为一个整体,用n b 表示:1

1n n

b a =

-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =

-,则1

1

n n a b =

+ ∴ 递推公式变为:

113

1131

1113

211n n n n n b b b b b +++=?=+++?++ 111

3333

n n n n b b b b ++?+=+?=

{}n b ∴是公比为1

3的等比数列。即数列11n a ??-????

为等比数列

小炼有话说:

(1)构造法:在构造的过程中,要寻找所证数列形式的亮点,并以此为突破对递推公式进行变形,如例1中就是抓住所证数列有一个“倒数”的特点,进而对递推公式作取倒数的变换。所以构造法的关键之处在于能够观察到所证数列显著的特点并加以利用

(2)代换法:此方法显得模式化,只需经历“换元→表示→代入→化简”即可,说两点:一是代换1

1n n

b a =

-体现了两个数列{}{},n n a b 的一种对应关系,且这种对应是同序数项的对应(第n 项对应第n 项);二是经过代换,得到{}n b 的递推公式,而所证n b 是等比数列,那么意味着其递推公式经过化简应当形式非常简单,所以尽管代入之后等式复杂,但坚定地化简下去,通常能够得到一个简单的答案。个人认为,代入法是一个比较“无脑”的方法,只需循规蹈矩按步骤去做即可。

例2:数列{n a }的前n 项和为n S ,213

1(*)22

n n S a n n n N +=-

-+∈(*)

.设n n b a n =+,证明:数列{}n b 是等比数列,并求出{}n a 的通项公式

思路:本题所给等式,n n S a 混合在一起,可考虑将其转变为只含n a 或只含n S 的等式,题目中n n b a n =+倾向于项的关系,故考虑消掉n S ,再进行求解

解:213

122n n S a n n +=-

-+ ① ()()()2

11131112,22

n n S a n n n n N --+=----+≥∈ ②

∴ ①- ②可得:112121n n n n a a n a a n ---=--?=--

()()()1112112n n n n a n a n a n a n --∴+=+-?+=

+-???? 即11

2

n n b b -= {}n b ∴是公比为1

2的等比数列 111b a =+ 令1n = 代入(*)可得:

11131122S a +=--+=- 112a ∴=- 11

2

b ∴=

1

11122n n n b b -??

??∴=?= ?

???

?? 12n

n n a b n n ??

∴=-=- ???

小炼有话说:(1)遇到,n n S a 混合在一起的等式,通常转化为纯n a (项的递推公式)或者纯n S (前n 项和的递推公式),变形的方法如下:

① 消去n S :向下再写一个关于1n S -的式子(如例2),然后两式相减(注意n 取值范围变化) ② 消去n a :只需1n n n a S S -=-代换即可(2,n n N ≥∈)

(2),n n S a 混合在一起的等式可求出1a ,令1n =即可(因为11S a =)

(3)这里体现出n n b a n =+的价值:等差等比数列的通项公式是最好求的:只需一项和公差(公比),构造出等差等比数列也就意味这其通项可求,而通过n n b a n =+也可将n a 的通项公式求出。这里要体会两点:一是回顾依递推求通项时,为什么要构造等差等比数列,在这里给予了一个解释;二是体会解答题中这一问的价值:一个复杂的递推公式,直接求其通项公式是一件困难的事,而在第一问中,恰好是搭了一座桥梁,告诉你如何去进行构造辅助数列,进而求解原数列的通项公式。所以遇到此类问题不要只停留在证明,而可以顺藤摸瓜将通项一并求出来

例3:已知数列{}n a 满足:1116,690,n n n a a a a n N *--=-+=∈且2n ≥,求证:13n a ??

??-??

为等差数列 解:设13n n b a =

-,则1

3n n

a b =

+代入11690n n n a a a ---+=可得:

11111336390n n n b b b --??????

++-?++= ??? ???????

1111336

91890n n n n n b b b b b ---?

+++--+= 11133

0n n n n

b b b b --?

-+=113n n b b -?-=

{}n b ∴为等差数列,即13n a ??

??-??

