当前位置:文档之家› 高中数学—17—抛物线及圆锥曲线综合(A)-教师版

高中数学—17—抛物线及圆锥曲线综合(A)-教师版

高中数学—17—抛物线及圆锥曲线综合(A)-教师版
高中数学—17—抛物线及圆锥曲线综合(A)-教师版

1.若对一切R k ∈,直线01=--kx y 与椭圆152

2=+m

y x 恒有公共点,则m 取值范围是 .

【难度】★★ 【答案】[)()+∞,55,1Y

2.已知21F 、F 是椭圆19

162

2=+y x 的两焦点,

过点2F 的直线交椭圆于A 、B ,若|AB |=5,则=+||||11BF AF ( )

A .11

B .10

C .9

D .5

【难度】★★ 【答案】A

3.双曲线19

162

2=-y x 上一点P 对两焦点21F 、F 的锐角为?60,则21PF F ?面积为

【难度】★★ 【答案】39 4.双曲线1:

2

22

21=-b y a x C 与椭圆1:

2

22

22=+n y m x C 有相同焦点,

若点P 是1C 与2C 的一个交点,则||||21PF PF ?等于( )

A .22m a -

B .22a m -

C .22m a +

D .22b n -

【难度】★★ 【答案】D

5.设连接双曲线12222=-b y a x 与122

22=-a

x b y 的四个顶点的四边形面积是1S ,连接其四个焦点的面积为,

则21S S

的最大值是( ) A .41 B .2

1

C .1

D .2

【难度】★★ 【答案】B

2S 热身练习

抛物线及圆锥曲线综合

一、抛物线

1、定义

平面内与一定点..和一条定直线l (F 不在l 上)的距离相等的点P 的轨迹叫做抛物线(parabola ).点F 叫做抛物线的焦点,直线l 叫做抛物线的准线(directrix of a parabola ).

注意:当点F 在l 上时,上述表述的动点的轨迹是过点F 与l 垂直的直线.

标准方程

y 2=2px (p >0)

y 2=-2px (p >0)

x 2=2py (p >0)

x 2=-2py (p >0)

p 的几何意义:焦点F 到准线l 的距离

图形

顶点 O (0,0)

对称轴 y =0

x =0 焦点 ??

?

??02,p F ??

? ??-02,p F ??

? ??20p F , ??? ?

?-20p F ,

准线方程 x =-p 2

x =p 2 y =-p 2

y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右

向左

向上

向下

注意:

对于抛物线的标准方程,焦点坐标总是落在一次项未知数所在的坐标轴上,若系数为正,则落在正半轴上;若系数为负,则落在负半轴上.

3、抛物线焦点弦的性质

已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1)、B (x 2,y 2).

(1) y 1y 2=-p 2

,x 1x 2=p 2

4;

(2) |AB |=x 1+x 2+p =2p

sin 2α(α为弦AB 的倾斜角);

(3) S △AOB =p

22sin α;

(4) 1|F A |+1|FB |为定值2p

知识梳理

(5)以AB 为直径的圆与抛物线的准线相切.

4.直线与圆锥曲线的位置关系的判断

将直线方程与圆锥曲线方程联立,消去一个变量得到关于x (或y )的一元方程:ax 2+bx +c =0 (或ay 2+by +c =0).

(1)若a ≠0,可考虑一元二次方程的判别式Δ,有

①Δ>0?直线与圆锥曲线相交;②Δ=0?直线与圆锥曲线相切;③Δ<0?直线与圆锥曲线相离. (2)若a =0,b ≠0,即得到一个一元一次方程,则直线l 与圆锥曲线E 相交,且只有一个交点, ①若E 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; ②若E 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 5.圆锥曲线的弦长

设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k 2|x 2

-x 1|=

1+1

k

2|y 2-y 1|.

一、 抛物线

1、抛物线的基本量运算

【例1】抛物线()2

0y ax a =≠的准线方程是( ).

