当前位置:文档之家› PID调节和温度控制原理

PID调节和温度控制原理

PID调节和温度控制原理
PID调节和温度控制原理

PID调节和温度控制原理

字体大小:大| 中| 小2006-10-21 23:17 - 阅读:209 - 评论:0

当通过热电偶采集的被测温度偏离所希望的给定值时,PID控制可根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。

比例运算是指输出控制量与偏差的比例关系。比例参数P设定值越大,控制的灵敏度越低,设定值越小,控制的灵敏度越高,例如比例参数P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100%。积分运算的目的是消除偏差。只要偏差存在,积分作用将控制量向使偏差消除的方向移动。积分时间是表示积分作用强度的单位。设定的积分时间越短,积分作用越强。例如积分时间设定为240秒时,表示对固定的偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒。比例作用和积分作用是对控制结果的修正动作,响应较慢。微分作用是为了消除其缺点而补充的。微分作用根据偏差产生的速度对输出量进行修正,使控制过程尽快恢复到原来的控制状态,微分时间是表示微分作用强度的单位,仪表设定的微分时间越长,则以微分作用进行的修正越强。

PID模块操作非常简捷只要设定4个参数就可以进行温度精确控制:

1、温度设定

2、P值

3、I值

4、D值

PID模块的温度控制精度主要受P、I、D这三个参数影响。其中P代表比例,I代表积分,D代表微分。

比例运算(P)

比例控制是建立与设定值(SV)相关的一种运算,并根据偏差在求得运算值(控制输出量)。如果当前值(PV)小,运算值为100%。如果当前值在比例带内,运算值根据偏差比例求得并逐渐减小直到SV和PV匹配(即,直到偏差为0),此时运算值回复到先前值(前馈运算)。若出现静差(残余偏差),可用减小P方法减小残余偏差。如果P太小,反而会出现振荡。

积分运算(I)

将积分与比例运算相结合,随着调节时间延续可减小静差。积分强度用积分时间表示,积分时间相当于积分运算值到比例运算值在阶跃偏差响应下达到的作用所需要的时间。积分时间越小,积分运算的校正时间越强。但如果积分时间值太小,校正作用太强会出现振荡。

微分运算(D)

比例和积分运算都校正控制结果,所以不可避免地会产生响应延时现象。微分运算可弥补这些缺陷。在一个突发的干扰响应中,微分运算提供了一个很大的运算值,以恢复原始状态。微分运算采用一个正比于偏差变化率(微分系数)的运算值校正控制。微分运算的强度由微分时间表示,微分时间相当于微分运算值达到比例运算值在阶跃偏差响应下达到的作用所需的时间。微分时间值越大,微分运算的校正强度越强。

通常,对于温度控制的理解,是觉得其技术成熟且改变不大。有一些工业的应用,不仅对时间进行精确的控制,而且在当设定值改变时,对于快速加温阶段和扰动的快速响应形成最小程度的过冲(overshoot)和下冲(undershoot)。一般采用的PID控制技术难以满足这些特殊的场合。

目前存在2种的复杂温度控制器。一种方案是基于增加特殊性能的PID,另一种方案是模糊逻辑控制。

增强的PID温度控制

加热和冷却过程中的不同速度(时间常数)可根据温度设定值,进行PID常数的动态调节。这样的调节需要一个加热模型--加热过程的反转静态特性(inverse static characteristic)。一旦控制系统执行加热模型,它的输出可被相应地用于前馈变量。前馈变量与比例成分的输出一起使加热模型符合加热过程。

一个近似的时间优化控制方法需要将温度控制的全部过程分为3个部分,每部分都有其不同控制机制。在第一阶段(温度在设定值之下)和最后一个阶段(温度在设定值之上),幂常量(分别是满值和零)被应用,控制调节误差。在中间阶段(设定值在中间),线性PID控制开始作用。在这里所谓的线性控制区(linear control zone,LCZ)、非线性、调节误差限制(regulation error limit ,REL)就能被使用,会有助于限制温度的过冲和下冲。图1中,为加强的PID温度控制器的框图,适用范围较广。

模糊逻辑

工程师们对模糊逻辑的了解已经超过35年。模糊控制的魅力在于小规模的微型控制器,因为这一技术比常规的PID要求较少的计算幂和更少的操作存储量。

模糊控制的基本形式可模拟人工控制过程。根据瞬时温度背离设定值(调节误差,e(n))的程度和温度改变的速率(或调节误差的背离,(e(n)),人工调整应用于加热成分的幂。整个过程由系统的物理或数学性质决定。温度的背离和温度的改变速率是高?是底?还是中等?模糊控制以同样的过程变量状态运行。

如图2,模糊温度控制器的框图表明,模糊控制器的输出是如何在功能加强的传统的PID 控制器的情况下与前馈模块的输出相结合的。类似的适配模块可使解模糊化过程优化(使模糊化输出变量成为明确的输出值),并且同时帮助加热器模块更真实反映加热过程。

即使像温度控制这类最简单的过程,如果增加了诸如快速增温阶段也可能变得很复杂。执行功能加强的、传统的PID控制器就成为一项挑战,特别是如果需要自调整能力以帮助确定优化PID常量时。然而,不可否认的是,PID控制的理论的运用相当广泛。

另外,模糊控制似乎能较简单的实现相同的性能。由一阶或更高阶的多项式(LCZ在增强PID控制中提供唯一一个零阶近似值)控制的,用于时间优化控制系统的二阶转换曲线的近似值使模糊控制在时间优化控制应用中颇占优势。作为相对较为新的控制方法,它也能提供更多的发展空间。