为等差数列

例4:已知曲线:1C xy =,过C 上一点(),n n n A x y 作一斜率为1

2

n n k x =-

+的直线交曲线C 于另一点()111,n n n A x y +++(1n n x x +≠且0n x ≠,点列{}n A 的横坐标构成数列{}n x ,其中

1117

x =

. (1)求n x 与1n x +的关系式; (2)令11

23

n n b x =

+-,求证:数列{}n b 是等比数列; 解:(1)曲线1:C y x =

()1:2

n n n l y y x x x -=--+ ()11111

121n n n n n n n n

n y x

y y x x x y x ++++?=??

?∴-=--?+?

?=??

12n n n x x x +∴=+

(2)111

21233

n n n n b x x b =

+?=+--,代入到递推公式中可得:

1111

2222111

333n n n b b b +???? ? ?+?+=++ ? ? ? ?---

????

11111112211111133422=433333333

n n n n n n n n n n b b b b b b b b b b ++++++

+????????

?=+?++-+-- ??? ???????????---

()()1111121144

4439339

n n n n n n n n n b b b b b b b b b +++++?+++=-+-++

()()11124

33n n n n n b b b b b +++?+=-+ 12n n b b +?=- {}n b ∴是公比为2-的等比数列

小炼有话说:本题(2)用构造法比较复杂,不易构造出n b 的形式,所以考虑用代入法直接求解

例5:已知数列{}n a 满足()()11

46410,21

n n n a n a a a n N n *

++++==

∈+,判断数列221

n

a n +??

??

+??

是否为等比数列?若不是,请说明理由;若是,试求出n a 解:设()2

21221

n n n n a b a n b n +=

?=+-+ 代入到()14641021

n n n a n a n ++++=

+可得:

()()()146212410

23221

n n n n b n n b n +++-++????+-=

+

()()()()123214222321812410n n n n b n n n b n n +?++--=++--++ ()()()()1232122321n n n n b n n b +?++=++ 12n n b b +?=

而112233

a a

b ++=

= ∴① 2a =-时,10b =,{}n b 不是等比数列

② 2a ≠-时,{}n b 是等比数列,即221n a n +??

?

?+??

为等比数列 11222213n n a a n -++∴

=?+ ()()1221223

n n a n a -++∴=?-

例6:(2015山东日照3月考)已知数列{}n a 中,111

,1,33,n n n a n n a a a n n +?+?==??-?为奇数

为偶数

,求证:

数列232n a ?

?

-

????

是等比数列 思路:所证数列为232n a ??

-

???

?

,可发现要寻找的是{}n a 偶数项的联系,所以将已知分段递推关系转变为2n a 与()21n a -之间的关系,再进行构造证明即可

证明:由11

,33,n n n a n n a a n n +?+?=??-?为奇数

为偶数

可得:

()2211

213n n a a n -=+- ()2122322n n a a n --=-?-

()2221

322213n n a a n n -∴=--+-???

? 2222211

2221133

n n n a a n n a --∴=-++-=+

222223111323232n n n a a a --??∴-

=-=- ???

∴数列232n a ?

?-???

?是公比为13的等比数列

例7:(2015湖北襄阳四中阶段性测试)已知数列{}n a 满足11a =,且对任意非负整数

(),m n m n >均有:

()221

12

m n m n m n a a m n a a +-++--=

+ (1)求02,a a

(2)求证:数列{}1m m a a +-是等差数列,并求出n a 的通项公式 解:(1)令m n =可得:

202011m m a a a a +-=?=

再令0n =可得:

()201

212

m m a m a a +-=

+ 2423m m a a m ∴=+- 21413a a ∴=-= 021,3a a ∴==

(2)思路:考虑证明数列{}1m m a a +-是等差数列,则要寻找1m m a a +-,1m m a a --的关系,即所涉及项为11,,m m m a a a +-,结合已知等式令1n =,利用(1)中的2423m m a a m =+-,将2m a 代换为m a 即可证明,进而求出通项公式 证明:在()221

12

m n m n m n a a m n a a +-++--=

+中令1n =得: ()11221

22

m m m a a m a a +-++-=

+ 11222224m m m a a m a a +-∴++-=+

由(1)得22423,3m m a a m a =+-=代入可得:

11222442m m m a a m a m +-∴++-=+

()()1111222m m m m m m m a a a a a a a +-+-∴+-=?---= ∴ 数列{}1m m a a +-是公差为2的等差数列

()()121212m m a a a a m m +∴-=-+-= ()121m m a a m -∴-=-

()-1222m m a a m --=- 212a a -=

()()121211m a a m m m ∴-=+++-=-????

