当前位置:文档之家› 玻璃纤维

玻璃纤维

玻璃纤维
玻璃纤维

玻璃纤维

王移丽

新疆大学大学纺织与服装学院,新疆乌鲁木齐830046

摘要玻璃纤维是现代纺织行业重要的纤维材料之一,因其具有优异的性能在现代社会中得到广泛的应用。概述现有对玻璃纤维进行表面处理的方法并对玻璃纤维的应用前景做了简要的展望。

关键词玻璃纤维;制备;性能;应用;表面处理

引言

玻璃纤维是无机非金属材料中的一种新型功能材料和结构材料。由于具有耐高温性能好、抗腐蚀性强、强度高、吸湿性低、延伸小及绝缘性好等一系列优异特性,目前已广泛应用于电子、通讯、核能、航空、航天、兵器、舰艇及海洋开发、遗传工程等高新技术产业,成为我国21世纪不可缺少的可持续发展的高新技术材料。

1概述

1.1玻璃纤维的概况

玻璃纤维工业自1938年创立以来,其产量、生产工艺、品种规格和应用领域在不断发展,自20世纪60年代,玻璃纤维在飞机上就获得了应用,但由于当时的价格昂贵、工艺性能欠佳等原因,未能获得进一步的发展和重视。后来随着技术的改进和应用领域的扩大,玻璃纤维越来越多地用于军事方面,特别是航天、航空工业,约占航天航空用的增强纤维中的67.7%。随后,其应用范围日益扩大,如体育器具、建筑构件、轻工制品、化工管道、车工业、医疗器械、舟艇船舰等都已普遍采用玻璃纤维及其复合材料。自20世纪80年代以来,其年均增长率高达10%左右。

1.2玻璃纤维的结构

玻璃纤维是无定形的无机材料,由氧化硅及其它氧化物组成。硅、硼、磷等元素的氧化物构成网络结构,而钠、钾、钙、镁等金属氧化物中的金属离子,填入网络中的空隙,对玻璃的性质起着重要作用,其中微量金属离子,如钛、铍等元素起到改性剂的效果,使玻璃纤维具有所要求的特性。硅酸钠玻璃纤维的结构如图1所示[1]

图1硅酸钠玻璃纤维结构示意图

1.3玻璃纤维的分类

1.3.1按其化学组成分类

(1)无碱玻璃纤维:是指化学组成中碱金属氧化物含量0%~2%的铝硼硅酸盐成分的玻璃纤,其特点是具有良好的电气绝缘性,耐水性、机械强度都比较好,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,其缺点是易被无机酸侵蚀,故不适于用在酸性环境,称为E-玻纤。

(2)中碱玻璃纤维:是指化学组成中金属氧化物含量为8%~12%左右的钠钙硅酸盐体系的玻璃纤维,其耐酸性好,机械强度为无碱玻璃纤维的75%左右,广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,其价格低于无碱玻璃纤维。这类玻璃纤维常选用含硼、钙高,含碱低的成分,耐水、耐酸性较强,称为C-玻纤。

(3)高碱玻璃纤维:是指化学组成中金属氧化物含量为14%~17%的钠钙玻璃体系的玻璃纤维,这种玻璃纤维含碱量高,故机械强度较差、耐水性差、耐酸性好。其原料来源方便,还可利用平板、瓶罐等碎玻璃制成,成本低廉,可作蓄电瓶隔离片、管道包扎布、沥青油毡基布等。这种玻璃纤维因碱含量较高,称为A-玻纤。

(4)特种玻璃纤维:它是指化学组成适应特殊用途的玻璃纤维,如高弹性模量玻璃纤维(M-玻纤)引入BeO、Li 2O、ZrO 2、TiO 2、;防辐射玻纤引入PbO、ZrO 2、BeO、Ta 2O 5、WO 3等。1.3.2按其纤维形态分类

(1)连续玻璃纤维:它是指熔融玻璃液从漏板小孔流出后,由外力拉引成无限长的无机纤维。一般单丝直径为3~9m的细纤维可供纺织加工成玻璃纱、布、带等;单丝直径为10~19m的纤维可制成无纺或少纺制品,如无捻粗纱、布、薄毡等;还有大部分连续纤维用来增强聚合物复合材料。由于连续纤维基本都要经过纺织加工,所以又称纺织玻璃纤维。

(2)定长玻璃纤维:它是指长度有限,一般为300~500mm左右,俗称长棉。可做成毛纱并加工成毛纱织物,也可做成薄毡,用作防水材料、过滤材料及隔热材料。

(3)玻璃棉:玻璃棉也是一种定长纤维,其长度在150mm左右或者更短;形态上蓬松,类似棉絮,也称短棉。可用离心力或气流喷吹制得玻璃棉。纤维直径小于3mm的称超细绵,3~6mm的称细棉,可制成棉毡、板、纸等制品,是高效能的保温材料。

2玻璃纤维的制备

按照不同的玻璃纤维要求,把硅砂、石

英、硼酸及粘土等原料按不同的比例混合,送入高温炉中融炼,制成玻璃熔融体,靠自重从喷丝板的小孔中流出,冷却成形的同时,快速地卷绕而得到玻璃长纤维。典型的生产装置如图2所示。这种方法类似于化学纤维的熔融纺丝,炉中的熔融温度随玻璃的成分不同稍有变化,一般在1100℃~1300℃左右。

玻璃短纤维用长丝切断法制成,也可由熔

融玻璃直接从喷嘴中吹出,在高速气流下玻璃熔体细化冷却,发生断裂,收集吹落的玻璃短纤维即可,也常称为玻璃棉[2]

图2玻璃纤维的生产装置图[3]

3玻璃纤维的性能与应用

3.1玻璃纤维的性能

3.1.1物理性能

表1给出了玻璃纤维、碳纤维和部分常用

纺织纤维及金属材料的主要性能[4]。

表1玻璃纤维与其他纺织纤维及金属材料的主要性能

材料种类密度(g/cm 3

断裂强度(N)伸长率(%)

玻璃纤维

2.541370~14702~3棉 1.5255~6867~10蚕丝 1.25392~520 1.3~31锦纶 1.1444~58826~32碳纤维 1.82790~3100 1.5~1.6铝 2.7127~1774~8钢

7.8

363~441

20~30

由表1可以得出,玻璃纤维的物理性能主要包括四个方面:

(1)断裂强度。与普通纺织产品相比,玻璃纤维所具备的断裂强度较强,其拉伸强度显著,而在重量相等的情况下,玻璃纤维所具备的断裂强度要比普通的金属如钢丝等高出3倍以上。

(2)硬度。与锦纶相比,玻璃纤维所具备的硬度要高15倍,而这种高强度的硬度通常与其自身的脆性进行有机结合,进而产生较明显的低弯曲阻抗性。

(3)密度。与有机纤维材料相比,玻璃纤维所具备的密度比较高,但与金属纤维相比,玻璃纤维所具备的密度则相对比较低。

(4)尺寸稳定性。与其他纤维产品相比,玻璃纤维所具备的身长度比较低,仅有3%,因此其很难随着温度的变化而变化,其尺寸具备较高的稳定性。3.1.2化学性能

作为无机纤维中重要的材料,玻璃纤维不仅具备较高的耐热性,且其自身无法进行燃烧,因此可以作为有效的绝热保温材料,这是玻璃纤维与其他纺织纤维的不同之处。玻璃纤维所具备的导热系数通常比较小,比其他纺织纤维要小很多,因此其可以充当重要的隔热工具,如容器隔热或管道隔热。同时玻璃纤维可有效阻抗酸或碱等入侵,其受腐蚀性化学产品的影响较小。在玻璃纤维中,其所具备的电性能与其自身存在的化学成分有着密切的关系,而其自身的碱氧化物是决定其电性能的主要因素之一。此外玻璃纤维还具有耐老化、防腐、防霉、抗紫外线辐射等性能。

