当前位置:文档之家› 高中生物教学中的模型建构

高中生物教学中的模型建构

高中生物教学中的模型建构
高中生物教学中的模型建构

取得了良好的效果。

2.图画物理模型的构建提升了识图水平

实物物理模型在大小、色彩、视觉等方面有着一定的局限性,在日常教学中使用不是很广,但是以图画形式构建物理模型则相当普遍,如呼吸作用和光合作用、转录与翻译、噬菌体侵染细菌等过程模型、各种细胞器结构的静态模型、人体细胞与外界环境的物质交换模型等。通过多次这样的物理模型的构建,学生养成了一种思维习惯,凡遇抽象的结构或过程,都会尝试用简易的图画协助理解、思考。而且,在高中生物中,识图水平极为重要。图表是生物科学研究成果的一种重要表现形式,所以在生物高考中注重考查学生读图、识图、析图和绘图的水平。平时的学习中养成了构建图形这种良好的习惯之后,考试中对图形题也更胸有成竹了。

二、概念模型

概念模型是指以文字表述来抽象概括出事物的本质特征的模型。我们很多学生都存有这样的问题:课本中的单个知识点都掌握得很好,但是在做综合题时总有很多的“想不到”,究其原因是不能迅速地把相关知识联系起来,而构建概念模型能够改变这个状况。

1.构建概念模型,整合零碎知识

学完必修1第3章后,我利用学案中事先设计好的框架,让学生构建了概念模型,将课本中第3章的第1节、第4章第1节、第2节、第3节的内容整合在一起,使零碎的知识完整化。模型如下:

构建这样的概念模型,有利于学生对某个单元、某个模块知识实行加工、理解、储存,全面系统地掌握和记忆知识要点,有利于学生形成完整、清晰、系统、科学的知识体系,同时也促动了学生感知、记忆、想象水平的发展。〔2〕内环境的成分和理化性质、分泌蛋白的合成运输加工和分泌、生物膜在结构与功能上的联系等等,很多方面的知识要点都能够通过构建这样的概念模型,使学生更系统地掌握、理解生物学知识。

2.构建概念模型,简化复杂知识

血糖调节是高中生物教材中一个重要的知识,而且与人体健康有密切的联系,但是这个内容既“看不见,摸不着”,又极为复杂。故而教材中安排了一个模型建构活动:“建立血糖调节的模型”,意在引导学生通过这个探究活动,更好地理解人体内是如何对血糖含量实行调节的,并在此基础上理解体内激素如何对生命活动实行调节;同时,也力图引导学生初步了解建构概念模型的基本方法和意义。当前看到的很多教学设计和案例中,绝大部分把主要的精力放在模拟活动上。事实上,学生所做的模拟活动之后,再根据在活动中的体验,构建图解式概念模型才是本活动的重中之重。也就是说,模拟活动旨在通过形象化展示肉眼看不见的过程,但这不是根本目的,在形象化的基础上再高度抽象出这个调节过程的本质才是关键。

因为上述原因,课前,小组长和我一起制作了“糖卡”、“胰岛素卡”、“胰高血糖素卡“。课上,投影胰岛,示胰岛A细胞和胰岛B细胞,说明它们所分泌的激素及作用之后,我问到:“胰岛素和胰高血糖素是如何调节血糖的平衡的呢?”学生带着问题阅读课本“建立血糖调节的模型”的活动介绍,然后请一组同学示范活动方法,接着全班同学分组实行活动,依次探究饭后半小时及运动时机体该怎样做才能恢复正常血糖水平,并用卡片实行操作。通过构建动态的物理模型,学生再根据在活动中的体验,构建出了图解式概念模型,通过各组代表交流最后归纳如下:

通过主动参与模拟活动,亲自构建概念模型,学生对血糖的调节有了更深的理解。利用这个概念模型,学生学会了分析一些生理现象:马拉松运动中,胰岛是怎样实行分泌调节的?饭后胰岛又是怎样实行分泌调节的?当身体不能产生充足的胰岛素时,将会发生什么情况?当身体

产生的胰岛素过多时,又会怎样?健康人和糖尿病人同时口服葡萄糖,随后一段时间内两人血糖含量如何变化?