()11m a m m ∴=-+

例8:(2010 安徽,20)设数列12,,,,n a a a 中的每一项都不为0,求证:{}n a 是等差数列的充分必要条件是:对n N *

?∈都有

1223111

111n n n n

a a a a a a a a +++++=

思路:证明充要条件要将两个条件分别作为条件与结论进行证明,首先证明必要性,即已知等差数列证明恒等式。观察所证等式可联想到求和中的裂项相消。所以考虑

11111111111n n n n n n n n a a a a a a d a a ++++????=-?=- ? ?-????

,然后恒等式左边进行求和即可证明。再

证明充分性,即已知恒等式证明等差数列:恒等式左侧为求和形式,所以考虑向前写一个式子两式相减,进而左边消去大量的项,可得:

121211

11n n n n n n

a a a a a a +++++=-

,通过化简可得:211n n n n a a a a +++-=-,从而利用等差中项完成等差数列的证明

证明:先证必要性:{}n a 是等差数列 ∴当0d =时

121n n a a a a -====

∴左边22211111n a a a =

++= 右边2

1n

a =

当0d ≠时,考虑

11111111111n n n n n n n n a a a a a a d a a ++++????

=-?=- ? ?-????

∴左边11

122311

11111111111111n n n n n a a d a a a a a a d a a d a a ++++??????????-=

-+-++-=-=???

? ? ? ??????????? 1111

1n n nd n d a a a a ++=

?==右边 ∴所证恒等式成立

再证必要性:

1223111

111n n n n

a a a a a a a a +++++=

① 122311212

11111

n n n n n n a a a a a a a a a a +++++∴

++++= ② ①-②可得:

121211

11n n n n n n

a a a a a a +++++=-

两边同时乘以112n n a a a ++得:

()1121n n a n a na ++=+- ③

同理:()111n n a na n a +=-- ④

③-④可得:()121222n n n n n n na n a a a a a ++++=+?=+

{}n a ∴为等差数列

小炼有话说:(1)本题证明等差数列所用的是等差中项的方法,此类方法多在数列中存在三项关系时使用

(2)在充分性的证明中连续用到了构造新式并相减的方法,这也是变形递推公式的方法之一,当原递推公式难以变形时,可考虑使用这种方法构造出新的递推公式,尤其递推公式的一侧是求和形式时,这种方法可以消去大量的项,达到化简递推公式的目的。

例9:若数列{}n a 的各项均为正数,212,n n n n N a a a t

*++?∈=+(t 为常数),且3242a a a =+ (1)求

13

2

a a a +的值 (2)求证:数列{}n a 为等差数列

解:(1)令1n =,则有2

213a a a t =+ ① 令2n =,则有2324a a a t =+ ②

①-②可得:

()()2222231324224313224313a a a a a a a a a a a a a a a a a a -=-?+=+?+=+

1324

23

2a a a a a a ++∴

== (2)思路:所给的递推公式中含有t ,而且原递推公式也很难变形,所以考虑再写一个式子两式相减,构造新的递推公式,仿照(1)进行变形。 解:2

12n n n a a a t ++=+ ③ 2

213n n n a a a t +++=+④

∴③-④可得:

22221221311322n n n n n n n n n n n n a a a a a a a a a a a a ++++++++++-=-?+=+

()()11322n n n n n n a a a a a a +++++?+=+

132

21

n n n n n n a a a a a a +++++++∴

=

从而

1321124

213

2n n n n n n n n n a a a a a a a a a a a a +++-+++++++=====

2

211

22n n n n n n a a a a a a +++++∴

=?+= 1+21n n n n a a a a ++∴-=-

∴ 数列{}n a 为等差数列

例10:在数列{}n a 中,10a =,且对任意k N *

∈,21221,,k k k a a a -+成等差数列,其公差为k d ,

若2k d k =,求证:22122,,k k k a a a ++成等比数列

思路:由21221,,k k k a a a -+的公差为2k d k =,而2121,k k a a -+表示数列中相邻的奇数项,所以可选择它们的关系作为突破口,即21214k k a a k +--=,从而可以求出{}n a 奇数项的通项公式,再利用2121,k k a a -+可求出2k a ,进而22122,,k k k a a a ++均可用含k 的式子表示,再从定义出发即可证明其成等比数列