3.2玻璃纤维的应用

3.2.1玻璃纤维在电工绝缘领域的应用

电工绝缘材料根据JB/T2197-1996电气绝缘材料产品分类可分为8大类,而与玻璃纤维相关的就有6类,这也就足以说明玻璃纤维在这一领域中

的应用之广。这6类材料包括:

(1)绝缘浸渍制品:由玻璃纤维布、套管、无纺绑扎带等经浸渍或涂覆绝缘漆制成,用于电机、电器的包扎绝缘、相间绝缘、绝缘保护和衬垫等等。

(2)玻璃纤维增强塑料层压制品:是以无碱玻璃纤维为增强材料,酚醛、环氧树脂等热固性树脂为基材而制成的材料,用于电机变压器、电工仪表、电子设备等,其中印制电路板用的覆铜箔层压板就是其中的一种。

(3)玻璃纤维模塑料:如BMC(散状模塑料)、DMC(团状模塑料)、CMC(片状模塑料)等,在高压开关中用作绝缘隔板、提升杆等,在空气开关和家用电器的外壳以及各种阻燃支撑绝缘件中都有用到。

(4)云母制品:云母带、云母板、云母箔等用作电机或高压电机的绝缘器件。

(5)绝缘粘带和复合制品:用于绝缘绑扎。

(6)电磁线:用于绕线电机、电器、电工仪表的绕组和线圈以及大型电机、汽轮发电机的绕组材料[5]。

3.2.2玻璃纤维在环境领域的应用

生态环境是人类生存和发展所必须的生态因素玻璃纤维因其优良的各项性能在大气、水、生物、土壤等环境领域均有着较为广阔的应用。

(1)玻璃纤维制品作为过滤材料,特别在高温气体过滤方面占有重要一席。以纸、机织物、毡(蓬松毡、棉毡、针刺毡等)及复膜形态,用于不同含污染物性质和要求净化程度的气体过滤、已大批量用于碳黑、水泥、冶金工业以及焚烧烟气的除尘净化。也用于人防工程、防毒工具,车辆空调的空气过滤和超净化室的空气处理,还可以使过滤兼有杀菌、除异味效果。最近还开发了可用来吸收环境污染物的玻纤织物。基于玻纤制品的化学稳定性和高的过滤效率,也被用于润滑油、重水、饮料等液体的过滤净化。超细玻璃纤维还被用于生产系列实验室用精品过滤器。

(2)在地理环境保护方面应用开发有:和有机纤维材料结合加工成土工材料用于防水土流失;将玻纤喷洒在地上可形成弹性的多孔毡,从而保护刚播种的农田免遭冲刷;玻璃棉毡做为无土栽培的载体使制品具有更好的性能,满足更广泛的使用要求。

(3)使玻纤成为介质、催化剂、试剂和生物的载体,从而在蓄电池,精细化工及生物试验、检测等领域使用。

(4)利用玻纤在增强材料中导光、导电性随应力,温度的变化,作为“机敏”材料,从而推动复合材料更经济、安全乃至智能化的使用。

3.2.3玻璃纤维在生物医学领域的应用

由于玻璃纤维的优良性能使玻璃纤维织物具有强度高、不吸湿、尺寸稳定等特点,因而可在生物医学领域用作矫形和修复材料、牙科材料、医用器材等。

(1)光导玻璃纤维在医疗方面的应用有:用传光束、传像来对人体器官的内窥检查和辅助治疗,包括刺激穴位、止血、切开组织、灼烧病变组织等,运用光纤维对血液进行光照射,以稀释血液;用于光固化补牙等。

(2)玻璃纤维试纸。基于其化学稳定性和抗菌性,可用作试剂载体,与专用试剂一起做成试条,用于检查,如血液组分检查等;也可用作过滤血液,如从血液中滤除白细胞和固体组成,也用于分离血浆和血清;还在一些对人体血、液、尿的检验专用仪器中使用。

(3)外、骨科。医用绷带,玻纤编织成具有延伸性带,浸渍专用树脂当作绷带,缠在伤处固定骨肢,克服了敷石膏的麻烦和副作用;玻纤复合材料人造骨正在积极开发中,一些无毒不会引起炎性反应又具有骨生物活性的复合材料已通过动物试验,证明有理想的生物相容性,与原骨之间结合强度比不锈钢还高,预期会获得应用。

3.2.4玻璃纤维增强材料的应用

在玻璃纤维的总产量中,约有70%用作复合材料的增强材料,其中主要用于塑料增强。玻璃纤维增强塑料(即玻璃钢)是以合成树脂为基体,以玻璃纤维及其制品为增强材料制成的,具有优良的比强度、刚度、耐气候性、耐腐蚀性和耐用性,其主要应用方面有:

(1)汽车、火车和船艇方面的应:用玻璃钢用于汽车车身的最大优点是减轻重量。与钢材相比,玻璃钢能使很多部件减重35%之多。其他特性还有:刚度高,能量吸收性好,不锈,防腐,不易产生压痕和擦伤,设计灵活等。汽车工业是玻璃钢的最大市场之一,采用玻璃钢的汽车部件有:进气歧管、发动机罩、保险杠、横梁、车门板、仪表板、隔热板等。使用玻璃钢部件的轨道车辆有:高速火车、轻轨列车和地铁,主要优点有:减轻重量,降低能耗;使刹车和启动时能耗降低:提供优良的强度和刚度性能指标;玻璃钢适用于各种船只的设计和制造,其特点是重量轻、强度高、耐腐蚀、防水浸、维护量小。

(2)建筑和基础设施方面的应用:混凝土是世界上用得最广泛的建筑材料,但它有一个重大的缺陷:当它的压缩强度较高的时候,其拉伸强度则非常有限。通常利用钢筋来克服这一缺点,但是在腐蚀性很强的环境中,钢筋腐蚀会导致混凝土开裂和剥落,最终引起构筑物毁坏。用

玻璃钢代替钢做混凝土筋材,具有重量轻、屈服强度和弹性模量高、不生锈、耐腐蚀、防磁性能好等优点。玻璃钢在建筑领域的应用有采光、卫生、装饰装修、给排水、采暖通风、围护土木、电气、工装器具等。

(3)航空航天方面的应用:由于刚度关系,航空结构的外部通常多用非玻璃纤维的增强材料,但较小飞机的外部机身则可采用玻璃纤维增强。玻璃钢在航空器中的成功应用是商用飞机的内部器件,如波音747飞机上层客舱的舱顶板等。在航天和军事工程方面,玻璃钢早就用作火箭、导弹的外壳或其发动机的外壳。玻璃钢还在人造地球卫星和电视卫星等方面获得了应用,玻璃纤维材料从我国神舟2号开始直到神舟7号载人飞行均获得了成功应用.。

(4)能源开发方面的应用:能源开发是玻璃钢较新的应用市场,主要有风力发电、海上采油采气等。玻璃钢叶片已广泛用于岸上和海上的风力发电项目。叶片制造商采用的玻纤原材料有短切原丝毡、连续原丝毡、无捻粗纱、单向和多轴向的缝编布和机织布等。海上石油和天然气的开采是前景广阔的工业,也是应用玻璃钢的新兴市场。玻璃钢产品耐腐蚀、耐紫外线照射、耐热阻燃、轻质高强,这些特性都符合海上苛酷环境的要求。

4玻璃纤维的表面处理

玻璃纤维增强树脂基复合材料,是目前技术比较成熟且应用广泛的一类复合材料,具有良好的易成型性、绝缘性能好、抗腐蚀和疲劳损伤等优异性能和低廉的成本。由于玻璃纤维与树脂基体之间的模量相差很大,且二者间不易润湿,所以其复合材料界面结合较弱。为了充分发挥其承载作用,应提高玻璃纤维与树脂基体的相容性、浸润性和反应性,在纤维和基体间制备性能优异的界面层。