三大营养物质代谢及其关系、体温调节、水和无机盐平衡、免疫调节、生态系统的能量流动等等都能够用简明扼要的概念模型归纳。通过概念模型,将复杂的生理过程简化,不但有利于同学们识记,还能培养分析、综合、概括的思维水平,学会把看似复杂的知识实行整理,找到相关知识的联系,提升灵活使用知识的水平。这样高考中做常见的图形、图表题时,也不会再战战兢兢了。

三、数学模型

数学模型是根据具体情景,抽象出数学规律,并用公式或图表的形式表达。数学模型是联系实际问题与数学的桥梁,具有解释、判断、预测等重要功能。在科学研究中,数学模型是发现问题、解决问题和探索新规律的有效途径之一。引导学生建构数学模型,有利于培养学生透过现象揭示本质的洞察水平;同时,通过科学与数学的整合,有利于培养学生简约、严密的思维品质。

1.构建数学模型,辨析易混知识

高中生物学中概念多,学生易混淆。用适当的数学模型能够协助学生理清概念。如减数分裂中同源染色体、四分体、染色体等之间的关系就能够用数学模型来表示:1个四分体=1对同源染色体=2条联会的染色体=4条染色单体=4个DNA分子=8条脱氧核苷酸链,学生通过构建这样的数学模型,很容易地掌握了这几个极易混淆的概念。再如,DNA经n次复制所需游离的某种脱氧核苷酸数和第n次复制所需游离的某种脱氧核苷酸数的区别,学生常常混淆不清。课上,通过图解分析,师生一起构建了数学模型:n次复制所需游离的某种脱氧核苷酸数=(2n-1)m (注:m为1个DNA分子所含某种脱氧核苷酸数和第n次复制所需游离的某种脱氧核苷酸数

=2n-1m,难题立即迎刃而解。

2.构建数学模型,化解重难点

有丝分裂、减数分裂均是微观的变化,虽然我们常用flash动态地展出整个过程,让学生体会细胞分裂过程中的变化特点,但是对于染色体、DNA的变化规律,学生总是觉得很难领悟。学习有丝分裂时,我就先引导学生构建表格式数学模型,然后转化成直观地坐标曲线,最后再让学生把染色体与DNA的变化曲线集合在一张坐标图上,让学生归纳后加以比较,掌握染色体和DNA变化规律的特点和区别,从而化解难点。减数分裂的学习时,我用了同样的方法,很快突破了难点。为了让学生更好地理解有丝分裂与减数分裂过程中染色体、DNA变化的差异,我还设计了这样一个情境:某精原细胞经一次减数分裂后产生的一个精子顺利地与一个卵细胞发生了受精作用,形成的受精卵经过了一次有丝分裂,请你画出这个过程中的染色体、DNA变化曲线。于是,学生尝试着把两个分裂过程的染色体、DNA变化规律图整合在一起,通过比较分析,更深刻地理解掌握了难点。

生物学中很多的难点能够通过这样的数学模型来化解,如酵母菌呼吸作用过程中随氧浓度变化所释放的CO2与吸收的O2之间的变化特点、恒定温度条件下测某植物随光照强度变化所释放O2或吸收的CO2、种群的“J”型增长与“S”型增长、单因子因素与多因子因素对光合作用的影响……

通过构建数学模型,有利于学生对知识的理解和掌握,也使学生理解到在生物学中有很多现象和规律能够用数学语言来表示,很好地培养了学生的逻辑思维水平。

通过建构模型能够使生命现象或过程得到简化、纯化,对生物系统的发展状况有了更准确的理解。引导学生建构数学模型,既有利于培养学生透过现象揭示本质的洞察水平,又有利于培养学生简约、严密的思维品质,对提升学生的理科素养具有重要作用。