A 4a x =-

B 4

a

x = C 4a x =- D 4a x =

【难度】★ 【答案】A

【例2】已知抛物线2

8y x =上一点M 到焦点的距离是8,则M 的坐标是 . 【难度】★ 【答案】()

6,43±

【巩固训练】

1.已知点1(,0)4

F -,直线l :41

=x ,点B 是直线l 上的动点,若过B 垂直于y 轴的直线与线段BF

的垂直平分线交于点M ,则点M 所在曲线是 ( )

()A 圆 ()B 椭圆 ()C 双曲线 ()D 抛物线

【难度】★★

例题解析

【答案】D

2.设抛物线2

2y x =的焦点为F ,以9(,0)2

P 为圆心,PF 长为半径作一圆,与抛物线在x 轴上方交于,M N ,则||||MF NF +的值为 (

()A 8 ()B 18 ()C 22 ()D 4

【难度】★★ 【答案】A

【解析】根据题意可作出图形如图所示,过,M N 分别向准线作垂线交于','M N ,设1122(,),(,)M x y N x y ,则

1211

|||||'||'|()()22

+=+=+++MF NF MM NN x x ,且圆的方

程为22

9()162-+=x y ,联立2229()162

2?-+=???=?

x y y x

,可得217

704

-+

=x x 所以12||||1718+=++=+=MF NF x x .选A . 3.过点(1,0)A 作倾斜角为4的直线,与抛物线2

2y x =交于M N 、两点,则MN = .

【难度】★★

【答案】212122[()4]26+-=x x x x

【解析】直线方程为1=-y x ,代入抛物线2

2=y x ,得:2410-+=x x ,124+=x x ,121=x x ,

则22

221212121212()()2()2[()4]26=-+-=

-=+-=MN x x y y x x x x x x .

2、抛物线定义的应用

【例3】设F 为抛物线2

4y x =的焦点,,,A B C 为抛物线上三点,若ABC ?的重心与焦点重合,则||||||AF BF CF ++的值是______________. 【难度】★★

【答案】设112233(,),(,),(,)A x y B x y C x y , 可知抛物线的焦点是(1,0)F ,根据抛物线的定义,

则123123||||||(1)(1)(1)3336++=+++++=+++=+=AF BF CF x x x x x x .

引申:若F 是抛物线2

4y x =的焦点,点(1,2,3,...,10)i P i =在抛物线上,且12100...0PF P F P F +++=u u u r u u u u r u u u u u r r ,

则12100||||...||PF P F P F +++=u u u u r u u u u u r u u u u u u r

________. 【难度】★★

【答案】200

【例4】(1)已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时点P的坐标.

解将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴A在抛物线内部,如图.

设抛物线上点P到准线l:x=-

1

2的距离为d,由定义知|P A|+|PF|=|P A|+d,当P A⊥l时,|P A|+d最小,最小值为

7

2,即|P A|+|PF|的最小值为

7

2,此时P点纵坐标为2,代入y

2=2x,得x=2,∴点P的坐标为(2,2).

解当P、A、F共线时,|P A|+|PF|最小,|P A|+|PF|≥|AF|=????

3-

1

22+42=

25

4+16=

89

2.

1212

距离之和的最小值是()

A.2

B.3

C.

11

5 D.

37

16

解:易知直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,点P到l2的距离等

于点P到抛物线的焦点F(1,0)的距离,因此原问题可转化为在抛物线y2=4x上找一个点P

使得P到点F(1,0)和直线l1的距离之和最小.因此最小值为F(1,0)到直线l1:4x-3y+6

=0的距离,即d min=

|4-0+6|

42+(-3)2

=2.故选A.

【巩固训练】

1.AB是抛物线2x

y=的一条过焦点的弦,且4

=

AB,则AB中点到直线0

1

y=

+的距离.【难度】★★

【答案】

11

4

2.已知直线和直线0

:

2

=

x

l,抛物线上一动点到

直线和直线的距离之和的最小值是.

【难度】★★

【答案】1

3、抛物线的综合问题

【例5】设点P在曲线2

2+

=x

y上,点Q在曲线2

-

=x

y上,则PQ的最小值等于.【难度】★★

1

:4360

l x y

-+=4

y x

=P

1

l

2

l

【例6】若抛物线2

1y ax =-上总存在关于直线0x y +=对称的两点,求a 的范围.

【例7】已知定点(2,0)F ,直线:2l x =-,点P 为坐标平面上的动点,过点P 作直线l 的垂线,垂

足为点Q ,且()FQ PF PQ ⊥+u u u r u u u r u u u r

(1)求动点P 所在曲线C 的方程;

(2)直线1l 过点F 与曲线C 交于A B 、两个不同点,求证:

11||||AF BF +=1

2

; (3)记OA u u u r 与OB u u u r

的夹角为θ(O 为坐标原点,A B 、为(2)中的两点),求cos θ的最小值.