PID调节和温度控制原理

P I D调节和温度控制原理 字体大小:||2006-10-2123:17-阅读:209-:0 当通过热电偶采集的被测温度偏离所希望的给定值时,PID控制可根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。 比例运算是指输出控制量与偏差的比例关系。比例参数P设定值越大,控制的灵敏度越低,设定值越小,控制的灵敏度越高,例如比例参数P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100%。积分运算的目的是消除偏差。只要偏差存在,积分作用将控制量向使偏差消除的方向移动。积分时间是表示积分作用强度的单位。设定的积分时间越短,积分作用越强。例如积分时间设定为240秒时,表示对固定的偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒。比例作用和积分作用是对控制结果的修正动作,响应较慢。微分作用是为了消除其缺点而补充的。微分作用根据偏差产生的速度对输出量进行修正,使控制过程尽快恢复到原来的控制状态,微分时间是表示微分作用强度的单位,仪表设定的微分时间越长,则以微分作用进行的修正越强。 PID模块操作非常简捷只要设定4个参数就可以进行温度精确控制: 1、温度设定 2、P值 3、I值 4、D值

PID模块的温度控制精度主要受P、I、D这三个参数影响。其中P代表比例,I代表积分,D 代表微分。 比例运算(P) 比例控制是建立与设定值(SV)相关的一种运算,并根据偏差在求得运算值(控制输出量)。如果当前值(PV)小,运算值为100%。如果当前值在比例带内,运算值根据偏差比例求得并逐渐减小直到SV和PV匹配(即,直到偏差为0),此时运算值回复到先前值(前馈运算)。若出现静差(残余偏差),可用减小P方法减小残余偏差。如果P太小,反而会出现振荡。 积分运算(I) 将积分与比例运算相结合,随着调节时间延续可减小静差。积分强度用积分时间表示,积分时间相当于积分运算值到比例运算值在阶跃偏差响应下达到的作用所需要的时间。积分时间越小,积分运算的校正时间越强。但如果积分时间值太小,校正作用太强会出现振荡。 微分运算(D) 比例和积分运算都校正控制结果,所以不可避免地会产生响应延时现象。微分运算可弥补这些缺陷。在一个突发的干扰响应中,微分运算提供了一个很大的运算值,以恢复原始状态。微分运算采用一个正比于偏差变化率(微分系数)的运算值校正控制。微分运算的强度由微分时间表示,微分时间相当于微分运算值达到比例运算值在阶跃偏差响应下达到的作用所需的时间。微分时间值越大,微分运算的校正强度越强。 通常,对于温度控制的理解,是觉得其技术成熟且改变不大。有一些工业的应用,不仅对时间进行精确的控制,而且在当设定值改变时,对于快速加温阶段和扰动的快速响应形成最小程度的过冲(overshoot)和下冲(undershoot)。一般采用的PID控制技术难以满足这些特殊的场合。

三菱PID控制实例

三菱PLC和FX2N-4AD-TC实现温度PID闭环控制系统的学习参考。。。。。。

风机鼓入的新风经加热交换器、制冷交换器、进入房间。原理说明:进风不断被受热体加温,欲使进风维持一定的温度,这就需要同时有一加热器以不同加热量给进风加热,这样才能保证进风温度保持恒定。 plc接线图如下,按图接好线。配线时,应使用带屏蔽的补偿导线和模拟输入电缆配合,屏蔽一切可能产生的干扰。fx2n-4ad-tc的特殊功能模块编号为0。

输入和输出点分配表 这里介绍pid控制改变加热器(热盘管)的加热时间从而实现对温度的闭环控制。

在温度控制系统中,电加热器加热,温度用热电耦检测,与热电耦型温度传感器匹配的模拟量输入模块 fx2n-4ad-tc将温度转换为数字输出,cpu将检测的温度与温度设定值比较,通过plc的pid控制改变加热器的加热时间从而实现对温度的闭环控制。pid控制时和自动调谐时电加热器的动作情况如上图所示。其参数设定内容如下表所示。 三菱plc和fx2n-4ad-tc实现温度pid闭环控制系统程序设计:

用选择开关置x10作为自动调谐控制后的pid控制,用选择开关置x11作为无自动调谐的pid控制。 当选择开关置x10时,控制用参数的设定值在pid运算前必须预先通过指令写入,见图程序0步开始,m8002为初始化脉冲,用mov指令将目标值、输入滤波常数、微分增益、输出值上限、输出值下限的设定值分别传送给数据寄存器d500、d512、d515、d532、d533。 程序第26步,使m0得电,使用自动调谐功能是为了得到最佳pid控制,自动调谐不能自动设定的参数必须通过指令设定,在第29步~47步之间用mov指令将自动调谐用的参数(自动调谐采用时间、动作方向自动调谐开始、自动调谐用输出值)分别传送给数据寄存器d510、d511、d502。 程序第53步开始,对fx2n-4ad-tc进行确认、模式设定,且在plc运行中读取来自fx2n-4ad-tc的数据送到plc的d501中,103步开始对pid动作进行初始化。 第116步开始,x10闭合,在自动调谐后实行pid控制,当自动调谐开始时的测定值达到目标值的变化量变化1/3以上,则自动调谐结束,程序第128步~140步,自动调谐