解:21221,,k k k a a a -+ 成等差数列且2k d k =

21214k k a a k +-∴-=

()212341k k a a k --∴-=-

314a a -=

[]()21141221k a a k k k +∴-=+++=+

()()211121k a k k a k k +∴=++=+ ()2121k a k k -∴=- 21221,,k k k a a a -+ 成等差数列

()222121122

k k k a a a k +-∴=

+= ()2

2221k a k +=+ ()2

222122

21222221

41k k k k k k k a a a a a k k a a +++++∴=?=+?

= 22122,,k k k a a a ++∴成等比数列

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

等差数列高考真题复习

一、等差数列选择题 1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为 ( ) A .2 B . 43 C .4 D .4- 2.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62 10S S ,则34a a +=( ) A .2 B .3 C .4 D .5 4.设数列{}n a 的前n 项和2 1n S n =+. 则8a 的值为( ). A .65 B .16 C .15 D .14 5.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .n C .21n - D .2n 6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了 3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 7.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2 8.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29 B .38 C .40 D .58 9.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80 10.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6 12S S =( ) A . 17 7 B . 83 C . 143 D . 103 11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24 B .39 C .104 D .52 12.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15 B .20 C .25 D .30

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

高考“等差数列”试题精选(含答案)

高考“等差数列”试题精选 1.(2007安徽文)等差数列n 的前项和为n ,若432( ) (A )12 (B )10 (C )8 (D )6 2. (2008重庆文)已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) (A)4 (B)5 (C)6 (D)7 3.(2006全国Ⅰ卷文)设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ) A .8 B .7 C .6 D .5 4.(2008广东文)记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 2 5.(2003全国、天津文,辽宁、广东)等差数列{}n a 中,已知3 1 a 1= ,4a a 52=+,33a n =, 则n 为( ) (A )48 (B )49 (C )50 (D )51 6.(2007四川文)等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) (A)9 (B)10 (C)11 (D)12 7.(2004福建文)设S n 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) A .1 B .-1 C .2 D . 2 1 8.(2000春招北京、安徽文、理)已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( ) A .α1+α101>0 B .α2+α100<0 C .α3+α99=0 D .α51=51 9.(2005全国卷II 理)如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10.(2002春招北京文、理)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和 为390,则这个数列有( ) (A )13项 (B )12项 (C )11项 (D )10项

高考备考等差等比数列教案

姓名: 等差数列 1、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 2、已知等差数列{}n a 的公差1 2 d = ,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 3、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 4、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 5、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 6、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2 +n n ,则前n 个奇数项的和为( ) A .)1(32 +-n n B .)34(2 -n n C .23n - D . 3 2 1n 7、等差数列{}n a 中,若638a a a =+,则9s = . 8、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=?a a a ,则前10项的和 S 10= 9、一个等差数列共有10项,其中奇数项的和为 25 2 ,偶数项的和为15,则这个数列的第6项是 10、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若 3 37++=n n T S n n ,则8 8a b = , =+++11 513973b b a b b a 11、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.

2016-2018年全国卷高考数列题

2016—2018年全国卷数列高考汇编 8.【2016高考新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )97 4.【2016高考新课标1卷】设等比数列{}n a 错误!未找到引用源。满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 6.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求111101b b b ,,; (Ⅱ)求数列{}n b 的前1 000项和. 7.【2016高考新课标3理数】已知数列{}n a 错误!未找到引用源。的前n 项和1n n S a λ=+错误!未找到引用源。,错误!未找到引用源。其中0λ≠. (I )证明{}n a 错误!未找到引用源。是等比数列,并求其通项公式;(II )若53132 S =错误!未找到引用源。 ,求λ. 4.【2017高考新课标1理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 15. 【2017高考新课标2理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则

11n k k S ==∑ . 9.【2017高考新课标3理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24 B .-3 C .3 D .8 4.【2018高考新课标1理数】记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .12 15.【2018高考新课标1理数】记n S 为等差数列{}n a 的前n 项和. 若21n n S a =+,则6S = . 4.【2018高考新课标2文理数】记n S 为等差数列{}n a 的前n 项和. 若17a =-,315S =-. ⑴求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 17.(2018年全国卷3) 等比数列{}n a 中,12314a a a ==,. ⑴求{}n a 的通项公式; ⑵记n S 为{}n a 的前n 项和.若63m S =,求m .