1.曲线2

4y x =关于直线2x =对称的曲线方程是( )

A 284y x =-

B 248y x =-

C 2

164y x =- D 2

416y x =+

【难度】★

★ 【答案】C

2.过抛物线x y 42

=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ).

A 、有且仅有一条

B 、有且仅有两条

C 、有无穷多条

D 、不存在 3

.抛物线2

2y x =截一组斜率为2的平行直线,所得弦中点的轨迹方程是 .

二、圆锥曲线综合

1、圆锥曲线中的最值与取值范围

解决圆锥曲线中的取值范围问题应考虑的五个方面

(1) 利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;

(2) 利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系; (3) 利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4) 利用已知的不等关系构造不等式,从而求出参数的取值范围;

(5) 利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.

【例8】如图,动点M 到两定点(1,0)A -、(2,0)B

构成MAB △,且2MBA MAB ∠=∠,设动点M 的轨迹为C . (1)求轨迹C 的方程;

(2)设直线2y x m =-+与y 轴交于点P ,与轨迹C 相交于点Q R 、, 且||||PQ PR <,求

||

||

PR PQ 的取值范围.

1

【例9】我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆122

22=+c

x b y (0)x ≤合成的曲线称作“果

圆”,其中2

22c b a +=,0>a ,0>>c b .

如图,设点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y 轴的交点,

M 是线段21A A 的中点.

(1)若012F F F △是边长为1的等边三角形,求该“果圆”的方程;

(2)设P 是“果圆”的半椭圆122

22=+c

x b y (0)x ≤上任意一点.

求证:当PM 取得最小值时,P 在点12B B ,或1A 处;

(3)若P 是“果圆”上任意一点,求PM 取得最小值时点P

【巩固训练】

1.椭圆2222:1(0)x y M a b a b +=>>的离心率为c a =x a =±和y b =±所围成的矩形

ABCD 的面积为8.

(1)求椭圆M 的标准方程;

(2)设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点P ,Q ,l 与矩形ABCD 有两个不同

的交点S ,T .求

||

||

PQ ST 的最大值及取得最大值时m 的值.

因此椭圆M 的方程为2

214

x y +=. (2)由22

1,

4x y y x m ?+=???=+?

整理得2258440x mx m ++-=,

由222

6480(1)80160m m m ?=--=->,得55m -<<

设11(,)P x y 、22(,)Q x y ,则128=5

m

x x -+,2124(1)5m x x -=,

所以2222121212124

||()()2()42(5)(55)5

PQ x x y y x x x x m m =-+-=+-=--<<.

线段CD 的方程为1(22)y x =-≤≤,线段AD 的方程为2(11)x y =--≤≤.

①不妨设点S 在AD 边上,T 在CD 边上,可知15m ≤<,(2,2)S m --,(2,1)D -, 所以||2||2[1(2)]2(3)ST SD m m =

==---,

因此2

2

||45||5(3)

PQ m ST m -=-, 令3(15)t m m =-≤<,则3m t =-,(35,2]t ∈-,

所以2

222

||45(3)446413514||55544

PQ t ST t t t t --??==-+-=--+ ???, 由于(35,2]t ∈-,所以1135,24t ??

+∈?????

, 因此当134t

=

,即43t =时,||||

PQ ST 取得最大值25

5,此时53m =.

②不妨设点S 在AB 边上,T 在CD 边上,此时11m -≤≤,

因此||2||22ST AD ==,此时

2||2

5||5

PQ m ST =-, 所以当0m =时,

||||

PQ ST 取得最大值25

5.

(3)不妨设点S 在AB 边上,T 在BC 边上,51m -<≤-, 由椭圆和矩形的对称性知

||||

PQ ST 的最大值为255,此时53m =-.

综上所述,当53m =±或0m =时,||||

PQ ST 取得最大值25

5. 2、定点定值问题

圆锥曲线中定点问题的两种解法

(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.

(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.