位置式PID控制原理

PID 控制原理 有哥们5分提供的,想现在免费吧? PID 控制是一种在工业生产中应用最广泛的控制方法,其最大的优点是不需要了解被控对象精确的数学模型,进行复杂的理论计算。只需要在线根据被控变量与给定值之间的偏差以及偏差的变化率等简单参数,通过工程方法对比例系数P K 、积分时间I T 、微分时间D T 三个参数进行调整,就可以得到令人满意的控制效果。PID 控制算法可以分为位置型控制算法和增量型控制算法,本文主要讨论位置型控制算。 1 自动控制性能指标的相关概念 1.1系统的响应速度 指控制系统对偏差信号做出反映的速度,也叫做系统灵敏度。一般可以通过上升时间r t 和峰值时间p t 进行反应。上升时间和峰值时间越短,则系统的响应速度越快。 1.2系统的调节速度 系统的快速性主要由调节时间来反映,系统的调节时间越短,则系统的快速性越好。

系统的快速性与响应速度是两个不同的概念,响应速度快的系统,其调节时间不一定短;调节时间短的系统,其响应速度不一定很高。 1.3系统的稳定性 系统的稳定性一般用超调量%σ来反映,超调量越小,系统的稳定性越好;超调量越大,系统的稳定性越差。系统的稳定性与系统的响应速度是一对矛盾体。 2 PID 控制算法式的推导 PID 控制器的微分方程为: 00]) ()(1)([)(u dt t de T dt t e T t e K t u D t I P +++ =? 式中:)(t e —给定值与被控变量的偏差 P K —比例系数 I T —积分时间常数 D T —微分时间常数 t —从开始进行调节到输出当前控制量所经过的时间间隔 0u —PID 调节开始之前瞬间,执行器的输入控制信号,在调节过程中为固定值 比例项:)()(t e K t u P P = 积分项:?=t I P I dt t e T K t u 0 )(1 )( 微分项:dt t de T K t u D P D ) ()(= 对上式进行离散化可得数字式PID 控制算式为: )()(n e K n u P P =

温度控制的PID算法-及C程序实现

温度控制与PID算法 温度控制与PID算法j较为复杂,下面结合实际浅显易懂的阐述一下PID控制理论,将温度控制及PID算法作一个简单的描述。 1.温度控制的框图 这是一个典型的闭环控制系统,用于控制加热温区的温度(PV)保持在恒定的温度设定值(SV)。系统通过温度采集单元反馈回来的实时温度信号(PV)获取偏差值(EV),偏差值经过PID调节器运算输出,控制发热管的发热功率,以克服偏差,促使偏差趋近于零。例如,当某一时刻炉内过PCB板较多,带走的热量较多时,即导致温区温度下降,这时,通过反馈的调节作用,将使温度迅速回升。其调节过程如下:

温度控制的功率输出采用脉宽调制的方法。固态继电器SSR的输出端为脉宽可调的电压U OUT 。当SSR的触发角触发时,电源电压U AN通过SSR的输出端加到发热管的两端;当SSR的触发角没有触发信号时,SSR关断。因此,发热管两端的平均电压为U d=(t/T)* U AN=K* U AN 其中K=t/T,为一个周期T中,SSR触发导通的比率,称为负载电压系数或是占空比,K 的变化率在0-1之间。一般是周期T固定不便,调节t, 当t在0-T的范围内变化时,发热管的电压即在0-U AN之间变化,这种调节方法称为定频调宽法。下面将要描述的PID 调节器的算式在这里的实质即是运算求出一个实时变化的,能够保证加热温区在外界干扰的情况下仍能保持温度在一个较小的范围内变化的合理的负载电压系数K。 2.温度控制的两个阶段 温度控制系统是一个惯性较大的系统,也就是说,当给温区开始加热之后,并不能立即观察得到温区温度的明显上升;同样的,当关闭加热之后,温区的温度仍然有一定程度的上升。另外,热电偶对温度的检测,与实际的温区温度相比较,也存在一定的滞后效应。这给温度的控制带来了困难。因此,如果在温度检测值(PV)到达设定值时才关断输出,可能因温度的滞后效应而长时间超出设定值,需要较长时间才能回到设定值;如果在温度检测值(PV)未到设定值时即关断输出,则可能因关断较早而导致温度难以达到设定值。为了合理地处理系统响应速度(即加热速度)与系统稳定性之间地矛盾,我们把温度控制分为两个阶段。

温度的PID控制及程序示例

温度的PID 控制 一.温度检测部分首先要OK. 二、PID 调节作用 PID 控制时域的公式 ))()(1)(()(?++ =dt t de Td t e Ti t e Kp t y 分解开来: (1) 比例调节器 y(t) = Kp * e(t) e(k) 为当前的温差(设定值与检测值的插值) y(k) 为当前输出的控制信号(需要转化为PWM 形式) # 输出与输入偏差成正比。只要偏差出现,就能及时地产生与之成比例的调节 作用,使被控量朝着减小偏差的方向变化,具有调节及时的特点。但是, Kp 过大会导致动态品质变坏,甚至使系统不稳定。比例调节器的特性曲线. (2) 积分调节器 y(t) = Ki * ∫(e(t))dt Ki = Kp/Ti Ti 为积分时间 #TI 是积分时间常数,它表示积分速度的大小,Ti 越大,积分速度越慢,积分作用越弱。只要偏差不为零就会产生对应的控制量并依此影响被控量。增大Ti 会减小积分作用,即减慢消除静差的过程,减小超调,提高稳定性。 (3) 微分调节器 y(t) = Kd*d(e(t))/dt Kd = Kp*Td Td 为微分时间 #微分分量对偏差的任何变化都会产生控制作用,以调整系统输出,阻止偏差变化。偏差变化越快,则产生的阻止作用越大。从分析看出,微分作用的特点是:加入微分调节将有助于减小超调量,克服震荡,使系统趋于稳定。他加快了系统的动作速度,减小调整的时间,从而改善了系统的动态性能。 三.PID 算法: 由时域的公式离散化后可得如下公式:

y(k) = y(k-1)+(Kp+Ki+Kd)*e(k)-(Kp +2*Kd)*e(k-1) + Kd*e(k-2) y(k) 为当前输出的控制信号(需要转化为PWM形式) y(k-1)为前一次输出的控制信号 e(k) 为当前的温差(设定值与检测值的插值) e(k-1) 为一次前的温差 e(k-2) 为二次前的温差 Kp 为比例系数 Ki = Kp*T/Ti T为采样周期 Kd = Kp*Td/T 四.PID参数整定(确定Kp,Ts,Ti,Td): 温度控制适合衰减曲线法,需要根据多次采样的数据画出响应曲线。 所以需要通过串口将采样时间t, 输出y(t)记录下来,方便分析。 1)、不加入算法,系统全速加热,从常温加热到较高的温度的时间为Tk, 则采样时间一般设为 T = Tk/10。 2)、置调节器积分时间TI=∞,微分时间TD=0,即只加比例算法: y(k) = y(k-1)+Kp*e(k) 比例带δ置于较大的值。将系统投入运行。(δ = 1/Kp) 3)、待系统工作稳定后,对设定值作阶跃扰动,然后观察系统的响应。若响应振荡衰减太快,就减小比例带;反之,则增大比例带。如此反复,直到出现如图所示的衰减比为4:1的振荡过程时,记录此时的δ值(设为δS),以及TS 的值(如图中所示)。当采用衰减比为10:1振荡过程时,应用上升时间Tr替代 振荡周期TS计算。 系统衰减振荡曲线 图中,TS为衰减振荡周期,Tr为响应上升时间。 据表中所给的经验公式计算δ、TI及TD的参数。

PID控制的基本原理

S lim e (t ) = 1 +RK t →∞ PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中 95%以上的控制回路都具有 PID 结构,而且许多高级控制都是以 PID 控制为 基础的。 PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成,它的基本原理比较简单,基本的 PID 控 制规律可描述为: G (S ) = K P + K 1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数( K P , K I 和 K D ) 即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1) 原理简单,使用方便,PID 参数 K P 、K I 和 K D 可以根据过程动态特性变化,PID 参数就可以重 新进行调整与设定。 (2) 适应性强,按 PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制功能也仍然是 PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行 PID 控制了。 (3) 鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。 但不可否 认 PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果 PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但 PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用 PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述 PID 控制。 1.1.1 比例(P )控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band , PB ),来取代比例系数 K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号 R 0 1(t)的稳态误差与其开环增益 K 近视成反比,即: t →∞ 对于单位反馈系统,I 型系统响应匀速信号 (1- 3) R 1 (t)的稳态误差与其开环增益 K v 近视成反比, 即: lim e (t ) = R 1 K V (1- 4)

温度PID控制实验

温度PID 控制实验 一、实验目的 1.加深对PID 控制理论的理解; 2.认识Labview 虚拟仪器在测控电路的应用; 3.掌握时间比例P、积分I、微分D 对测控过程连续测控的影响以及提高测控系统的精度; 4.通过实验,改变P、I、D 参数,观察对整个温度测控系统的影响; 5.认识固态继电器和温度变送器,了解其工作原理。 二、预习要点 1.PID 控制理论与传递函数。请学生在0-100 的范围里,自己选择较好的KP,KI,KD 值,用该控制参数进行后续实验; 2.了解A/D、D/A 转换原理; 3.Labview 虚拟仪器图形软件(本实验指导书附录中对使用环境详细介绍)。 三、实验原理 温度是通过固态继电器的导通关断来实现加热的,控制周期即是一个加热和 冷却周期,PID 调节的实现也是通过这个周期实现的,在远离温度预设值的时固 态继电器在温度控制周期中持续加热(假设导通时间是T),在接近温度预设值 时通过PID 得到的值来控制这一周期内固态继电器的开关时间(假设导通时间是 1/2T)维持温度(假设导通时间是1/4T)。如图1 所示: 图1 加热周期控制示意图 8 四、实验项目 1.用PID 控制水箱温度; 2.用控制效果对比完成数据对比操作,选出最佳值。 五、实验仪器 ZCK-II 型智能化测控系统。 六、实验步骤及操作说明 1.打开仪器面板上的总电源开关,绿色指示灯亮起表示系统正常;

2.打开仪器面板上的液位电源开关,绿色指示灯亮起表示系统正常; 3,确保贮水箱内有足够的水,参照图2 中阀门位置设置阀门开关,将阀门1、3、5、6 打开,阀门2、4 关闭; 图2 水箱及管道系统图 4.参看变频器操作说明书将其设置在手动操作挡; 5.单击控制器RUN 按钮,向加热水箱注水,直到水位接近加热水箱顶部,完 全 淹没加热器后单击STOP 按钮结束注水; 6.关闭仪器面板上的液位电源开关,红色指示灯亮起表示系统关闭; 7.打开仪器面板上的加热电源开关,绿色指示灯亮起表示系统正常; 8.打开计算机,启动ZCK-II 型智能化测控系统主程序; 9.用鼠标单击温度控制动画图形进入温度控制系统主界面,小组实验无须在个 人信息输入框填写身份,直接确定即可; 10.在温度系统控制主界面中,单击采集卡测试图标,进入数据采集卡测试程序。 请在该选项中确定选择设备号为端口1,因为我们接入数据采集卡的端口是1 号 9 端口,其他数据端口留做其他方面使用的,所以切记不能选错,否则程序会报 错 并强制关闭。选择采集通道时请选择0 号通道即温度传感器占用的通道。控制上、 下限选项是为设置报警电路所预设的,在本实验中暂未起用该功能,感兴趣的 同 学可以试着完善它,本实验报警数值是+1V 以下和+5V 以上,这里只做了解即可。 采样点数(单位:个)、采样速率(单位:个/秒)和控制周期(单位:毫秒) 请 参照帮助显示区进行操作,一切设置确认无误后即可单击启动程序图标,观察 温 度和电压的变化,也可以单击冷却中左边的开关按钮进入加热程序,观察温度 上 升曲线及电流表和电压表变化,确认传感器正常工作后点击程序结束,等待返 回 主界面图标出现即可返回温度控制主界面进入下一步实验。 11.在温度系统控制主界面中,单击传感器标定图标,进入传感器标定程序。 本 程序界面和数据采集卡测试程序界面基本相同,操作请参照步骤10 进行,一切 设置确认无误后即可单击启动程序图标,观察温度和电压的变化,同时用温度

