当前位置:文档之家› 模式识别导论大作业3

模式识别导论大作业3

模式识别导论大作业3

1. 已知二类均为正态,12()()1/2p w p w ==,1120L L ==,,

21122L L =110m ??=????212110.5,00.51m C C ?????

===????????求:1)最小错误率贝叶斯决策规则的分类边界。

2)最小风险贝叶斯决策规则的分类边界。

2. 若二类服从正态分布,, 12121110.51

0.5,,,000.510.5

1m m C C ??????????====?????????????????求:1)最小错误率贝叶斯分类器的分类边界并作图()0.5i p w =;

2)二类间的巴氏距离。

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

模式识别导论教学大纲

《模式识别导论》教学大纲 (课程编号08824380 学分-学时 2-40) 东南大学自动化学院 一.课程的性质与目的 本课程是自动化专业高年级本科生一门专业选修课,是研究计算机模式识别的基本理论和方法、应用。本课程的教学目的是,通过对模式识别的基本理论和方法、运用实例的学习,使学生掌握模式识别的基本知识,培养学生利用模式识别方法、运用技能解决本专业及相关领域实际问题的能力。 二.课程内容的教学要求 1.掌握模式识别的概念、发展和应用,模式识别的研究方法; 2.掌握统计模式识别中Bayes决策理论的基本原理及运用; 3.掌握统计模式识别中线性判别函数的基本理论及运用; 4.熟悉概率总体估计中的参数估计方法和非参数技术估计方法; 5.掌握近邻法则和集群; 6.掌握模式特征的抽取和选择; 7.了解人工神经网络在模式识别中的应用; 8.熟悉模式识别的聚类算法。 三.能力培养要求 1.分析能力的培养:主要是对相似性度量方法、特征提取和选择方法、各种识别方法特点进行分析的能力的培养,同时也要注意培养针对具体应用选择合适的识别方法的能力的培养。 2.计算能力的培养:要求学生通过本课程的学习,具备对线性判决函数、似然比、Bayes 风险进行计算或确定计算步骤的能力和对计算结果的正确性进行判断或校核的能力;具有使用计算机进行模式识别分析和计算的能力。 3.自学能力的培养:通过本课程的教学,要培养和提高学生对所学知识进行整理、概括、消化吸收的能力,以及围绕课堂教学内容,阅读参考书籍和资料,自我扩充知识领域的能力。 4.表达能力的培养:主要是通过作业,清晰、整洁地表达自己解决问题的思路和步骤的能力。 5.创新能力的培养:培养学生独立思考、深入钻研问题的习惯,和对问题提出多种解决方案、选择不同计算方法,以及对计算进行简化和举一反三的能力。

大工19秋《数据挖掘》大作业题目及要求答案

网络教育学院 《数据挖掘》课程大作业 题目:题目一:Knn算法原理以及python实现 姓名: XXX 报名编号: XXX 学习中心:奥鹏XXX 层次:专升本 专业:计算机科学与技术 第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。 答: 数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。

第二大题:完成下面一项大作业题目。 2019秋《数据挖掘》课程大作业 注意:从以下5个题目中任选其一作答。 题目一:Knn算法原理以及python实现 要求:文档用使用word撰写即可。 主要内容必须包括: (1)算法介绍。 (2)算法流程。 (3)python实现算法以及预测。 (4)整个word文件名为 [姓名奥鹏卡号学习中心](如 戴卫东101410013979浙江台州奥鹏学习中心[1]VIP ) 答: KNN算法介绍 KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。若K=1,新数据被简单分配给其近邻的类。 KNN算法实现过程 (1)选择一种距离计算方式, 通过数据所有的特征计算新数据与

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.doczj.com/doc/7c3707285.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