圆锥曲线中的定值问题的常见类型及解题策略

(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;

(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;

(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 【例9】已知双曲线C 的右顶点为(1,0)A ,左焦点为F ,过A 且倾斜角为150?的直线l 与双曲线C 的另一个交点为B ,线段AB 的中点的横坐标是1

8

-

. (1)求双曲线C 的标准方程; (2)求AFB ∠的大小;

(3)若动点B '在双曲线C 的左支上,设AFB FAB λ''∠=∠,

【例11】已知椭圆22122:1(0)x y C a b a b +=>> 经过点3

(1,)2

M ,且其右焦点与抛物22:4C y x =

的焦点F 重合,过点F 且与坐标轴不垂直的直线与椭圆交于,P Q 两点.

(1)求椭圆1C 的方程;

(2)设O 为坐标原点,线段OF 上是否存在点(,0)N n ,使得QP NP PQ NQ ?=?u u u r u u u r u u u r u u u r ?

若存在,求出n 的取值范围;若不存在,说明理由;

(3)过点0(4,0)P 且不垂直于x 轴的直线与椭圆交于,A B 两点,点B 关于x 轴的对称点为E ,

【巩固训练】

1.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .

(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的 面积; (2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥; (3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.

3、存在性问题

对于存在性的探索性问题,解答这类问题的基本思路是:先肯定结论,再进行演绎推理,如果推理出现矛盾,则不存在;如果推出合理结果(推证无矛盾),则说明存在.

【例12】设过抛物线2

2(0)x py p =>对称轴上的定点(0,)(0)F m m >作直线AB 与抛物线交于

A 、

B 两点,且112212(,),(,)(0,0)A x y B x y x x <>,相应于点F 的直线:l y m =-称为抛物线的“类准线”.

(1)若124x x m =-,求抛物线方程;

(2)若点M 是“类准线”:l y m =-上任一点,记直线,,MA MB MF 的倾斜角依次为,,a b g ,试探

索,,a b g 余切值之间的关系式,并给出证明.

(3)如果5,,63

p p

a b =

=判定:是否存在常数l ,使a b g l +-=成立,如果存在,求出l 的 值,如果不存在,请说明理由.

通过你对以上问题的研究,请概括出在怎样的更一般的条件下,使你研究的成果(即是否存在常数l ,使a b g l +-=成立)不变,并证明你的结论. 【难度】★★★

【答案】(1)设AB :y kx m =+,代入2

2x py =,得2

220x pkx pm --=,

1. 在平面直角坐标系xOy 中,已知曲线1C 为到定点)2

1

,23(F 的距离与到定直线 120l y ++=的距离相等的动点P 的轨迹,曲线2C 是由曲线1C 绕坐标原点O 按顺时针方 向旋转30?形成的.

(1)求曲线1C 与坐标轴的交点坐标,以及曲线2C 的方程;

(2)过定点)0,(0m M )2(>m 的直线2l 交曲线2C 于A 、B 两点,已知曲线2C 上存在不同的两点

C 、

D 关于直线2l 对称.问:弦长CD 是否存在最大值?若存在,求其最大值;若不存在,

()

212

1y y k CD -?-+=2122124)(1y y y y k -+?+=2

2221234??

? ??-+??? ??

---=m m k

设2k t =,则20-<

2

21234)(??

?

??-+??? ??---=m m t t f ,20-<

由已知2>m ,当???<->-0

3,

02m m ,即32≤

当3>m 时,)(t f 有最大值)1(2-m ,即弦长CD 有最大值2(1)m -.

直线与圆锥曲线的综合问题抓住这四步:一设:设点的坐标和直线方程;二联立:联立直线方程和圆锥曲线方程,写出韦达定理;三转化:这是最重要的一步,将题目要满足的条件或者性质转化成数学表达式,进一步再用韦答定理的表达式代替;四计算并检验:求出参数的值或者范围,代入步骤二检验,直线与圆锥曲线是否有交点或者两个交点.基本上这四步可以解决直线与圆锥曲线的综合问题.最后注意一些常见问题的处理方法,比如定点定值问题,比如求参数的取值范围问题等等.

1.已知抛物线2

0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则m =( ) A .

116 ; B . 1

16

- ; C . 16 ; D . 16-. 【难度】★

【答案】 D .

2.若点P 到点(4,0)F 的距离比它到直线50x +=的距离小1,则P 点的轨迹方程是( ). A 、2

16y x =- B 、2

32y x =- C 、2

16y x = D 、2

32y x = 【难度】★ 【答案】 C .