4.1玻璃纤维常用表面处理方法

4.1.1热处理

热处理就是利用高温使玻璃纤维表面的原有胶料氧化分解,同时除去玻璃纤维由于储存而吸附的水。如果是纺织型浸润剂处理的玻璃纤维,高温下还可除去其润滑油。刘雄亚[6]发现热处理的最佳温度为350℃,处理时间为6s,可除去玻璃纤维的吸附水或润滑剂。Li[7]等认为热处理的最佳温度为450℃,处理时间为1h,还应将经过热处理的玻璃纤维在肥皂水中超声清洗5min,并用蒸馏水清洗。热处理法工艺简单、实用,但是单独使用效果欠佳,一般都作为玻璃纤维表面处理的预处理工序,与其它表面处理方法配合使用。

4.1.2酸碱刻蚀处理

刻蚀处理是通过酸碱在纤维表面进行化学反应形成一些凹陷或微孔,使玻璃纤维表面产生大量的Si-OH键,待纤维与基体复合时,一些高聚物的链段进入到空穴中,起到类似锚固作用,增加了玻璃纤维与聚合物界面之间的结合力,同时增加了玻璃纤维表面具有反应性硅烷醇的数量,此种方法的最终处理效果主要与酸碱种类、浓度、处理时间和处理温度有关[8]。

4.1.3偶联剂处理

偶联剂的结构通式可表示为:(RO)x-M-A y,其中RO代表亲无机基团的易水解或交换反应的短链烷氧基,可与玻纤表面发生化学反应;M代表中心原子(Si、Ti、Al、B等;A代表与中心原子结合稳定的亲有机基团的长链分子(酯酰基、长链烷基等),它能扩散和溶解于聚合物的界面区,与聚合物链发生缠结和反应并与基体有很好的相容性。从其结构看,偶联剂具有在玻璃纤维表面与树脂之间形成化学键的功能,在树脂基复合材料中起架桥作用,用偶联剂处理玻纤表面能够改善纤维与基体之间的润湿性,形成一个力学上的微缓冲区,提高了界面之间的粘结力,能显著提高复合材料的综合性能,并可延长复合材料的使用寿命,降低玻璃纤维自身的吸水性[9]。偶联剂的种类很多,不同的偶联剂对复合材料力学性能有不同的影响,增强玻璃纤维表面处理中研究最多的偶联剂是硅烷偶联剂,铝酸酯偶联剂和钛酸酯偶联剂也有研究[10]。

4.2其他表面处理方法

4.2.1等离子体表面处理

等离子体是具有足够数量而电荷数近似相等的正负带电粒子的物质聚集态采用等离子体聚合技术改善玻璃纤维的浸润性和表面粗糙度,但在提高复合材料强度的同时造成了模量下降。V.Cech等发现分别经氩等离子体和乙烯基三乙氧基硅烷处理的玻璃纤维增强聚酯复合材料的界面剪切强度基本一致,但低于单独使用甲基丙烯酰氧基丙基三甲氧基硅烷(A-174)处理的IFSS70.8%;A-174处理后的玻璃纤维再经氩等离子体处理,其复合材料的层间剪切强度下降了50%。李志军[11]发现,等离子体会使玻璃纤维表面的官能团发生变化,并在纤维表面产生轻微刻蚀,提高了基体对玻璃纤维的浸润状况,复合材料界面黏合增强。采用等离子体处理的玻璃纤维,其复合材料力学性能比未处理的高2~3倍,还能改善耐湿热稳定性。

4.2.2稀土元素处理

稀土元素通过化学键合与物理吸附被吸附到玻璃纤维表面并在靠近纤维表面产生畸变区,

吸附在玻璃纤维表面上的稀土元素改善了玻璃纤维与基体的界面结合力。但是过多的稀土元素,会减弱了界面结合力并导致复合材料拉伸性能下降。程先华和薛玉君[12-13]研究了SGS(含1.0%氨基硅烷偶联剂SG-Si900的酒精溶液)、RES(含稀土元素0.1%~0.8%的酒精溶液)和SGS/RES(含1.0%SG-Si900和稀土元素的酒精溶液)三种表面改性剂处理玻璃纤维的最佳用量及其对玻璃纤维增强PTFE复合材料冲击磨损和拉伸性能的影响,结果发现RES比SGS/RES和SGS能够更好地提高玻璃纤维与PTFE之间的界面结合力和提高复合材料的摩擦磨损性能,且当稀土元素在表面改性剂中的质量分数为0.3%时复合材料的拉伸性能最佳。

4.2.3表面二次接枝处理

硅烷偶联剂表面处理的实质就是通过化学键合将硅烷偶联剂接枝到玻璃纤维表面。表面二次接枝处理就是在已接枝上的硅烷偶联剂或其它小分子上再次接枝的处理方法。Li等先用3-溴丙基三氯硅氧烷对玻璃纤维进行表面处理,与玻璃纤维表面形成化学键合,然后利用3-溴丙基三氯硅氧烷中溴的反应性与苯胺反应,再在苯胺上接枝聚苯胺[14]。

5展望

玻璃纤维作为应用最广泛之一的产业用纺织品,由于具有技术含量高、劳动生产率高、产品性能独特和用途广泛等特点,在国民经济的各个领域得到了广泛应用,成为许多行业和部门不可缺少的一种新型材料,成为衡量一个国家和地区纤维制品加工工业发展水平和工业化程度的重要标志。

我国玻璃纤维起步于20世纪50年代,经过50余年的努力,也有着非凡的发展。据资介绍,2000年左右我国玻璃纤维产量占世界总产量的1/10,排名第5、6位2007年我国玻璃纤维总产量占世界产量的1/3,排名第一,同时我国的中国巨石集团有限公司及中国泰山玻纤股份有限公司分别为世界玻璃纤维公司排名的第三、第五名。

由于以下几方面因素,我国玻璃纤维产业有着很好的发展空间。

(1)玻纤市场供不应求因素,在缠绕和SMC等FRSP产品生产中,玻纤缺口量在20%左右;增强塑料和工程塑料的发展推动FRTP的快速发展也使玻纤供应不足;覆铜板工业的发展,使我国成为世界CCL制造基地,也对玻纤基材的需求快速增长。

(2)我国成功实现了世界玻璃纤维制造基地的转移,出口增长率一直保持较高的比例。如2002年我国出口量为16万吨,2006年增长为79万吨。

(3)节能减排的战略决策推动玻璃纤维市场的发展。能源利用方面,风能中FRP叶片和机罩的应用以及FRP在沼气池中的推广;节能方面,交通领域车船的轻量化都促使了玻纤复合材料的进一步发展。防腐和“三废”治理中,FRP 塔、筒也得到迅速的推广使用。

6参考文献

参考文献

[1]JW SH earle.高性能纤维[M].北京:中国纺织出版

社,2004

[2]乔欣,崔淑玲,夏勇.几种无机纤维的制备及应用

介绍[J].非织造布201018(3):27-31

[3]王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].

上海:东华大学出版社,2003.

[4]徐凤,聂琼,徐红.玻璃纤维的性能及其产品的开发.

轻纺工业与技术,2011,40(5):40-41

[5]刘新年,张红林,贺祯等.玻璃纤维新的应用领域及

发展[J].陕西科技大学学报,2009,5(27):169-171.

[6]刘雄亚,谢怀勤.复合材料工艺及设备.武汉:武

汉工业大学出版社,1997

[7]Li Z F,Ruck en stein E.Strong Adhesion and Smooth

Conductive Surface Via Graft Polymerization of Aniline on a Modified Glass Fiber Surface[J].Journal of Colloid and Interface Science,2002,251:343-349.

[8]曹淑伟,张大海,管艳丽等,玻璃纤维表面处理技术

研究进展[J].宇航材料工艺,2009(1):5-7

[9]王文广,田雁晨,等.塑料配方设计(第二版)[M].