高中生物学新课程中的模型、模型方法及模型建构

高中生物学新课程中的模型、模型方法及模型建构 谭永平(人民教育出版社/课程教材研究所北京100081) 摘要:模型和模型方法在科学研究中发挥着重要作用,它在中学生物学课程中也具有重要的教育意义,理解模型和领悟模型方法已经成为高中生物学课程内容的一个组成部分。理解模型和领悟模型方法的 重要方式就是进行模型建构活动。要较全面地理解模型方法的作用,既需要以进行一定数量的模型建构活 动为基础,更需要在模型建构活动中实现行为与思维的统一。 关键词:高中生物学模型 教育部2003年颁布的《普通高中生物课程标准(实验)》(以下简称为课程标准)中,明确将获得生物学模型的基本知识作为课程目标之一,并在内容标准或活动建议部分做了具体的规定。这是我国中学生物学课程发展历史上第一次如此重视“模型”。然而,由于以往对“模型”所提不多,相关理论探讨和实践案例不太丰富,有些教师在教学时感到迷茫。尽管高中课程改革的实验区越来越多,实施课程标准的教学探索也已有若干年,但类似问题却依然存在。本文探讨总结了高中生物学新课程中的模型和模型方法,以及如何在教学中进行模型建构的问题。 1. 高中生物学课程中的模型和模型建构 模型是人们按照特定的科学研究目的,在一定的假设条件下,再现原型客体某种本质特征(如结构特性、功能、关系、过程等)的物质形式或思维形式的类似物。作为一种现代科学认识手段和思维方法, 模型具有两方面的含义: 一是抽象化, 二是具体化。一方面,我们可以从原型出发, 根据某一特定目的, 抓住原型的本质特征, 对原型进行抽象、简化和纯化, 建构一个能反映原型本质联系的模型, 并进而通过对模型的研究获取原型的信息, 为形成 理论建立基础。另一方面, 高度抽象化的科学概念、假说和理论要正确体现其认识功能, 又必须具体化为某个特定的模型, 才能发挥理论指导实践的作用。所以, 模型作为一种认识手段和思维方式, 是科学认识过程中抽象化与具体化的辩证统一[1]。建立模型的过程,是一个思维与行为相统一的过程。通过对科学模型的研究来推知客体的某种性能和规律,借助模型来获取、拓展和深化对于客体的认识的方法, 就是科学研究中常用的模型方法[2]。 在现代生物学研究中经常使用模型方法,通过寻找变量之间的关系, 构建模型,然后依据模型进行推导、计算,作出预测。DNA双螺旋结构的发现过程就是一个非常典型的例子。 模型方法在科学研究中具有重要作用,它在中学生物学课程中也有着重要的教育意义。美国《国家科学教育标准》指出,学生的探究活动最终应该构造一种解释或一个模型。我国课程标准也很重视模型的教育意义:在课程目标部分对模型有了明确的要求,在具体内容标准和活动建议部分也列出了“尝试建立真核细胞的模型”、“尝试建立数学模型”、“制作DNA 分子双螺旋模型”等内容。高中生物学教材中,在用语言表述生命现象和生命活动规律的同时,也经常用模型来进行解释,模型已经成为高中生物学知识内容的一部分。例如,杂交过程图解事实上就是一个模型,它按遗传学规律把杂交过程简化,用以反映和解释杂交试验的过程和结果,并能通过演绎推理来预测某些杂交试验的结果[3]。人教版高中生物新教材《遗传与进化》中,用了图解式解释模型来阐述达尔文自然选择学说的要点。在某种意义上,理解模型和进行模型建构活动是学生理解生物学的一把钥匙。 高中生物学课程中的模型建构活动,则是根据课程标准的要求设计的,让学生结合具体生物学内容的学习而进行的建立模型的活动。值得注意的是,中学生物学课程中的模型建构与科学研究中的建立模型既有联系又不完全等同:前者以后者为基础,它们的思维过程在本质上应是一致的;但两者的目的不同,建构背景不同,建构过程也不完全相同。高中学生建构模型时,多数是在背景知识清晰的情况下进行的。例如,沃森和克里克建立DNA双螺旋结构模型的目的,是为了揭示当时并不清楚的DNA分子结构。他们的工作是建立当时其他科