模式识别-作业4

第五章作业: 作业一: 设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求S w 和S b ω1:{(1 0)T , (2 0) T , (1 1) T } ω2:{(-1 0)T , (0 1) T , (-1 1) T } ω3:{(-1 -1)T , (0 -1) T , (0 -2) T } 答案: 由于三类样本集的先验概率相等,则概率均为1/3。 多类情况的类内散布矩阵,可写成各类的类内散布矩阵的先验概率的加权和,即: ∑∑=== --= c i i i T i i c i i w C m x m x E P S 1 1 }|))(({)(ωω 其中C i 是第i 类的协方差矩阵。 其中1m = ,2m = 则=++=321S w w w w S S S 1/3 + + = 类间散布矩阵常写成: T i i c i i b m m m m P S ))(()(001 --= ∑=ω 其中,m 0为多类模式(如共有c 类)分布的总体均值向量,即:

c i m P x E m i c i i i ,,2,1,,)(}{1 0K =?= =∑=ωω 0m = = 则 T i i c i i b m m m m P S ))(()(001 --= ∑=ω=++ = 作业二: 设有如下两类样本集,其出现的概率相等: ω1:{(0 0 0)T , (1 0 0) T , (1 0 1) T , (1 1 0) T } ω2:{(0 0 1)T , (0 1 0) T , (0 1 1) T , (1 1 1) T } 用K-L 变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。 答案: =+=∑∑==i i N j j N j j x x m 1 21 1)4 1 4 1 ( 21 将所有这些样本的各分量都减去0.5,便可以将所有这些样本 的均值移到原点,即(0,0,0)点。 新得到的两类样本集为:

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

计算智能大作业.

题目:遗传算法在图像处理中的应用研究课程: 计算智能 姓名: 学号: 专业:模式识别与智能系统

遗传算法在图像处理中的应用 摘要 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。近年来,由于遗传算法求解复杂优化问题的巨大潜力,广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法受到了国内外学者的广泛关注,尤其是在计算机科学人工智能领域中。本文介绍了遗传算法基本理论,描述了它的主要特点和基本性质;重点综述遗传算法在图像处理中的主要应用,特别是在图像分割、图像压缩、图像增强等方面的作用;深入研究目前遗传算法在图像处理领域中存在的问题,并结合自己的研究方向,对这些问题提出了一些深刻的见解,展望了今后遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理

1.背景介绍 遗传算法(Genetic Algorithm,GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。图像处理是计算机视觉中德一个重要研究领域,然而,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。于是,研究者就开始探索怎么样才能使这些误差最小从而使计算机视觉达到实用化的重要要求,最终,遗传算法凭借其在这些图像处理中的优化计算方面独特的优势成为各种算法的佼佼者,得到了广泛的应用。 2.遗传算法的原理和基本步骤 遗传算法是一个不断迭代过程的搜索算法,它的基本处理流程如下图所示。

模式识别导论习题集

模式识别导论习题集 1、设一幅256×256大小的图像,如表示成向量,其维数是多少?如按行串接成一维,则第3行第4个象素在向量表示中的序号。 解:其维数为2;序号为256×2+4=516 2、如标准数字1在5×7的方格中表示成如图所示的黑白图像,黑为1,白为0,现若有一数字1在5×7网格中向左错了一列。试用分别计算要与标准模板之间的欧氏距离、绝对值偏差、偏差的夹角表示,异己用“异或”计算两者差异。 解:把该图像的特征向量为5×7=35维,其中标准模版的特征向量为: x =[0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0]T 待测样本的特征向量为: y =[0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0]T ,绝对值偏差为351 |()|14i i i x y =-=∑, 夹角余弦为cos 0|||||||| T x y x y θ= =?,因此夹角为 90度。 3、哈明距离常用来计算二进制之间的相似度,如011与010的哈明距离为1,010与100距离为3。现用来计算7位LED 编码表示的个数字之间的相似度,试计算3与其它数字中的哪个数字的哈明距离最小。 解:是“9”,距离为1