北京:化学工业出版社,2004:42-45.

[10]王彦林,徐元清,刘志国,等.阻燃增塑剂IPP的合

成[J].塑料工业,2002,30(4):13-14.

[11]李志军,程光旭,韦玮.离子体处理在玻璃纤维增强

聚丙烯复合材料中的应用[J].中国塑料,2000;

14(6):45-49.

[12]程先华,薛玉君,谢超英.稀土元素表面处理对玻璃

纤维填充金属-塑料多层复合材料冲击磨损性能的影响[J].中国稀土学报,2001,19(4):373-375. [13]薛玉君,程先华.稀土元素表面处理玻璃纤维增强

PTFE复合材料的拉伸性能[J].中国稀土学报, 2002,20(1):41-44.

[14]王赫,刘亚青,张志毅等玻璃纤维表面处理技术的

研究进展[J].绝缘材料2007,40(5):35-37.

玻璃纤维电缆导管技术规范

广州供电局有限公司 玻璃纤维电缆导管技术规范 1、适用范围 为了规范广州供电局有限公司电网工程建设电力电缆导管的使用工作,达到工程设计、招标、订货、验收有技术规范可依的目的,根据广州供电局标准化体系建设工作的要求,特制定本规范。 本规范规定了玻璃纤维增强电缆导管(以下简称玻璃钢电缆导管)的术语和定义、产品分类、代号、规格尺寸、技术要求、试验方法、抽样和检验规则、标志、包装、运输、储存和出厂合格证、质量验收及判定原则等。 本规范适用于以玻璃纤维无捻粗纱及其制品为增强材料、热固性树脂为基材采用缠绕工艺制成的玻璃纤维增强塑料电缆导管。导管中内有填料宜使用石英砂、氢氧化铝、碳酸钙等无机非金属颗粒材料。用于地下用电力电线电缆、通信电缆、光缆套管。 2、规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有修改(不包括勘误内容)或修订版均不适用于本规范,然而,鼓励根据本规范达到协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB/T 1446纤维增强塑料性能试验方法总则 GB/T 1447纤维增强塑料拉伸性能试验方法 GB/T 1449纤维增强塑料弯曲性能试验方法 GB/T 1462纤维增强塑料吸水性试验方法 GB/T 1463纤维增强塑料密度和相对密度试验方法 GB/T 1549钙钠硅铝硼玻璃化学分析方法 GB/T 1634.2-2004塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 GB/T 2576纤维增强塑料树脂不可溶分含蓝试验方法 GB/T 2828.1-2003 技术抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 GB/T 2829-2002周期检验计数抽样程序及表(适用于对过程稳定性的检查)GB/T 3139玻璃钢导热系数试验方法

玻璃纤维制品知识

制品工艺 第一节玻璃纤维纺织制品概述 (一)分类定义: 玻璃纤维纺织制品的国际标准名称为Textile Glass。标准定义是“以连续玻璃纤维或定长玻璃纤维为基材制成的纺织制品的通称”。玻璃纤维制品总体分为无纺制品和纺织制品两大类。(我公司目前生产的玻纤制品属于无纺制品类) 按产品形态划分可分为纱线和织物两大类别。其中纱线类制品又分为无碱玻璃纤维无捻粗纱和无碱连续玻璃纤维纱。 (二)纱织制品分类表:

第二节细纱 (一)电子纱和工业纱 1. 定义:纤维直径小于10微米的细纱,因其工业用途不同分为电子纱和工业纱。 2. 用途:电子纱最终用于电子元件印刷线路板。 工业纱用于工业织物,如防火帘、模建筑、同步带、帘子线、编制套管等。 3.生产工艺流程(拉丝工艺起): 4.细纱主要质量控制标准: 外观质量、号数(TEX值)、含水率、可燃物含量、捻度、硬挺度、硬度、断裂强度等。 5. 细纱成品代号表示: 纱管类型4.0KG左右 Y1 ---- 浸润剂类型 0.7Z ---- 0.7捻/25mm (28捻/米) Z向 1/0 ---- 单股加捻 75 ---- 每磅纤维的百码数(7500码/磅) 单纤维直径为9微米的玻纤长丝 捻度–纱线加捻程度,公制单位:捻/100cm,英制单位:捻/英寸(1英寸=2.54cm)。 捻向--表示捻度的方向,分为S和Z两个方向。 6.细纱产品简介 (1) 电子纱 a.G75Y1/Y4系列 规格代号 TEX中心值直径(μm) G75Y1/Y4 68.7±1.7 9 b.E225系列 规格代号 TEX中心值直径(μm) E225Y3 22.5±0.7 7 c.D450系列 规格代号 TEX中心值直径(μm) D450Y5 11.2±0.5 5 (2) 工业纱 a.G37系列 规格代号 TEX中心值直径(μm) G37Y1 136±4.0 9 b.D225系列 规格代号 TEX中心值直径(μm) D225Y5 2.5±0.9 5 c.G25R/N系列

高强玻璃纤维的现状及发展趋势

高强玻璃纤维的现状及发展趋势 1 引言 1938年,美国欧文斯-科宁(OC)公司发明了无碱E玻璃纤维开创了玻璃纤维增强复合材料时代,1960年,又应美国空军的需求开发的一种比E玻纤强度和模量更高一种玻璃纤维,名为S玻纤。S-2是它的商业化生产的注册品牌,现由AGY公司生产。法国的圣戈班(SAINT-GOBINE) 集团的维托特克斯(VETROTEX)公司,日本的日东纺织株式会社,也分别宣布开发出了商标为R高强玻纤和T高强玻纤,前苏联的波洛茨克公司(现白俄罗斯POLOTSK-STEKLOVOLOKNO)生产BMⅡ (为上标)型高强玻纤,此外还有日本的板旭子公司生产U、K高强玻纤用于玻纤帘子线的生产。 中材科技股份有限公司南京玻纤院自上世纪70年代以来独立自主开发并规模化工业生产我国的HS系列高强玻纤,产品性能接近或达到国外先进水平。 将上述各公司生产的S、R、T、BMⅡ(为上标)、 HS玻纤统称为高强玻纤。 2 高强玻纤的化学成份 高强玻璃系统主要为SiO2-Al203-Mg0或SiO2-Al2O3-CaO-MgO体系(数字为下标),各种高强玻璃成份不尽相同,但其中Al2O3的含量均在25%左右。高强玻纤的化学成分见表1。 3 高强玻纤的性能 高强玻纤与常用E玻纤相比具有下列主要六大特点:拉伸强度高、弹性模量高刚性好;断裂伸长量大抗冲击性能好,化学稳定性好,耐高温,抗疲劳特性及雷达透波性能好。 3.1 高强玻纤的拉伸强度及模量 高强玻纤的拉伸强度,弹性模量分别比E玻纤提高了30%~40%和16%~20%以上。用高强玻纤制成的复合材料其强度及模量比E玻纤制成的复合材料分别高5O%以上,见图1和图2。

关于玻璃纤维一些你不知道的技术参数

【玻纤】关于玻璃纤维一些你不知道的技术参数 碱含量 在日常生产中大家都知道玻璃纤维有分无碱和中碱,但是如何划定的呢,相信很多朋友却并不是很清楚。这里就关系到一个碱含量的问题,主要是指碱金属氧化物的含量。 按碱含量不同,玻璃纤维主要分为三种: ①无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃) ②中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃) ③高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃) 可见大家常说的无碱并不是真的无碱,只是碱金属含量低于2%。一般应用于复合材料上的主要是无碱和中碱玻璃纤维。 下面来看看无碱玻纤和中碱玻纤性能上的一些对比: 成本力学性能 化学稳定性 耐水耐酸耐碱 无碱高于中碱无碱优于中碱无碱优于中碱中碱明显优于无碱无碱略优于中碱 从表中可以看出无碱和中碱玻璃纤维也是各有所长,因此在做产品的时候我们可 根据产品的特性和需求来因材施用,达到最佳性价比。 单丝直径 玻璃纤维的单丝直径一般为几个微米到二十几个微米,相当于一根头发丝的 1/20-1/5。 粗纤维:其单丝直径一般为30μm。