课后练习

反思总结

3.已知抛物线的顶点在原点,焦点和椭圆

22

1168

x y +=的右焦点重合,求抛物线的标准方程是 . 【难度】★★

【答案】可得椭圆的右焦点为(22,0),则抛物线的标准方程为2

82=y x .

4.若直线2x y -=与抛物线2

4y x =相交于A B 、两点,则线段AB 的中点坐标是 . 【难度】★★ 【答案】(4,2)

5.若曲线(,)0f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方 程的曲线有自公切线的是( ).

A .210x y +-=

B .2

410x y --+=

C .22

10x y x x +---= D .2310x xy -+= 【难度】★★ 【答案】C 【解析】

6.过抛物线2

4y x =的焦点F 作倾斜角为

34

π

的直线交抛物线于A 、B 两点,则AB 的长是( ) A

2 B 4 C 8 D 2

【难度】★★ 【答案】C

7.若抛物线()2

20y px p =>上一点到准线和抛物线的对称轴的距离分别为10和6,则该点横坐标

可能为( )

A 10

B 9

C 8

D 6 【难度】★★ 【答案】B

8.过抛物线2

y x =-的焦点F 的直线交抛物线于A 、B 两点,且A 、B 在直线1

4

x =上的射影分别为M 、N ,则MFN ∠等于( )

A 45o

B 60o

C 90o

D 以上都不对 【难度】★★ 【答案】C

高中数学人教版选修1-1(文科) 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程(I)卷

高中数学人教版选修1-1(文科)第二章圆锥曲线与方程 2.2.1 双曲线及其标准方 程(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)过已知双曲线-=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为() 【考点】 2. (2分)(2018·石嘴山模拟) 已知双曲线的左、右焦点分别为,以 为直径的圆与双曲线渐近线的一个交点为,则双曲线的方程为() A . B . C . D . 【考点】 3. (2分) (2019高二上·四川期中) 已知圆:(为圆心),点,点 是圆上的动点,线段的垂直平分线交线段于点,则动点的轨迹是() A . 两条直线 B . 椭圆 C . 圆 D . 双曲线 【考点】 4. (2分) (2017高二下·新疆开学考) 过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为() A . 8

B . 4 C . 4 D . 【考点】 5. (2分)(2017·常德模拟) 已知双曲线C: =1(a>0,b>0)的渐近线方程为y=± x,则双曲线C的离心率为() A . B . C . D . 【考点】 6. (2分)“”是“直线与圆相切”的() A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【考点】 7. (2分)双曲线的渐近线方程是() 【考点】 8. (2分) (2019高二下·南山期末) 直线l过点且与双曲线仅有一个公共点,这样的直线有()条. A . 1 B . 2

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高二数学圆锥曲线专题((文科)

高二数学(文科)专题复习(十二)圆锥曲线 一、选择题 1. 设双曲线以椭圆19 252 2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.2± B.34± ?C.2 1± D.4 3 ± 2. 过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在 3.从集合{1,2,3…,11}中任选两个元素作为椭圆方程122 22=+n y m x 中的m 和n,则能组 成落在矩形区域B ={(x ,y)| |x |<11且|y|<9}内的椭圆个数为( )?? A.43 B. 72 C. 86 D. 90 4. 设椭圆的两个焦点分别为F 1、、F2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1P F2 为等腰直角三角形,则椭圆的离心率是( ) (A) 2 (B )12 (C)2 1 5. 已知双曲线22 163 x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直 线2F M 的距离为( ) (A) ?(B ) (C) 65?(D) 5 6 6.已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A, △OAF的面积为2 2 a (O 为原点),则两条渐近线的夹角为( )

7.直线y=x +b (b ≠0)交抛物线2 12 y x =于A、B 两点,O 为抛物线的顶点,OA OB ?=0,则b =_______. 8.椭圆22 1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M与坐标原点的 直线的斜率为 2,则m n 的值为 9.过抛物线2 4y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若 12y y +=则AB 的值为 10.以下四个关于圆锥曲线的命题中: ①设A 、B为两个定点,k 为非零常数,||||PA PB k -=,则动点P的轨迹为双曲线; ②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若1 (),2 OP OA OB =+则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ?④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. ?其中真命题的序号为 (写出所有真命题的序号) 三、解答题 11.抛物线顶点在原点,它的准线过双曲线22 221(0,0)x y a b a b -=>> 的一个焦点,且抛 物线与双曲线的一个交P( 3 2 点,求抛物线和双曲线方程。 12.已知抛物线y2 =2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M.