4、对一个染色体分别用一下两种方法描述: (1)计算其面积、周长、面积/周长、面积与其外接矩形面积之比可以得到一些特征描述,如何利用这四个值?属于特征向量法,还是结构表示法? (2)按其轮廓线的形状分成几种类型,表示成a 、b 、c 等如图表示,如何利用这些量?属哪种描述方法? (3)设想其他结构描述方法。 解: (1)这是一种特征描述方法,其中面积周长可以体现染色体大小,面积周长比值越小,说明染色体越粗,面积占外接矩形的比例也体现了染色体的粗细。把这四个值组成一个维数为4的特征向量,该特征向量可以描述染色体的一些重要特征,可以按照特征向量匹配方法计算样本间的相似度。可以区分染色体和其它圆形、椭圆细胞结构。 (2)a 形曲线表示水平方向的凹陷,b 形表示竖直方向的凹陷,c 形指两个凹陷之间的突起,把这些值从左上角开始,按顺时针方向绕一圈,可以得到一个序列描述染色体的边界。它可以很好的体现染色体的形状,用于区分X 和Y 染色体很合适。这是结构表示法。 (3)可以先提取待识别形状的骨架,在图中用蓝色表示,然后,用树形表示骨架图像。 5. 设在一维特征空间中两类样本服从正态分布,1σ=2σ=1,μ1=0,μ2=3,两类先验概率之比e P P =)(/)(21ωω,试求按基于最小错误率贝叶斯决策原则的决策分界面的x 值。 解:按照公式(2-84),分界面上的点应满足:

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

模式识别导论习题参考-齐敏-第6章-句法模式识别

第6章 句法模式识别习题解答 6.1 用链码法描述5~9五个数字。 解:用弗利曼链码表示,基元如解图6.1所示: 数字5~9的折线化和量化结果如解图6.2所示: 各数字的链码表示分别为: “5”的链码表示为434446600765=x ; “6”的链码表示为3444456667012=x ; “7”的链码表示为00066666=x ; “8”的链码表示为21013457076543=x ; “9”的链码表示为5445432107666=x 。 1 7 解图6.1 弗利曼链码基元 解图6.2 数字5~9的折线化和量化结果

6.2 定义所需基本基元,用PDL 法描述印刷体英文大写斜体字母“H ”、“K ”和 “Z ”。 解:设基元为: 用PDL 法得到“H ”的链描述为)))))(~((((d d c d d x H ?+?+=; “K ”的链描述为))((b a d d x K ??+=; “Z ”的链描述为))((c c g x Z ?-=。 6.3 设有文法),,,(S P V V G T N =,N V ,T V 和P 分别为 },,{B A S V N =,},{b a V T = :P ①aB S →,②bA S →,③a A →,④aS A → ⑤bAA A →,⑥b B →,⑦bS B →,⑧aBB B → 写出三个属于)(G L 的句子。 解: 以上句子ab ,abba ,abab ,ba ,baab ,baba 均属于)(G L 。 6.4 设有文法),,,(S P V V G T N =,其中},,,{C B A S V N =,}1,0{=T V ,P 的各 生成式为 ①A S 0→,②B S 1→,③C S 1→ b c a d e abba abbA abS aB S ???? ① ⑦ ② ③ ab aB S ?? ① ⑥ ba bA S ?? ② ③ abab abaB abS aB S ???? ① ⑦ ① ⑥ baab baaB baS bA S ???? ② ④ ① ⑥ baba babA baS bA S ???? ② ④ ② ③

《模式识别》大作业人脸识别方法

《模式识别》大作业人脸识别方法 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器 一、 理论知识 1、主成分分析 主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。 1.1 问题的提出 一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将 它们综合成n 综合变量,即 11111221221122221122n n n n n n n nn n y c x c x c x y c x c x c x y c x c x c x =+++?? =+++?? ? ?=+++? ij c 由下列原则决定: 1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立; 2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、 第n 个主分量,它们的方差依次递减。 1.2 主成分的导出 我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ??????= ?????? 是一个n 维随机向量,12n y y Y y ??????=?????? 是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。 坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