初级纤维:其单丝直径大于20μm。 中级纤维:单丝直径10-20μm。 高级纤维(亦称纺织纤维):其单丝直径3-10μm。 对于单丝直径小于4um的玻璃纤维又称为超细纤维。单丝直径不同,不仅纤维的性能有差异,而且影响到纤维的生产工艺、产量和成本。一般5-10um的纤维作为纺织制品用,10-14um的纤维一般做无捻粗纱、无纺布、短切纤维毡等较为适宜。 单丝直径由铂金漏板的孔径和拉丝速度决定,一般单丝越细的纤维成本越贵。一方面和生产工艺较难、产量较低有关;另一方面单丝越细,单位面积含有的偶联剂也会更多。 特克斯(tex) 特克斯(tex),简称特,是一种线密度单位,又称号数。指1000米长纱线在公定回潮率下重量的克数,tex=g/L*1000 ,其中g为纱(或丝)的重量(克),L为纱(或丝)的长度(米)。它是定长制单位,克重越大纱线越粗。 每束纤维原丝都由数百根甚至上千根单丝组成,因此简单来说tex就是衡量单股玻璃纤维纱的粗细。我们常见的1200、2400、4800号都是指纱的线密度,即每千米纱的重量为1200g、2400g、4800g。 含水率

玻璃纤维棉

玻璃纤维 目录 玻璃纤维 (1) 1、材料简介 (2) 基本介绍 (2) 特点介绍 (3) 主要成分 (4) 2、材料分类 (5) E-玻璃 (6) C-玻璃 (6) 高强玻璃纤维 (7) AR玻璃纤维 (7) A玻璃 (7) E-CR玻璃 (8) D玻璃 (8) 3、强伸性能测试 (8) 4、品种用途 (9) 无捻粗纱 (9) 无捻粗纱织物(方格布) (11) 玻璃纤维毡片 (11) 短切原丝和磨碎纤维 (13) 玻璃纤维织物 (14) 组合玻璃纤维增强材料 (16) 玻璃纤维湿法毡 (17) 玻璃纤维布 (17) 5、现状前景 (18)

玻璃纤维短切丝 玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 1、材料简介 基本介绍 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具

玻璃纤维 有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。 CAS NO:14808-60-7 分子结构 [1] 特点介绍 原料及其应用玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好(特别是玻璃棉),抗拉强度高,电绝缘性好(如无碱玻璃纤维)。但性脆,耐磨性较差。玻璃纤维主要用作电绝缘

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

玻璃棉基础知识

玻璃棉基础知识 1.什么是玻璃棉? 玻璃棉是以形成玻璃的硅酸盐矿物为主要原料,同时添加一定的熟料,经熔融、成纤并同时施加一定量的有机粘结剂而制成的棉状纤维。属于玻璃类无机纤维。按生产工艺可分为离心喷吹玻璃棉和火焰喷吹玻璃棉;按纤维直径分为绝热玻璃棉和超细玻璃棉;按使用温度分为玻璃棉和高温用玻璃棉。 2.什么是离心喷吹玻璃棉? 采用离心喷吹法工艺制造的玻璃棉及其制品称为离心喷吹玻璃棉(简称离心棉)。这种生产工艺是由法国圣戈本公司于1956年发明的,这项技术工艺先进,可连续制造各种制品,实施自动控制技术。比火焰喷吹法节约60%~80%的能耗。现在世界玻璃棉总产量的80%以上是用离心法生产的。 3.离心玻璃棉制品有哪些基本类型? 离心玻璃棉制品的基本类型有如下品种:散棉(原棉),玻璃棉板,玻璃棉带,玻璃棉毯,玻璃棉毡和玻璃棉管壳;根据使用要求,还可以进一步分为带贴面和不带贴面的两类。 4.什么是玻璃棉板? 玻璃棉板是玻璃棉施加热固性粘结剂制成的具有一定刚度的板状制品。 5.什么是玻璃棉带? 玻璃棉带是将玻璃棉切成一定宽度的板条,旋转90°,经粘贴适宜的覆面后所制成的制品。 6.什么是玻璃棉毯? 玻璃棉毯是用不含粘结剂的玻璃棉,并用纸、布或金属网等作为覆面材料增强制成的毯状制品。 7.什么是玻璃棉毡? 玻璃棉毡是玻璃棉施加热固性粘结剂制成的柔性的毡状制品。 8.什么是玻璃棉管壳? 玻璃棉管壳是玻璃棉施加热固性粘结剂制成的柔性的管状制品。 9.什么是覆面材料? 在玻璃棉制品的表面贴覆一层薄薄的材料与玻璃棉制品成为一体以应用到适当的场合。这些材料可以是牛皮纸、布、铝箔、金属网或几种材料的复合层。 10.什么是玻璃棉的密度及它和玻璃棉厚度及绝热能力的关系? 密度是指单位体积中物质的质量。在同样的应用面积场合下,厚度相同但是所含的纤维量较少就意味着密度低,其相对应的绝热能力也低,反之也然。

玻璃纤维增强塑料成型工艺

玻璃纤维增强塑料成型工艺 第一章绪论 FRP(Fiberglass Reinforced Plastics)或GRP(GlassReinforced Plastics)或GFRP(Glass fibre reinforced plastics)。玻璃钢是玻璃纤维增强塑料的习惯叫法,是一种新型工程材料。它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料,通过一定的成型工艺而制成的一种复合材料。三十年代在美国出现后,到二次世界大战期间由于战争的需要才发展起来。战后逐渐转到了民用工业方面,并获得了迅速发展。由于玻璃钢具有许多特殊优良的性能(如机械强度高、比重小、耐化学腐蚀、绝缘性能好等等)。因此被普遍应用于火箭、导弹、航空、造船、汽车、化工、电器、铁路以及一般民用等工农业部门中。目前世界各国都非常重视研究和发展玻璃钢材料,迄今为止,人们不但研究试制成功各种各样有特殊性能的玻璃钢材料产品,而且研究成功各种各样的成型工艺。 第二章玻璃钢基础知识 1、玻璃钢的发展历史 1940年,美国一家实验室的技术人员不小心将加有催化剂的不饱和聚酯树脂倾倒在玻璃布上,第二天发现固化后的这种复合材料强度很高,玻璃钢遂应运而生。 1942年第一艘玻璃钢渔船问世;玻璃钢管试制成功并投入使用。二战其间,美国以手工接触成型与抽真空固化工艺,制造了收音机雷达罩与副油箱;利用胶接技术制作了玻璃钢夹芯结构的收音机机翼。 1946年发明了以纤维缠绕法生产压力容器的方法。 1949年预混料DMC(BMC)模压玻璃钢面试。 1950年真空袋与压力袋成型工艺研究成功;手糊环氧玻璃钢直升收音机旋翼面市。 20世纪50年代末,前苏联成功将玻璃钢用于炮弹引信体等军品及化工器材的生产。 1961年德国率先开发片状模塑料(SMC)及其模压技术。 1963年玻璃钢波形瓦开始机械化生产,美、法、日先后有高生产率的边疆生产线投生。 1972年美国研究成功干法生产的热塑性片状模塑料。 20世纪80年代,开发了湿法生产的热塑性片大辩论模塑料。瑞士、奥地利离心法成型玻璃钢管得到发展;意大利工业化纤维缠绕玻璃钢管生产线技术成熟,产品大量使用于石化、轻工、轮船等领域。 1956年,时任重工业部副部长、后任建材工业部长的赖际发同志赴前苏联考察玻璃钢。俄文称玻璃钢为“玻璃塑料”(CTEKJIOIIJIACTHHK),当时中文里没有相应的词。想到材料内有玻璃,强度又高,就叫“玻璃钢”。这就是“玻璃钢”一词的由来。

新型高强度玻璃纤维制备及其增强环氧树脂性能.