自动控制学习笔记(注释)(PID控制原理)

PID控制原理 PID算法是最早发展起来的控制策略之一,由于其算法简单、鲁棒性(系统抵御各种扰动因素——包括系统部结构、参数的不确定性,系统外部的各种干扰等的能力)好及可靠性高而被广泛地应用于过程控制和运动控制中。尤其是随着计算机技术的发展,数字PID控制被广泛地加以应用,不同的PID控制算法其控制效果也各有不同。 将偏差的比例(Proportion)、积分(Integral)和微分(Differential)通过线性组合构成控制量,用这一控制量对被控对象进行控制,这样的控制器称PID控制器。 模拟PID控制原理 在模拟控制系统中,控制器最常用的控制规律是PID控制。 常规的模拟PID控制系统原理框图如图所示。 模拟PID控制系统原理图 该系统由模拟PID控制器和被控对象组成。图中,r(t)是给定值,y(t)是系统的实际输出值,给定值与实际输出值构成控制偏差e(t) (te) = r(t) ? y(t)(式1-1) e(t)作为PID控制的输入,u(t)作为PID控制器的输出和被控对象的输入。所以模拟PID控制器的控制规律为

u(t) =Kp [e(t) +dt+Td](式1-2) 其中:Kp――控制器的比例系数 Ti--控制器的积分时间,也称积分系数 Td――控制器的微分时间,也称微分系数 1、比例部分 比例部分的数学式表示是:Kp*e(t) 在模拟PID控制器中,比例环节的作用是对偏差瞬间作出反应。偏差一旦产生控制器立即产生控制作用,使控制量向减少偏差的方向变化。控制作用的强弱取决于比例系数Kp,比例系数Kp越大,控制作用越强,则过渡过程越快,控制过程的静态偏差也就越小;但是Kp越大,也越容易产生振荡,破坏系统的稳定性。故而,比例系数Kp选择必须恰当,才能过渡时间少,静差小而又稳定的效果。 2、积分部分 积分部分的数学式表示是: 从积分部分的数学表达式可以知道,只要存在偏差,则它的控制作用就不断的增加;只有在偏差e(t)=0时,它的积分才能是一个常数,控制作用才是一个不会增加的常数。可见,积分部分可以消除系统的偏差。 积分环节的调节作用虽然会消除静态误差,但也会降低系统的响应速度,增加系统的超调量。积分常数Ti越大,积分的积累作用越弱,这时系统在过渡时不会产生振荡;但是增大积分常数会减慢静态误差的消除过程,消除偏差所需的时间也较长,但可以减少超调量,提高系统的稳定性。当Ti较小时,则积分的作用较强,这时系统过渡时间中有可能产生振荡,不过消除偏差所需的时间较短。所以必须根据实际控制的具体要求来确定Ti。 3、微分部分 微分部分的数学式表示是:Kp*Td 实际的控制系统除了希望消除静态误差外,还要求加快调节过程。在偏差出现的瞬间,或在偏差变化的瞬间,不但要对偏差量做出立即响应(比例环节的作用),而且要根据偏差的变化趋势预先给出适当的纠正。为了实现这一作用,可在PI控制器的基础上加入微分环节,形成PID 控制器。 微分环节的作用使阻止偏差的变化。它是根据偏差的变化趋势(变化速度)进行控制。偏差变化的越快,微分控制器的输出就越大,并能在偏差值变大之前进行修正。微分作用的引入,将有助于减小超调量,克服振荡,使系统趋于稳定,特别对髙阶系统非常有利,它加快了系统

PID温度控制的PLC程序设计

PID温度控制的PLC程序设计 温度控制是许多机器的重要的构成部分。它的功能是将温度控制在所需要的温度范围内,然后进行工件的加工与处理。PID控制系统是得到广泛应用的控制方法之一。在本文中,将详细讲叙本套系统。 l 系统组成 本套系统采用Omron的PLC与其温控单元以及Pro-face的触摸屏所组成。系统包括CQM1H-51、扩展单元TC-101、GP577R以及探温器、加热/制冷单元。 l 触摸屏画面部分(见图1-a) 1-a 如图所见,数据监控栏内所显示的002代表现在的温度,而102表示输出的温度。如按下开始设置就可设置参数。需要设置的参数有六个,分别是比例带、积分时间、微分时间、滞后值、控制周期、偏移量。它们在PLC的地址与一些开关的地址如下所列。 比例带: DM51 积分时间: DM52 微分时间: DM53 滞后值: DM54 控制周期: DM55 偏移量: DM56 数据刷新: 22905 l PLC程序部分 002:PID的输入字 102:PID的输出字 [NETWORK] Name="Action Check" //常规检查 [STA TEMENTLIST] LD 253.13 //常ON OUT TR0 CMP 002 #FFFF //确定温控单元是否完成初始化 AND NOT 255.06 //等于 OUT 041.15 //初始化完成 LD TR0 AND 041.15 OUT TR1 AND NOT 040.10 //不在参数设置状态 MOV DM0050 102 //将设置温度DM50传送给PID输出字 LD TR1 MOV 002 DM0057 //将002传送到DM57 [NETWORK] Name="Setting Start"//设置开始 [STA TEMENTLIST] LD 253.13 OUT TR0 AND 229.05 //触摸屏上的开始设置开关