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( ) A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2 n2-2n 2.(2019·长郡中学联考)已知数列{a n}满足,a n+1+2a n=0,且a2=2,则{a n}前10项的和等于( ) A.1-210 3 B.- 1-210 3 C.210-1 D.1-210 3.已知等比数列{a n}的首项为1,公比q≠-1,且a5+a4=3(a3 +a2),则9 a1a2a3…a9等于( ) A.-9 B.9 C.-81 D.81 4.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=( ) A.-12 B.-10 C.10 D.12 5.(2019·山东省实验中学联考)已知等差数列{a n}的公差不为零,S n为其前n项和,S3=9,且a2-1,a3-1,a5-1构成等比数列,则S5=( ) A.15 B.-15 C.30 D.25 二、填空题 6.(2019·北京卷)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=________,S n的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要

见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则此人第4天走的里程是________里. 8.(2019·雅礼中学调研)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *).令b n =log 3(a n +1),则b 1+b 2+b 3+…+b 100=________. 三、解答题 9.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9 =-a 5. (1)若a 3=4,求{a n }的通项公式; (2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 10.已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列. (1)求数列{a n }的通项公式; (2)设b n =a 2n ,记S n 为数列{b n }的前n 项和,证明:S n < 163 . B 级 能力提升 11.(2019·广州调研)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3 (n ∈N * )的最小值为( ) A .4 B .3 C .23-2 D.92 12.设等差数列{a n }的前n 项和为S n ,a =(a 1,1),b =(1,a 10),若a ·b =24,且S 11=143,数列{b n }的前n 项和为T n ,且满足2a n -1

高考复习数学直接证明与间接证明专项练习(附解析)

2019高考复习数学直接证明与间接证明专 项练习(附解析) 直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。以下是直接证明与间接证明专项练习,请考生认真练习。 1.(2019山东,文4)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是() A.方程x3+ax+b=0没有实根 B.方程x3+ax+b=0至多有一个实根 C.方程x3+ax+b=0至多有两个实根 D.方程x3+ax+b=0恰好有两个实根 2.要证:a2+b2-1-a2b2≤0,只要证明() A.2ab-1-a2b2≤0 B.a2+b2-1-≤0 C.-1-a2b2≤0 D.(a2-1)(b2-1)≥0 3.设a,b,c均为正实数,则三个数a+,b+,c+() A.都大于2 B.都小于2 C.至少有一个不大于2 D.至少有一个不小于2 4.(2019天津模拟)p=,q=(m,n,a,b,c,d均为正数),则p,q的大小为() A.p≥q B.p≤q C.p>q D.不确定 5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()

A.恒为负值 B.恒等于零 C.恒为正值 D.无法确定正负 6.(2019福建三明模拟)命题“如果数列{an}的前n项和 Sn=2n2-3n,那么数列{an}一定是等差数列”是否成立() A.不成立 B.成立 C.不能断定 D.与n取值有关 7.用反证法证明“如果a>b,那么”假设内容应是. 8.在不等边三角形中,a为最大边,要想得到角A为钝角的结论,三边a,b,c应满足. 9.已知a>0,求证:≥a+-2. 10.已知在数列{an}中,a1=5,且an=2an-1+2n-1(n≥2,且nN*). (1)证明:数列为等差数列; (2)求数列{an}的前n项和Sn. 能力提升组 11.已知m>1,a=,b=,则以下结论正确的是() A.a>b B.aa+b,那么a,b应满足的条件是. 13.设a,b,c均为正数,且a+b+c=1,证明:≥1. 14.△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c. 求证:. 15.(2019福建宁德模拟)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f'(x)=,g(x)=f(x)+f'(x).