浅析高中生物概念模型构建教学

浅析高中生物概念模型构建教学 【摘要】在新课教学中进行概念模型的构建能有效提高教师的教学技能和教学效果,学生在建模过程中能将零散的知识点结合在一起并找出纷繁的概念之间的联系,将知识直观化、深刻化、系统化。教师从“教授者”转变为“引导者”。学生从被动地倾听成为独立的学习者,从中获得成功和喜悦。 【关键词】高中;生物;概念;模型;构建 高中生物的学习中,学生总感觉知识点繁杂、零散,在学习和复习的过程中效率较低,为此常苦恼不已。模型方法不仅可以有效地理解、掌握各重难点的知识,还能有效地开发学生的创造潜能,使学生对生物学习的枯燥情绪转变为积极热情。物理模型的构建,如自制动植物细胞模型,能培养学生的创新思维和团队协作能力。数学模型的构建,如有丝分裂过程中染色体的数量变化曲线,使复杂抽象的生物知识变得简单直观。概念模型的构建常用于生物复习当中,能帮助学生整合知识点,理清之间的联系,使生物的学习更直观化、深刻化、系统化。 概念模型指的是为了某一应用目的,运用语言、符号和图形等形式,对真实世界系统信息进行的抽象和简化,包括图解式解释模型和概念图。图解式解释模型指的是通过图解将抽象的生命活动规律、原理等图示化、直观化、模式化,如呼吸作用过程的图解。概念图指的是将有关概念或相似易混淆的概念用箭头等方式组织在一起使知识成线、成面,如可遗传变异的概念图。对高中新课程人教版三本必修教材进

行初步统计,章节后的单元检测题涉及的概念图有14个。而概念教学一直是高中生物教学的核心之一,已广泛用于生物教学的复习课中。在新课教学中进行应用更能起到事半功倍的效果。接收新知识时须进行有序的反复,将瞬时记忆转化为短时记忆、长时记忆。概念模型可以作为一种模板,去帮助组织知识并使之结构化,哪怕是很小的彼此相关的概念也能组成结构。 在新课教学中对学生概念模型构建训练可参考以下步骤进行。 一、授课后完成概念模型构建 1、填空补充完成概念模型 刚升入高中,学生对概念模型接触较少,所以引导学生完成概念模型的构建,要遵循由易到难的原则。最初让学生以填空的形式完成概念图,如必修一第一章的自我检测的画概念图试题。完成该试题后对概念模型构建过程进行教授。先找出核心概念,放在顶端或中央,如“细胞”,将一般概念、次一般概念、具体概念等放在下端或四周并按概念的等级一层层辐射开来,用线条或箭头把两个概念连接起来,并用连接词语表明两者的关系。完成概念图后还需不断进行修正完善。必修一第二章的“细胞中的元素和化合物”、“生命活动的主要承担者——蛋白质”都能进行概念图的填空训练。新课教学后回顾这节课,大部分学生只记得一段段记忆碎片、一个个鼓励的知识点,当学生通过填空概念图将每一节的知识体系梳理出来后,发现原来零散的知识变得清晰、系统,能够深刻记忆,立马能对概念模型构建产生浓厚的兴趣,使学生成为建构概念模型的忠实拥护者。

高中生物学中的数学模型

高中生物学中的数学模型 山东省嘉祥县第一中学孙国防 高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。 1. 细胞的增殖 【经典模型】 间期表示 有丝分裂中各时期DNA、染色体和染色单体变化 减数分裂中各时期DNA、染色体和染色单体变化 【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。2. 生物膜系统 【经典模型】 【考查考点】 3物质跨膜运输 【经典模型】 【考查考点】 自由扩散、协助扩散和主动运输的影响因素和特点。 4. 影响酶活性的因素 【经典模型】 【考查考点】 影响酶活性的因素,主要原因在于对酶空间结构的影响。酶促反应是对酶催化的更高层次的分析。 5. 影响细胞呼吸及光合作用的因素 【经典模型1】 【考查考点】 真正光合速率= 净光合速率+呼吸速率 光合作用实际产O2量=实测O2释放量+呼吸作用耗O2 光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放 光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量 【经典模型2】

【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存中的原因。 6 基因的分离和自由组合定律 【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关) 正常的概率: _________同时患两种病的概率: _________患病的概率: _________ 只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________ 7. 中心法则 【经典模型】 DNA分子的多样性:4N DNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%, A1%+T1%=A2%+T2%=A%+T% DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G 15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1 【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。 8. 现代生物进化理论 【典型例题】某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是 A.10/19 B.9/ 19 C.1/19 D.1/2 答案:A 【经典模型】 设A的基因频率为P,a的基因频率为q,因P+q=l,故(P+q)2 =I,将此二项式展开得:p2+2pq+q2=1,基因型AA的频率=P2,基因型aa的频率=q2,基因型Aa的频率=2pq。 【考查考点】遗传的平衡定律 9. 种群的数量特征和数量变化规律 【典型例题】右图表示出生率、死亡率和种群密度的关系,据此分析得出的正确表述是 A.在K/2时控制有害动物最有效 B.图示规律可作为控制人口增长的依据 C.该图可用于实践中估算种群最大净补冲量 D.在K/2时捕捞鱼类最易得到最大日捕获量答案:C 【经典模型】