位置式PID控制原理

PID 控制原理 PID 控制是一种在工业生产中应用最广泛的控制方法,其最大的优点是不需要了解被控对象精确的数学模型,进行复杂的理论计算。只需要在线根据被控变量与给定值之间的偏差以及偏差的变化率等简单参数,通过工程方法对比例系数P K 、积分时间I T 、微分时间D T 三个参数进行调整,就可以得到令人满意的控制效果。PID 控制算法可以分为位置型控制算法和增量型控制算法,本文主要讨论位置型控制算。 1 自动控制性能指标的相关概念 系统的响应速度 指控制系统对偏差信号做出反映的速度,也叫做系统灵敏度。一般可以通过上升时间r t 和峰值时间p t 进行反应。上升时间和峰值时间越短,则系统的响应速度越快。 系统的调节速度 系统的快速性主要由调节时间来反映,系统的调节时间越短,则系统的快速性越好。

系统的快速性与响应速度是两个不同的概念,响应速度快的系统,其调节时间不一定短;调节时间短的系统,其响应速度不一定很高。 系统的稳定性 系统的稳定性一般用超调量%σ来反映,超调量越小,系统的稳定性越好;超调量越大,系统的稳定性越差。系统的稳定性与系统的响应速度是一对矛盾体。 2 PID 控制算法式的推导 PID 控制器的微分方程为: 00]) ()(1)([)(u dt t de T dt t e T t e K t u D t I P +++ =? 式中:)(t e —给定值与被控变量的偏差 P K —比例系数 I T —积分时间常数 D T —微分时间常数 t —从开始进行调节到输出当前控制量所经过的时间间隔 0u —PID 调节开始之前瞬间,执行器的输入控制信号,在调节过程中为固定值 比例项:)()(t e K t u P P = 积分项:?=t I P I dt t e T K t u 0 )(1 )( 微分项:dt t de T K t u D P D ) ()(= 对上式进行离散化可得数字式PID 控制算式为: )()(n e K n u P P =

PID温度控制的PLC程序设计(梯形图语言)教学文案

P I D温度控制的P L C 程序设计(梯形图语言)

PID温度控制的PLC程序设计(梯形图语言) PID温度控制的PLC程序设计 温度控制是许多机器的重要的构成部分。它的功能是将温度控制在所需要的温度范围内,然后进行工件的加工与处理。PID控制系统是得到广泛应用的控制方法之一。在本文中,将详细讲叙本套系统。 l 系统组成 本套系统采用Omron的PLC与其温控单元以及Pro-face的触摸屏所组成。系统包括CQM1H-51、扩展单元TC-101、GP577R以及探温器、加热/制冷单元。 l 触摸屏画面部分(见图1-a) 1-a 如图所见,数据监控栏内所显示的002代表现在的温度,而102表示输出的温度。如按下开始设置就可设置参数。需要设置的参数有六个,分别是比例带、积分时间、微分时间、滞后值、控制周期、偏移量。它们在PLC的地址与一些开关的地址如下所列。 比例带 : DM51 积分时间 : DM52 微分时间 : DM53 滞后值 : DM54 控制周期 : DM55 偏移量 : DM56 数据刷新 : 22905

l PLC程序部分 002:PID的输入字 102:PID的输出字 [NETWORK] Name="Action Check" //常规检查 [STATEMENTLIST] LD 253.13 //常ON OUT TR0 CMP 002 #FFFF //确定温控单元是否完成初始化 字串1 AND NOT 255.06 //等于 OUT 041.15 //初始化完成 LD TR0 AND 041.15 OUT TR1 AND NOT 040.10 //不在参数设置状态 MOV DM0050 102 //将设置温度DM50传送给PID输出字 LD TR1 MOV 002 DM0057 //将002传送到DM57 [NETWORK] Name="Setting Start"//设置开始 [STATEMENTLIST] LD 253.13 OUT TR0 AND 229.05 //触摸屏上的开始设置开关 DIFU 080.05 //设置微分