模式识别作业Homework#2

Homework #2 Note:In some problem (this is true for the entire quarter) you will need to make some assumptions since the problem statement may not fully specify the problem space. Make sure that you make reasonable assumptions and clearly state them. Work alone: You are expected to do your own work on all assignments; there are no group assignments in this course. You may (and are encouraged to) engage in general discussions with your classmates regarding the assignments, but specific details of a solution, including the solution itself, must always be your own work. Problem: In this problem we will investigate the importance of having the correct model for classification. Load file hw2.mat and open it in Matlab using command load hw2. Using command whos, you should see six array c1, c2, c3 and t1, t2, t3, each has size 500 by 2. Arrays c1, c2, c3 hold the training data, and arrays t1, t2, t3 hold the testing data. That is arrays c1, c2, c3 should be used to train your classifier, and arrays t1, t2, t3 should be used to test how the classifier performs on the data it hasn’t seen. Arrays c1 holds training data for the first class, c2 for the second class, c3 for the third class. Arrays t1, t2, t3 hold the test data, where the true class of data in t1, t2, t3 comes from the first, second, third classed respectively. Of course, array ci and ti were drawn from the same distribution for each i. Each training and testing example has 2 features. Thus all arrays are two dimensional, the number of rows is equal to the number of examples, and there are 2 columns, column 1 has the first feature, column 2 has the second feature. (a)Visualize the examples by using Matlab scatter command a plotting each class in different color. For example, for class 1 use scatter(c1(:,1),c1(:,2),’r’);. Other possible colors can be found by typing help plot. (b)From the scatter plot in (a), for which classes the multivariate normal distribution looks like a possible model, and for which classes it is grossly wrong? If you are not sure how to answer this part, do parts (c-d) first. (c)Suppose we make an erroneous assumption that all classed have multivariate normal Nμ. Compute the Maximum Likelihood estimates for the means and distributions()∑, covariance matrices (remember you have to do it separately for each class). Make sure you use only the training data; this is the data in arrays c1, c2, and c3. (d)You can visualize what the estimated distributions look like using Matlab contour(). Recall that the data should be denser along the smaller ellipse, because these are closer to the estimated mean. (e)Use the ML estimates from the step (c) to design the ML classifier (this is the Bayes classifier under zero-one loss function with equal priors). Thus we are assuming that priors are the same for each class. Now classify the test example (that is only those

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

中科大模式识别大作业miniproject资料

模式识别miniproject 实验报告 报告人:李南云 学号:SA16173027 日期:2016.12.23

数据分析 在此简要的说明一下数据情况,给定数据集分为train和test 两个data文件, train.data是11列8285行,意味着有8285个样本,矩阵的最后一列是该列所对应的样本类别。根据统计,train数据前466个样本均为1类,而后7819个样本均为-1类,所以该分类器为二分类问题。MATLAB中用importdata()读取数据,并将样本和其所属类别分开来,样本为trnset,所属类别为trnclass,train数据用于训练分类器。 Test.data是11列2072行,同样也意味着有2072个样本,最后一列为该列所对应样本类别,test数据前117为1类,后1955个数据为-1类。同样读取数据后,分为tstset和tstclass两个矩阵,前者代表2072个样本,后者代表所对应样本的类别,我们需要将train所训练好的分类器应用在tstset样本上,输出分类结果tstclass1,将其与tstclass相比较,计算每个类别的正确率和总的正确率。 算法介绍 本次实验采用了SVM(support vector machines)分类模型,由于数据线性不可分而且在实际问题中数据也大都线性不可分,所以本次试验采取的线性不可分SVM方法,即将数据向高维空间映射,使其变得线性可分。 本实验选取的二分类算法,SVC_C。

下面先以线性分类器为例,来引入SVM算法的一些概念和处理流程,如图1所示,假设C1和C2是需要区分的类别,而在二维平面中它们的样本如图,中间的一条直线就是一个线性分类函数,由图中可以看出,这个线性分类函数可以完全的将两类样本区分开来,我们就称这样的数据是线性可分的,否则则为线性不可分,本实验中所采用的数据在二维空间里分布如图2和图3所示(红色标注分类为1的样本,蓝色标注为分类为-1的样本),明显线性不可分。 图1

模式识别作业

模式识别作业 班级: 学号: 姓名:

一、实验内容 (1)了解与熟悉模式识别系统的基本组成和系统识别原理。 (2)使用增添特征法对特征进行提取与选择。 (3)编写MATLAB程序,对原始数据特征进行提取与选择,并选择适当的分类器对样本进行训练和分类,得出最后的分类结果以及识别正确率。二、实验原理 模式识别系统的原理图如下: 图1.模式识别系统原理图 对原始样本数据进行一些预处理,使用增添特征法进行特征提取与选择。增添特征法也称为顺序前进法(SFS),每次从未选择的特征中选择一个,使得它与已选特征组合后判据值J最大,直到选择的特征数目达到d。特征选取后用SVM分类器对随机选取的训练样本和测试样本进行分类,最后得出不同特征维数下的最高SVM分类正确率,以及不同特征维数下的最大类别可分性判据。 三、实验方法及程序 clear; clc; load('C:\Users\Administrator\Desktop\homework\ionosphere.mat'); m1=225;m2=126; p1=m1/(m1+m2);p2=m2/(m1+m2); chosen=[]; for j=1:34 [m,n]=size(chosen);n=n+1; J1=zeros(1,33); for i=1:34 Sw=zeros(n,n);Sb=zeros(n,n); S1=zeros(n,n);S2=zeros(n,n); p=any(chosen==i); if p==0 temp_pattern1=data(1:225,[chosen i]); temp_pattern2=data(226:351,[chosen i]);

模式识别大作业汇总

作业1 用身高和/或体重数据进行性别分类(一) 基本要求: 用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。 具体做法: 1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响。 图1-先验概率0.5:0.5分布曲线图2-先验概率0.75:0.25分布曲线 图3--先验概率0.9:0.1分布曲线图4不同先验概率的曲线 有图可以看出先验概率对决策规则和错误率有很大的影响。 程序:bayesflq1.m和bayeszcx.m

关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。比较相关假设和不相关假设下结果的差异。在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响。 训练样本female来测试 图1先验概率0.5 vs. 0.5 图2先验概率0.75 vs. 0.25 图3先验概率0.9 vs. 0.1 图4不同先验概率 对测试样本1进行试验得图

04010290模式识别导论

《模式识别导论》课程教学大纲 一、课程基本信息 课程编号:04010290 课程中文名称:模式识别导论 课程英文名称:Introduction of Pattern Recognition 课程性质:专业任意选修课 考核方式:考查 开课专业:自动化、探测制导与控制技术 开课学期:7 总学时:24 (其中理论24学时,实验0学时) 总学分:1.5 二、课程目的和任务 通过本课程的学习,使学生了解当前模式识别理论的发展现状,初步掌握模式识别的基本方法,使学生对模式、模式识别等基本概念有明确地认识,具有实用统计模式识别完成模式分类的能力。 三、教学基本要求(含素质教育与创新能力培养的要求) 1、掌握模式、模式识别的含义; 2、掌握基于Bayes决策理论的模式分类方法; 3、掌握线性分类的基本方法; 4、掌握近邻法; 5、了解聚类分析的基本方法; 6、了解特征提取的基本方法。 四、教学内容与学时分配 第一章绪论(2学时) 模式和模式识别;模式识别的发展和应用;模式识别的研究方法。 第二章Bayes决策理论(4学时)

最小错误率的Bayes决策;最小风险的Bayes决策;Bayes分类器和判别函数;正态分布模式的Bayes分类器;均值向量和协方差矩阵的估计。 第三章线性判决函数(4学时) 线性判决函数和决策面;最小距离分类器;感知机准则函数;平方误差准则函数;多类模式的线性分类器。 第四章非线性判决函数(4学时) 分段线性判别函数;近邻法;K-近邻法;快速近邻法。 第五章聚类分析(4学时) 模式相似性测度和聚类准则;分级聚类法;C—均值算法。 第六章特征提取(6学时) 类别可分性准则;特征选择;基于距离的特征提取;基于K-L变换的特征提取。五、教学方法及手段(含现代化教学手段) 课堂讲授、专题讨论。 六、实验(或)上机内容 无 七、前续课程、后续课程 前续课程:概率论与数理统计、线性代数 后续课程:无 八、教材及主要参考资料 教材: [1] 黄凤岗,宋克欧. 模式识别[M]. 哈尔滨:哈尔滨工程大学出版社,1998. 主要参考资料: [1] 杨光正等. 模式识别[M].合肥:中国科技大学出版社,2000. [2] 边肇祺,张学工. 模式识别[M].北京:清华大学出版社,2000. 撰写人签字:院(系)教学院长(主任)签字:

相关主题
文本预览
相关文档 最新文档