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点21,F F 的距离的和为 常数(大于21F F )的动点的轨迹叫椭 圆即a MF MF 221=+ 当2a ﹥2c 时,轨迹是椭圆, 当2a =2c 时,轨迹是一条线段 21F F 当2a ﹤2c 时,轨迹不存在 平面内到两定点21,F F 的距离的差的绝 对值为常数(小于21F F )的动点的轨 迹叫双曲线即122MF MF a -= 当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在 标准 方 程 焦点在x 轴上时: 122 22=+b y a x 焦点在y 轴上时:122 22=+b x a y 注:根据分母的大小来判断焦点在哪一 坐标轴上 焦点在x 轴上时:122 22=-b y a x 焦点在y 轴上时:122 22=-b x a y 常数 c b a ,,的关 系 2 22b c a +=,0>>b a , a 最大, b c b c b c ><=,, 222b a c +=,0>>a c c 最大,可以b a b a b a ><=,, 渐近线 焦点在x 轴上时: 0x y a b ±= 焦点在y 轴上时:0y x a b ±= 抛物线:

图形 x y O F l x y O F l 方程 )0(22 >=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

高中数学圆锥曲线综合--求轨迹方程

圆锥曲线综合--求轨迹方程 教学任务 教学流程说明 教学过程设计 圆锥曲线综合--求轨迹方程 求轨迹的常用方法: (1)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; (2)代入求轨法(坐标平移法或转移法):若动点P(x,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1) 又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程; (3)直接法:直接通过建立x 、y 之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法; (4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程, 再由条件确定其待定系数,代回所列的方程即可 (5)参数法:当动点P (x,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均 用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。 1、(1)一动圆过定点)0,1(A 且与定圆16)1(2 2 =++y x 相切,求动圆圆心的轨迹方程; (2)又若定点)0,2(A 定圆为4)2(22 =++y x 呢? 2、△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G 的轨迹方程.

3、在平面直角坐标系中,若}2,{},2,{-=+=y x y x 8=+。求动点),(y x M 的轨迹C 的方程; 一、填空: 1.平面内到点A (0,1)、B (1,0)距离之和为2的点的轨迹为 2.已知M (-2,0)、N (2,0),动点P 满足|PM |-|PN |=4,则动点P 的轨迹方程是____________ 3.已知lg(2),lg |2|,lg(16)x y x -成等差数列,则点(,)P x y 的轨迹方程 __ 4.P 是椭圆15 92 2=+y x 上一点,过P 作其长轴垂线,M 是垂足,则PM 中点轨迹方程为______ 5.点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是 6.动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是 。 7、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。 8、倾斜角为 4 π 的直线交椭圆42 x +y 2=1于A 、B 两点,则线段AB 中点的轨迹方程是 9、理)两条直线ax+y+1=0和x -ay -1=0(a ≠±1)的交点的轨迹方程是 二、选择: 10、,a b 为任意实数,若(,)a b 在曲线(,)0f x y =上,则(,)b a 也在曲线(,)0f x y =上,那么曲线(,)0f x y =的几何特征是( ) (A )关于x 轴对(B )关于y 轴对称 (C )关于原点对称 (D )关于直线x -y =0对称 11、方程2 2 2 2 (1)0x x y ++-=的图象是( ) (A )y 轴或圆(B )两点(0,1)与(0,-1)(C )y 轴或直线y =1±(D )答案均不对 12、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆 三、解答 17、已知动点p 到定点F (1,0)和直线x=3的距离之和等于4,求p 点的轨迹方程。 18、抛物线y 2=x +1,定点A (3,1),B 是抛物线上任意一点,点P 在AB 上满足 BP :P A =1:2,当点B 在抛物线上运动时,求点P 的轨迹方程并指出轨迹是什么曲线? 19、理)过原点作直线l 和抛物线642 +-=x x y 交于A 、B 两点,求线段AB 中点M 的轨迹方程。

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

相关主题
文本预览
相关文档 最新文档