PID控制器原理

中图分类号:tp273 文献标识码:a 文章编号:1009-914x(2014)18-0295-02 工业生产自动化的过程控制调节装置是实现自动控制的重要工具。在自动化系统中,检测仪器把控制系统的参数变为电信号然后把信号传送给过程控制调节器,最终达到生产的自动控制,使过程参数合符预期的要求。 在工业生产应用中,pid调节器以其结构简单、稳定性好,控制方便、可靠性高的优点得到广泛应用。在现实中,选择控制系统方案时,对那些未能建立精确的数字模型式被控制对象的参数未能完全掌握(必须依靠经验和现场测定调整的时候)优先选用pid控制技术。pid控制器是根据系统的误差利用比例,积分、微分计算出控制量对系统实施控制。 一、pid调节规律 在定值自动调节系统中,由于扰动的因素,使被调节参数偏离给定值,即产生了偏差,这种偏差等放于产生被调值与给定值的差值: 式中为偏关,u被调节测定值,给定值。 为了使参数回到预定值,我们把偏差信号输入调节器,经规率运算后,给出输出信号进行调节,以补偿扰动的影响,使被调节参数回到给定值。输出信号随输入信号有规律地变化,它的特性决定了被调节参数能否准确地回到给定值,以及回位的时间,调节的质量如何等,以下是调节器调节规律的数字方式描述: 1、微分方程式 pid控制器中各校正环节的作用如下: (1)比例环节及时成比例地反映系统的偏差信号,偏差一旦产生,控制器立即产生调节作用,以减少偏差。 (2)和分环节主要用于消除静差提高系统的无差度。积分作用的强弱取决于积分时间,越大积分作用越弱,反之则越强。 (3)微分环节所反映偏差信号的变化趋势即偏差信号的变化率,并能在偏差信号值变得太大之前,在系统引入一个有效的早期修正信号,从而加快系统的调整速度。 根据模拟pid控制表达式(2-4).通过将模拟pid表达式中的积分,微分运用数值计算方法来迫近,便可以实现数字pid控制。只要采样周期t取得足够小,这种迫近就可以相当精准。 三、pid调节器的组成 pid调节器主要由输入电路,运算电路和输出电路组成。输入信号一般来自变送器的测量信号。在输入电路中与给定值进行比较,生成的偏差信号通过pid调节器处理后经输出电路输出调节信号。该信号作为执器的调节信号。 1、输入电路 pid调节器的输入电路一般包括内外给定切换开关,正反作用开关及内给定稳压电源电路,偏差检测电路。给定电压可由稳压电源电路提供(内给定)也可用外来信号作给定信号。 pid调节器用正反作开关变换正作用特性和反作用特性。根据系统的要求pid调节器是有反作用特性,即在负偏差绝对值增大时增加pid调节器的输出,当系统要求pid调节器具有正作用特性时在正偏差增加大时增加pid调节器的输出。由于用同一个运算电路,故需设正反作用开头,以转换偏差信号的极性。 偏差检测电路是一个减法电路,它把pid调节器的输入信号vi与给定信号进行比较,即vo=vi-vp当vo为正数时为正偏差,反之为负偏差。 2、pid调节器运算电路 pid调节器运算电路用以对偏差信号进行比例,、微分、积分的运算,它是pid调节器的核心。其作用和原理如前所述。

温度控制的PID算法的C语言程序

我的题目是:基于PID算法的温度控制系统 89C51单片机,通过键盘输入预设值,与DS18B20测得的实际值做比较,然后驱动制冷或加热电路。用keil C语言来实现PID的控制。 最佳答案 7f0f2f1c2f

89C 89C89C1 L50℃3℃2006-02-17 2009-04-23 2009-04-23 2009-04-24 2009-04-24

2009-10-11 超低温漂移高精度运算放大器0P07将温度一电压信号进行放大,便于A/D进行转换,以提高温度采集电路的可靠性。模拟电路硬件部分见图2。 图2 ?温度电压转换电路 电控制执行电路的设计 ??? 由输出来控制电炉,电炉可以近似建立为具有滞后性质的一阶惯性环节数学模型。其传递函数形式为: ??? 可控硅可以认为是线形环节实现对水温的控制。单片机输出与电炉功率分别属于弱电与强电部分,需要进行隔离处理,这里采用光耦元件TLP521 在控制部分进行光电隔离,此外采用变压器隔离实现弱强电的电源隔离。 ??? 单片机PWM 输出电平为0 时,光耦元件导通,从而使三极管形成有效偏置而导通,通过整流桥的电压经过集电极电阻以及射集反向偏压,有7V 左右的电压加在双向可控硅控制端,从而使可控硅导通,交流通路形成,电阻炉工作;反之单片机输出电平为0 时,光耦元件不能导通,三极管不能形成有效偏置而截止,可控硅控制端电压几乎为零,可控硅截止从而截断交流通路,电炉停止工作。此外,还有越限报警,当温度低于下限时发光二极管亮;高上限时蜂鸣器叫。控制执行部分的硬件电路如下: 图3? 控制执行部分电路 3 键盘及显示的设计 ??? 键盘采用软件查询和外部中断相结合的方法来,低电平有效。图3 中按键AN1,AN2,AN3,AN4, AN5的功能定义如表1所示。 ??? 按键AN3与相连,采用外部中断方式,并且优先级定为最高;按键AN5和AN4分别与和相连,采用软件查询的方式;AN1则为硬件复位键,与R、C构成复位电路。

什么是PID控制及原理

在一些系统中,需要进行PID控制,如一些板卡采集系统,甚至在一些DCS和PLC的系统中有时要扩充系统的PID控制回路,而由于系统硬件和回路的限制需要在计算机上增加PID控制回路。在紫金桥系统中,实时数据库提供了PID控制点可以满足PID控制的需要。 进入到实时数据库组态,新建点时选择PID控制点。紫金桥提供的PID控制可以提供理想微分、微分先行、实际微分等多种控制方式。 进行PID控制时,可以把PID的PV连接在实际的测量值上,OP连接在PID实际的输出值上。这样,在实时数据库运行时,就可以自动对其进行PID控制。 PID参数的调整: 在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。 增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。 增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。 增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。