2010 年第 17 期·航空制造技术 75 新型高强度玻璃纤维制备及其 增强环氧树脂性能 * 中材科技股份有限公司刘建勋祖群朱建勋 高强度玻璃纤维与普通无碱玻璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域。 目前, 主要高强度玻璃纤维有:美国的“S -2” 、日本的“T” 纤维、俄罗斯的“ВМЛ” 纤维、法国的“R” 纤维和中国的“H S” 系列纤维 [3-6]。表 1是不同牌号高强度玻璃纤维的性能比较, 同时与 E-glass 纤维作对比。 从表 1可以看出, 目前我国性能较高的“H S-4” 玻璃纤维, 其力学性能和法国“R”玻璃纤维、俄罗斯 刘建勋 毕业于南京理工大学国家特种超细粉体研究中心, 获工学博士学位。2008~2010年, 南京玻璃纤维研究设计院博士后、高级工程师, 江苏省颗粒学会理事。主持国防军品配套、江苏省自然科学基金等国家和省科技项目, 现在主要从事特种玻璃纤维成分与性能研究。发表 SCI、 EI 文章 10余篇。 Preparation of New High-Strength Glass Fiber and Performance of Reinforced Epoxy Resin

* 国家高技术研究发展计划 (863计划资助项目 (2007AA03Z549 ; 江苏省自然科学基金资助项目 (BK2009488 。 高强度玻璃纤维与普通无碱玻 璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域, 如导弹发动机壳体、宇航飞机内衬、枪托、发射炮筒、防弹装甲、高压容器等。随着科技的发展, 高强度玻璃纤维在各工业领域的需求量也在不断扩大[1-2]。 76 航空制造技术·2010 年第 17 期 及浸胶纱强度及层间剪切强度。 (2 玻璃纤维新生态强度的检测。 根据标准 A S T M D -2102, 取熔制好的玻璃约 60g, 放入单孔铂铑坩埚内, 在1440℃ ~1450℃下再熔融, 通过控制常规的玻璃纤维成型工艺参数 (液面高度、热点温度、拉丝机转速等 , 拉制成直径为7~8μm 的连续玻璃纤维, 采用强力测试机测试其新生态强度, 测试环境湿度必须控制在规定范围内。 (3 玻璃纤维耐温性的检测。玻璃纤维的耐温性采用软化点来判定, 软化点温度越高, 耐温性越好, 反之则耐温性差。软化点的测试方法与其他玻璃纤维软化点测试方法相同, 采用吊丝法(按 A S T M C -338 测试, 匀速升温, 激光位移感应器记录玻璃伸长速率, 当伸长率

玻璃纤维成份和性能

玻璃纤维行业基本概念: 玻璃纤维成份和性能 生产玻璃纤维的基本原料是:石英砂、腊石、石灰石、白云石,为了熔化以上物质,还要加入硼酸和萤石作助熔剂。玻璃纤维按所含Na2O成分的多少分三类:无碱玻璃纤维、中碱玻璃纤维、高碱玻璃纤维。无碱玻璃纤维中含有SiO2 55~57%,Al2O3 10~17%,CaO 12~25%,MgO 0~8%,B2O3 8.5%,Na2O 0.5%。中碱玻璃纤维Na2O含量为12%,高碱玻璃纤维Na2O含量为15%,其它成分一样,含量稍微变动。从性能上看,无碱、中碱、高碱玻璃纤维其强度依次降低、耐久性依次变差、绝缘性依次减弱,只是耐酸性依次增强。无碱玻璃纤维多用于增强和绝缘材料,高碱玻璃纤维多用于稀酸环境,如蓄电池隔板、电镀槽、酸贮罐、酸过滤材料等,中碱玻璃纤维因价格优势在中国得到普遍使用。玻璃纤维与金属相比具有高强度、耐腐蚀、透光性和绝缘性好等特点。 玻璃纤维生产工艺 生产玻璃纤维常用的方法有两种:池窑法直接拉丝、球法坩锅拉丝。池窑法直接拉丝是将矿物原料磨细配制送入单元窑,用重油燃烧加热熔化物料后直接拉丝,具有产量大、质量稳、能耗低的特点,球法坩锅拉丝是从市场上购进玻璃球然后再通过电加热熔化拉丝,所用坩锅有陶土坩锅、全铂坩锅、代铂坩锅之分,前者只能用平板碎玻璃生产高碱玻璃纤维,全铂坩锅能耐高温且能制出干净纯净玻璃纤维,但单炉需铂铑合金3~4公斤,造价昂贵,现在主要用代铂坩锅,即熔化部分为耐高温陶土材料,拉丝漏板用铂銠合金材料,单炉用贵金属0.6 公斤既可,节省造价,但质量不如全铂坩锅,适合我国。球法坩锅拉丝所用漏板为50~800孔,单丝直径在9微米以下,一般需经过加捻纺织后制成各种玻璃纤维制品,此法能耗大、质量不稳定,但非常灵活,可补充池窑拉丝的一切空白。池窑拉丝用漏板为800~4000孔,单丝直径在11微米以上。 单丝用浸润剂涂油保护后集束成原丝,如果用于增强塑料则必需涂覆偶联剂。浸润剂的作用是:A浸润保护作用B粘结集束作用C防止玻璃纤维表面静电荷的积累D为玻璃纤维提供进一步加工和应用所需要的特性E使玻璃纤

【CN109929132A】一种高强度的玻璃纤维复合材料及其加工工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910254078.9 (22)申请日 2019.03.30 (71)申请人 裴广华 地址 215000 江苏省苏州市工业园区万盛 街8号圆融大厦1003 (72)发明人 裴广华  (51)Int.Cl. C08J 7/04(2006.01) C09D 129/04(2006.01) C09D 7/62(2018.01) C09D 7/63(2018.01) C08L 23/12(2006.01) C08L 71/02(2006.01) C08L 51/06(2006.01) C08K 13/06(2006.01) C08K 9/04(2006.01) C08K 3/04(2006.01)C08K 7/06(2006.01)C08K 7/14(2006.01)C08K 3/32(2006.01)C08K 5/3492(2006.01) (54)发明名称 一种高强度的玻璃纤维复合材料及其加工 工艺 (57)摘要 本发明公开了一种高强度的玻璃纤维复合 材料及其加工工艺,现如今的导热聚合物复合材 料多用采用聚酰胺、聚苯硫醚等作为树脂基体, 这些树脂基体的加工成本高,性能较差,不易成 型,相对而言,以聚丙烯作为树脂基体的导热复 合材料,它的成本更低,性能更加优越,同时易加 工成型,因此聚丙烯树脂成为研究导热复合材料 的重点。聚丙烯树脂的导热系数较低,无法广泛 应用,因此现如今都通过添加石墨烯来提高聚丙 烯树脂的导热系数。本发明配方设计合理,工艺 参数优化,不仅实现了高强度玻璃纤维复合材料 的制备,同时抑制了复合材料的阻燃现象,提高 了复合材料的导热性能,应用范围更广,具有较 高的实用性。权利要求书2页 说明书9页CN 109929132 A 2019.06.25 C N 109929132 A