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

(完整版)历年数列高考题及答案

1. (福建卷)已知等差数列 }{n a 中,12497,1,16a a a a 则==+的值是( ) A .15 B .30 C .31 D .64 2. (湖南卷)已知数列 }{n a 满足 ) (1 33,0*11N n a a a a n n n ∈+-= =+,则 20a = ( ) A .0 B .3- C .3 D .23 3. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 4. (全国卷II ) 如果数列{}n a 是等差数列,则( ) (A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( ) (A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a = 6. (山东卷) {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( ) (A )667 (B )668 (C )669 (D )670 7. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个 顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。 8. (湖北卷)设等比数列 }{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 9. (全国卷II ) 在83和27 2之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______ 10. (上海)12、用n 个不同的实数 n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。 对第i 行in i i a a a ,,,21Λ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i Λ=。例如:用1,2,3可得数阵 如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=?-?+-=+++b b b Λ,那么,在 用1,2,3,4,5形成的数阵中, 12021b b b +++Λ=_______。 11. (天津卷)在数列{a n }中, a 1=1, a 2=2,且 )( )1(12* +∈-+=-N n a a n n n ,

高考数学必考点 等差数列与等比数列 计算题专项

等差数列与等比数列测试题 1.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m )内的项的个数记为bm ,求数列{b m }的前m 项和S m 。 2.已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27 m 的项的个数记为m b .求数列{}m b 的前m 项和 m S . 3、设{}n a 是等差数列,1()2n a n b =,已知123218b b b ++= ,12318 b b b =, 求等差数列{}n a 的通项公式。 4、设数列{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 。 5、设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ; (II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.

6、设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m , m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11 ,23 p q = =-,求3b ; (Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式; (Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由. 7、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记 1 ()4n n n b n N a ++=∈ 求数列{}n b 的前n 项和n T 8、已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列 (1)若 31n a n =+,是否存在* ,m n N ∈,有1m m k a a a ++=?请说明理由; (2)若n n b aq =(a 、q 为常数,且aq ≠0)对任意m 存在k ,有1m m k b b b +?=,试求a 、q 满

证明数列是等差或等比数列的方法

一、证明或判断数列为等差数列的方法 1.定义法 在数列{}n a 中,若d a a n n =--1(d 为常数),则数列{}n a 为等差数列 例:已知正项数列{}n a 的前n 项和为n S ,3 21=a ,且满足2 11322++=+n n n a S S (*N n ∈) 证明:数列{}n a 是等差数列 证明:由2 11322++=+n n n a S S 得2 1132)(2++=++n n n n a S a S 整理得12 1234++-=n n n a a S 则n n n a a S 23421-=- 两式相减得n n n n n a a a a a 2233412 2 1+--=++ n n n n a a a a 2233122 1+=-++ 因为{}n a 是正项数列,所以01>++n n a a 所以()231=-+n n a a ,即3 21=-+n n a a 所以{}n a 是首项为32,公差为3 2 的等差数列 2.等差中项法 212{}n n n n a a a a +++=?是等差数列 例:设数列{}n a 的前n 项和为n S ,已知11=a ,62=a ,113=a ,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A 、B 为常数 (1)求A 与B 的值 (2)证明数列{}n a 是等差数列 解:(1)因为11=a ,62=a ,113=a ,所以1231718S S S ===,, 把1=n ,2=n 分别代入()()B An S n S n n n +=+--+25851 得B A +=?-?-1773 B A +=?-?2712182 解得:20-=A ,8-=B (2)由(1)知()()82025851--=+--+n S n S n n n 整理得()82028511--=---++n S S S S n n n n n

等差数列高考真题复习doc

一、等差数列选择题 1.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A . 47 B . 1629 C . 815 D . 45 2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155 C .141 D .139 3.设数列{}n a 的前n 项和2 1n S n =+. 则8a 的值为( ). A .65 B .16 C .15 D .14 4.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231 n n a n b n =+,则2121S T 的值为( ) A . 13 15 B . 2335 C . 1117 D . 49 5.已知数列{}n a 的前n 项和2 21n S n n =+-,则13525a a a a +++ +=( ) A .350 B .351 C .674 D .675 6.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个 B .3个 C .2个 D .1个 7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29 B .38 C .40 D .58 8.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161 C .141 D .151 9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21 2 ,则该数列的项数是( ) A .8 B .4 C .12 D .16 10.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7 B .10 C .13 D .16 11.等差数列{}n a 中,若26a =,43a =,则5a =( )

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

相关主题
文本预览
相关文档 最新文档