在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。 首先整定比例部分。将比例参数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线。如果系统没有静差或静差已经小到允许范围内,并且对响应曲线已经满意,则只需要比例调节器即可。 如果在比例调节的基础上系统的静差不能满足设计要求,则必须加入积分环节。在整定时先将积分时间设定到一个比较大的值,然后将已经调节好的比例系数略为缩小(一般缩小为原值的0.8),然后减小积分时间,使得系统在保持良好动态性能的情况下,静差得到消除。在此过程中,可根据系统的响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程和整定参数。 如果在上述调整过程中对系统的动态过程反复调整还不能 得到满意的结果,则可以加入微分环节。首先把微分时间D设置为0,在上述基础上逐渐增加微分时间,同时相应的改变比例系数和积分时间,逐步凑试,直至得到满意的调节效果。 PID控制回路的运行: 在PID控制回路投入运行时,首先可以把它设置在手动状态下,这时设定值会自动跟踪测量值,当系统达到一个相对稳定的状态后,再把它切换到自动状态下,这样可以避免系统频繁动作而导致系统不稳定。 复杂回路的控制:

温度的PID控制及程序示例

温度的PID 控制 一.温度检测部分首先要OK. 二、PID 调节作用 PID 控制时域的公式 1 de(t) y(t) Kp(e(t) e(t) Td ) Ti dt 分解开来: (1) 比例调节器 y(t) = Kp * e(t) e(k) 为当前的温差(设定值与检测值的插值) y(k) 为当前输出的控制信号(需要转化为PWM 形式) # 输出与输入偏差成正比。只要偏差出现,就能及时地产生与之成比例的调节 作用,使被控量朝着减小偏差的方向变化,具有调节及时的特点。但是,Kp 过 大会导致动态品质变坏,甚至使系统不稳定。比例调节器的特性曲线. (2) 积分调节器 y(t) = Ki * ∫(e(t))dt Ki = Kp/Ti Ti为积分时间 #TI 是积分时间常数,它表示积分速度的大小,Ti 越大,积分速度越慢,积分作用越弱。只要偏差不为零就会产生对应的控制量并依此影响被控量。增大Ti 会减小积分作用,即减慢消除静差的过程,减小超调,提高稳定性。 (3) 微分调节器 y(t) = Kd*d(e(t))/dt Kd = Kp*Td Td 为微分时间 #微分分量对偏差的任何变化都会产生控制作用,以调整系统输出,阻止偏差变化。偏差变化越快,则产生的阻止作用越大。从分析看出,微分作用的特点是:加入微分调节将有助于减小超调量,克服震荡,使系统趋于稳定。他加快了系统的动作速度,减小调整的时间,从而改善了系统的动态性能。 三.PID 算法:由时域的公式离散化后可得如下公式:

y(k) = y(k-1)+(Kp+Ki+Kd)*e(k)-(Kp +2*Kd)*e(k-1) + Kd*e(k-2) y(k) 为当前输出的控制信号(需要转化为PWM 形式) y(k-1)为前一次输出的控制信号 e(k) 为当前的温差(设定值与检测值的插值) e(k-1) 为一次前的温差 e(k-2) 为二次前的温差 Kp 为比例系数 Ki = Kp*T/Ti T 为采样周期 Kd = Kp*Td/T 四.PID 参数整定(确定Kp,Ts,Ti,Td ):温度控制适合衰减曲线法,需要根据多次采样的数据画出响应曲线。所以需要通过串口将采样时间t, 输出y(t) 记录下来,方便分析。 1) 、不加入算法,系统全速加热,从常温加热到较高的温度的时间为Tk, 则采样时间一般设为T = Tk/10 。 2) 、置调节器积分时间TI= ∞,微分时间TD=0,即只加比例算法: y(k) = y(k-1)+Kp*e(k) 比例带δ置于较大的值。将系统投入运行。 (δ = 1/Kp ) 3) 、待系统工作稳定后,对设定值作阶跃扰动,然后观察系统的响应。若响应振荡衰减太快,就减小比例带;反之,则增大比例带。如此反复,直到出现如图所示的衰减比为4:1的振荡过程时,记录此时的δ值(设为δS),以及TS 的值(如图中所示)。当采用衰减比为10:1振荡过程时,应用上升时间Tr 替代 振荡周期TS 计算。 系统衰减振荡曲线图中,TS为衰减振荡周期,Tr 为响应上升时间。据表中所给的经验公式计算δ、TI 及TD的参数。 表衰减曲线法整定计算公式

PID控制详解

PID 控制原理和特点 工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称 PID 控制,又称 PID 调节。PID 控制器问世至今已有近 70 年历史,它以其结构简单、稳定性好、工作可靠、 调整方便而成为工业控制主要技术之一。当被控对象结构和参数不能完全掌握,或不到精确 数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调 试来确定,这时应用 PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或 不能有效测量手段来获系统参数时,最适合用PID 控制技术。PID 控制,实际中也有PI 和 PD 控制。PID 控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。 1、比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温 100 度,当开始加热 时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过 100 度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t)- u(t) = e(t)*P SP ——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P ——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为 有滞后性。 也就是如果设定温度是 200度,当采用比例方式控制时,如果P 选择比较大,则会出现当温 度达到 200度输出为 0 后,温度仍然会止不住的向上爬升,比方说升至 230 度,当温度超过 200 度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度 才会止跌回升,比方说降至 170度,最后整个系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制 2、比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比 例一块进行控制,也就是PI 控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki ∑e(t) +u0 u(t)——输出 Kp ——比例放大系数 Ki ——积分放大系数 e(t)——误差 u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控

PID控制规律

当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为 u(t)=kp[e(t)+(1/TI)*∫e(t)dt+TD*de(t)/dt)] 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s] 其中kp为比例系数;TI为积分时间常数;TD为微分时间常数 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。 其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。 第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。 在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。 在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保

相关主题
文本预览
相关文档 最新文档