玻璃纤维布生产工艺

玻璃纤维布Fiberglass fabric 玻璃纤维织物,玻璃纤维织带,玻璃丝布 Glass Fiber Cloth or Fabric and Tape 1、玻璃纤维无捻粗纱织物(玻璃纤维方格布) 玻璃纤维方格布是无捻粗纱平纹织物,是手糊玻璃钢重要基材。方格布的强度主要在织物的经纬方向上,对于要求经向或纬向强度高的场合,也可以织成单向布,它可以在经向或纬向布置较多的无捻粗纱,单经向布,单纬向布。无捻粗纱roving是由平行原丝或平行单丝集束而成的。无捻粗纱按玻璃成分可划分为: E-GLASS无碱玻璃无捻粗纱和C-GLASS中碱玻璃无捻粗纱。生产玻璃粗纱所用玻纤直径从12~23μm。无捻粗纱的号数从150号到9600号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如缠绕、拉挤工艺,因其张力均匀,也可织成无捻粗纱织物,在某些用途中还将无捻粗纱进一步短切。 对方格布的质量要求如下:①织物均匀,布边平直,布面平整呈席状,无污渍、起毛、折痕、皱纹等;②经、纬密,面积重量,布幅及卷长均符合标准;③卷绕在牢固的纸芯上,卷绕整齐;④迅速、良好的树脂透性;⑤织物制成的层合材料的干、湿态机械强度均应达到要求。 用方格布铺敷成型的复合材料其特点是层间剪切强度低,耐压和疲劳强度差。 2、玻璃纤维毡布

(1)短切原丝毡将玻璃原丝(有时也用无捻粗纱)切割成50mm 长,将其随机但均匀地铺陈在网带上,随后施以乳液粘结剂或撒布上粉末结剂经加热固化后粘结成短切原丝毡。短切毡主要用于手糊、连续制板和对模模压和SMC工艺中。对短切原丝毡的质量要求如下:①沿宽度方向面积质量均匀;②短切原丝在毡面中分布均匀,无大孔眼形成,粘结剂分布均匀;③具有适中的干毡强度;④优良的树脂浸润及浸透性。 (2)连续原丝毡将拉丝过程中形成的玻璃原丝或从原丝筒中退解出来的连续原丝呈8字形铺敷在连续移动网带上,经粉末粘结剂粘合而成。连续玻纤原丝毡中纤维是连续的,故其对复合材料的增强效果较短切毡好。主要用在拉挤法、RTM法、压力袋法及玻璃毡增强热塑料(GMT)等工艺中。 (3)表面毡玻璃钢制品通常需要形成富有树脂层,这一般是用中碱玻璃表面毡来实现。这类毡由于采用中碱玻璃(C)制成,故赋予玻璃钢耐化学性特别是耐酸性,同时因为毡薄、玻纤直径较细之故,还可吸收较多树脂形成富树脂层,遮住了玻璃纤维增强材料(如方格布)的纹路,起到表面修饰作用。 (4)针刺毡针刺毡或分为短切纤维针刺毡和连续原丝针刺毡。短切纤维针刺毡是将玻纤粗纱短切成50mm,随机铺放在预先放置在传送带上的底材上,然后用带倒钩的针进行针刺,针将短切纤维刺进底材中,而钩针又将一些纤维向上带起形成三维结构。所用底材可以是玻璃纤维或其它纤维的稀织物,这种针刺毡有绒

玻璃纤维与碳纤维区别

玻璃纤维/碳纤维有什么区别 玻璃纤维是一种性能优异的无机非金属材料。英文原名为:glass fiber 。它是以玻璃球或废旧玻璃为原料经高熔制、拉丝、络纱、织布等工艺。最后形成各类产品,玻璃纤维单丝的直径从几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保材料,电路基板等,广泛应用于国经济各个领域。 玻璃纤维之特性: 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材但如其抽成丝后,则其强度大为增加且具有柔软性,故配合树脂赋与形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛,发展速度亦遥遥领先 特性用途如下: (1)拉伸强度高,伸长小(3%)。如作外墙 (2)弹性系数高,刚性佳。 (3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。 (4)为无机纤维,具不燃性,耐化学性佳。 (5)吸水性小。 (6)尺度安定性,耐热性均佳。 (7)加工性佳,可作成股、束、毡、织布等不同形态之产品。 (8)透明可透过光线. (9)与树脂接着性良好之表面处理剂之开发完成。 (10)价格便宜。 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。 碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。

影响玻璃纤维强度的因素

影响玻璃纤维强度的因素 1、纤维直径和长度对拉伸强度的影响 一般情况,玻璃纤维的直径愈细,抗拉强度越高,但在不同的拉丝温度下拉制的同一直径的纤维强度,也可能有区别。玻璃纤维的拉伸强度和长度有关,随着纤维长度的增加,拉伸强度显著下降直径和长度对玻璃纤维拉伸强度的影响,可以用微裂纹假说来解释。因为随着纤维直径和长度的减小,纤维中微裂纹会相应减少,从而提高了纤维强度。 2、化学组成对强度的影响 一般是含碱量越高、强度越低。无碱纤维比有碱纤维的拉伸强度高20%研究证明,高强和无碱纤维,由于成型温度高,硬化速度快,结构链能大等原因,因此具有很高的抗拉强度。含K2O和PbO 成分多的玻璃纤维强度较低。 3、玻璃液质量对玻璃纤维强度的影响 A)结晶杂质的影响:当玻璃成分波动或漏板温度波动或降低时,可能导致纤维中结晶的出现。实践证明,有结晶的纤维比无结晶的纤维强度要低。 B)玻璃液中的小气泡也会降低纤维的强度。曾试验用含小气泡的玻璃液拉直径为5.7um,的玻璃纤维其强度比 用纯净玻璃液拉制的纤维强度降低20%。 4、成型条件对玻璃纤维的影响

实践证明,用漏板拉制的玻璃纤维强度高于用玻璃棒法拉制的纤维。在玻璃棒法中,用煤气加热生产的纤维又比用电热丝加热生产的纤维强度为高。如用漏板法拉制10um,玻璃纤维的强度为1700MPa,而用棒法拉制相同直径的玻璃纤维强度仅为1100MPa。这是因为玻璃棒只加热到软化,粘度仍然很大,拉丝时纤维受到很大的应力;此外玻璃棒法是在较低温度下拉丝成型,其冷却速度要比漏板法为低。用各种不同成型方法生产的玻璃纤维的强度各不相同。用漏板法拉制的纤维强度最高,气流吹拉长棉次之,玻璃棒法再次之。然后是蒸汽立吹短棉,强度最低是蒸汽喷吹矿棉。在采用漏板拉丝的方法中,采用较高的成型温度,较小的漏孔直径,可以提高纤维强度。 5、表面处理对强度的影响 在连续拉丝时,必须在单根纤维或纤维束上敷以浸润剂,它在纤维表面上形成一层保护膜,防止在纺织加工过程中,纤维间发生相互摩擦,而损伤纤维降低强度。玻璃布经热处理除去浸润剂后,强度下降很多,但在用中间粘结剂处理后,强度一般都可回升,这是因为中间粘结剂涂层一方面对纤维起到保护作用,另一方面对纤维表面缺陷有所弥补。 6、存放时间对强度的影响 玻璃纤维存放一段时间后其强度会降低,这种现象称为纤维的老化。主要是空气中的水分对纤维侵蚀的结果。此,化学稳定性高的纤维强度降低小,如同样存放233年的有碱

玻璃纤维——文献综述

文献综述 题目:玻璃纤维及其复合材料的性能与应用 姓名:顾典梅 专业:化学工程与工艺 班级:化工102 班 学号: 1008110206 指导教师:潘老师 日期:2013-6-17

玻璃纤维及其复合材料的性能与应用 摘要 材料是工业的基础,工业的发展,在很大程度上取决于新材料的开发与应用。玻璃纤维作为一种综合性能优良的无机非金属材料,被广泛应用于国民经济的众多领域,给工业的发展注入了新的活力。本文主要对玻璃纤维的发展、基本性能、复合材料及其应用做了介绍。 关键字:玻璃纤维复合材料性能 Abstract Material is the basis of industry,industrial development,development and depends greatly on the application of new materials.Glass fiber as a kind of inorganic non-metallic materials with excellent comprehensive properties,has been widely used in many fields of national economy,has injected new vitality to the development of industry.This paper mainly discusses the development,the basic properties of glass fiber,composite material and its application is introduced. Key words: glass fiber composite materials performance. 1、前言 在一般人的观念中,玻璃为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予形状以后终于可以成为优良之结构用材。可见,玻璃纤维并不是我们平日里想象的这般无用。玻璃纤维是塑料改性增强的主要品种,是实现通用塑料工程化的重要途径之一,它的使用能使制品的抗拉强度、刚性、热变形温度明显提高。玻璃纤维的应用已渗透到国民经济的各个领域,如交通、电子、建筑、卫生、环保、化工、造船、航空、航天等,已成为不可缺少的优良材料。玻璃纤维复合材料由于其材料性能的可设计性及轻质高强的特点,应用于航空、航天及国民经济的诸多领域,如建筑、陆上交通工具、船艇和近海工程、电子、电器、体育、医疗器械等。 在国发2号文件的指导及贵州省十二五规划中提出大力发展制造业,其中合成纤维产业也占很大比重,这是个良好的契机,充分利用好玻璃纤维及其复合材料,对于加快工业的进步,改善贵州经济又重要意义。 2、玻璃纤维的发展历程 文献[1][2][3]主要对玻璃纤维及其复合材料的发展性能等做了详细的介绍。玻璃纤维的发展主要经历了以下几个个阶段:

玻璃纤维增强塑料的基础知识

玻璃纤维增强塑料(FRP)基础知识 一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料( Fiber Reinforced Plas tics) 指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。? 三.FRP的基本构成 基体(树脂)+ 增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等 2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;

氧化铝纤维;碳化硅纤维;玄武岩纤维等。 3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。 多数为色浆状态。 5.填料:重钙;轻钙;滑石粉(400目以上);水泥等。 PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。 PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2) 耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;不锈钢;木材;有色金属等材料。

玻璃纤维基础知识

玻璃纤维小知识 1 玻璃纤维是以二氧化硅为主要原料的天然矿物,添加特定的金属氧化物矿物原料,混合均匀后,在高温下熔融,熔融玻璃液流经漏嘴流出,在高速拉引力的作用被牵伸并急速冷却固化成为极细的连续的纤维。 2 玻璃纤维的基本性质 2.1 外观特性 玻璃纤维为表面光滑的圆柱状,截面呈完整的圆形。这主要是成形时熔融玻璃液表面张力所致。有机纤维为非圆形结构的截面,且表面有较深的皱纹。 玻璃纤维圆形截面承受载荷能力强;气体和液体通过阻力小,但表面光滑使纤维的抱合力小,不利于与树脂的结合。 2.2 密度 玻璃纤维密度一般在2.50-2.70 g/cm3,主要取决于玻璃成分。所以有时工厂生产控制时也用密度的变化来考察成分的波动。 2.3 抗拉强度 玻璃纤维的抗拉强度比其他天然纤维、合成纤维要高。 玻璃纤维强度情况比较复杂,通常一些资料中给出的数据是“新生态纤维”的强度,即在漏嘴下直接取出的纤维所测的强度。缠绕在绕丝筒上后强度很快下降。通常认为绕丝筒上纤维的强度低于新生态15%-25%。 格里菲斯微裂纹缺陷理论:玻璃纤维的理论强度取决于分子之间的引力(与玻璃成分和结构有关),其理论强度很高。但由于玻璃纤维中存在着数量不等、尺寸不同的微裂纹,使实际强度大大降低。微裂纹分布在玻璃纤维的整个体积内,但以表面裂纹危害最大,在外力作用下,微裂纹处产生应力集中而发生破坏。 2.3 影响玻璃纤维强度的因素 (1)化学成分:玻璃组成不同,制成的纤维强度也不同。 (2)玻璃纤维的直径:直径越细强度越大。 (3)存放时间增加,强度下降。 (4)玻璃液的缺陷,如化学不均匀、结晶杂质、结石、气泡等影响纤维强度。研究结果认为:当玻璃中存在结晶物时会降低强度,最大降低52%:当存在微小气泡时,强度降低20%,玻璃液质量对保证纤维强度至关重要。 (5)成型温度影响:当温度从1200℃升高到1 370℃,纤维强度可提高一倍。“玻璃是一定状态下的无机物质,这种状态是该物质液态的继续,并与液态类似”,也就是说玻璃是具有液态结构的坚硬材料。由于玻璃纤维是在高速急冷条件下成形,所以具有接近于高温熔体的微观结构。通常说玻璃结构是远程无序,近程有序。近程有序的程度本身取决于熔融玻璃液的温度和从熔融玻璃液冷却为固态的速度,因此玻璃纤维的物理性质不仅受其成分的影响,还受其热历史的影响。 (6)冷却的速度:冷却速度越快,玻璃纤维的结构越接近熔融体的结构,析出的超显微晶体的数量和尺寸越少,缺陷和微裂纹也越少,强度越高。 (7)拉丝张力:拉丝作业不可避免地会产生微裂纹,在拉丝力的作用下每根纤维都受到一定的应力,这种应力作用于先硬化的纤维外壳时就产生了表面微裂纹。减少纤维成形时的张力,有利于提高纤维的强度。 2.4 弹性模量

玻璃纤维增强塑料的基础知识

玻璃纤维增强塑料(FRP)基础知识一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料(Fiber Reinforced Plastics)指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP 由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。 三.FRP的基本构成 基体(树脂)+ 增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等 2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;氧化铝纤维;碳化硅纤维;玄武岩纤维等。

3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。多数为色浆状态。 5. 填料:重钙;轻钙;滑石粉(400目以上);水泥等。PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2)耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;不锈钢;木材;有色金属等材料。 (3)电性能好:FRP是优良的绝缘材料,用于制造绝缘体,

高强玻璃纤维简介

高强度玻璃纤维简介 1、高强玻璃纤维及制品性能 美国军标(M I L-R-60346C)规定,高强度(S)玻璃纤维G级无捻粗纱浸胶束纱强度不得低于2758M P a、无碱(E)玻璃纤维无捻粗纱浸胶束纱强度不得低于1930M P a,从标准规定上,高强玻璃纤维强度比无碱高43%。表1为高强玻璃纤维与无碱玻璃纤维性能对比,从表1中可以看到,与无碱玻璃纤维相比,高强玻璃纤维具有更高的软化点、断裂伸长,以及更低的介电常数,因而可用于制作高强度、抗冲击和耐热等材料。表2为用玻璃纤维增强的复合材料强度和模量,采用高强玻璃纤维增强的复合材料比普通无碱玻璃纤维增强的复合材料力学性能高18~60%。表3为高强玻璃纤维和无碱玻璃纤维在不同温度下强度,高强玻璃纤维比无碱玻璃纤维具有更好的耐热性。 图1为高强和无碱玻璃纤维在不同P H值下的强度,高强玻璃纤维在不同酸碱的P H下的强度高于无碱。表4为不同介质条件下高强和无碱玻璃纤维纱的质量损失率,相当无碱玻璃纤维,高强玻璃纤维在水、酸和碱等介质的湿热环境下质量损失率低于无碱玻璃纤维,具有更好的耐介质湿热性能。 高强玻璃纤维制品有无捻粗纱、直接无捻粗纱、短切纱、纺织纱、布、预浸料、混杂布(高强/碳纤维、高强/石英纤维、高强/无碱玻璃纤维)等多种产品。 表1高强玻璃纤维性能 性能 高强2号2高强4号 无碱玻璃 新生态强度 (M P a)402046003445 弹性模量 (G P a)82.986.472 浸胶纱强度 (M P a)2600~30002942~35752400 断裂伸长 % 5.25.44.8 密度 g/c m32.542.532.58 软化点 ℃ 930942846

相关主题
文本预览
相关文档 最新文档