高中生物数学模型问题有什么

高中生物数学模型问题有什么 生命科学是自然科学中的一个重要的分支。在高中生物课程中,它要求学生具备理科的思维方式。因此在教学中,教师应注重理科思维的培养,树立理科意识,渗透数学建模思想。本文在此谈谈,在生物教学中的几个数学建模问题。 1高中生物教学中的数学建模数学是一门工具学科,在高中的物理与化学 学科中广泛的应用。由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。所谓数学建模(mathematicalmodelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。2数学建模思想在生物学中的应用2.1数形结合思想的应用生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。例1:下图1 表示某种生物细胞分裂的不同时期与每条染色体dna含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是()a、图2中甲细胞处于图1中的bc段,图2中丙细胞处于图1中的de段b、图1中cd段变化发生在减数Ⅱ后期或有丝分裂后期c、就图2中的甲分析可知,该细胞含有 2个染色体组,秋水仙素能阻止其进一步分裂d、图2中的三个细胞不可能在同一种组织中出现解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1

题型一-高中生物学中“模型建构”

题型一高中生物学中“模型建构” 1.(2015·天津卷,1)如图表示生态系统、群落、 种群和个体的从属关系。据图分析,下列叙述正确的是() A.甲是生物进化的基本单位 B.乙数量达到环境容纳量后不再发生波动 C.丙是由生产者和消费者构成的 D.丁多样性的形成受无机环境影响 解析根据生态系统、群落、种群和个体的从属关系可以判断出,甲是个体、乙是种群、丙是群落、丁是生态系统。生物进化的基本单位是种群,而不是个体,A错误;在自然环境中种群的增长往往呈S型增长,达到K值即环境容纳量后,由于受到各种因素的影响,数量在K值附近呈现波动,B错误;生态系统中的群落根据功能划分包括生产者、消费者和分解者,C错误;生态系统是无机环境和生物群落相互作用的统一整体,所以其多样性的形成受无机环境的影响,D正确。 答案D 2.(2014·福建卷,4)细胞的膜蛋白具有物质运输、信息传递、免疫识别等重要生理功能。下列图中,可正确示意不同细胞的膜蛋白及其相应功能的是()

解析血红蛋白存在于红细胞内,不是在细胞膜上,A错误;抗原对T淋巴细胞来说是信号分子,通过T淋巴细胞膜上的受体来接受,而不是抗体,B错误;受体具有特异性,胰高血糖素应作用于胰岛B细胞上的胰高血糖素受体,而不是胰岛素的受体,C错误;骨骼肌作为反射弧中的效应器,骨骼肌细胞上有接受神经递质的受体,同时葡萄糖进入细胞也需要载体协助,D正确。 答案D 解答此类试题的总体思路:加强对基础知识的理解→迁移、整合→联系实际形成应用能力。也就是说,在复习中要狠抓基础知识,搞清概念的内涵和外延,明确原理的内容、适用对象和条件,尤其要对教材中主要模型加以梳理整合。在此基础上要学会对相关概念、原理的迁移和整合,达到举一反三的目的;最后学会应用相关原理、概念去解决生产生活中的实际问题,也就是要培养应用能力。 1.模型及类型 (1)模型:模型是人们为了某种特定目的而对认识对象所作的一种简化的概括性的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。 (2)模型类型: ①概念模型:即构建相关概念、原理及生理过程的内在包含关系。 ②物理模型:物理模型是指以实物或图画形式直观地表达认识对象的特征。如沃森和克里克

(精心整理)模型建构在高中生物教学中的应用

模型建构在高中生物教学中的应用 模型是人们为了某种特定目的而对认识对象所做的一种简化的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。 一、关于模型的形式或种类,不同论著中的说法有所相同。人教版新教材中模型有三种,其含义如下:物理模型是指以实物或图画形式直观地表达认识对象特征的模型,如人工制作或绘制的DNA分子双螺旋结构模型、真核细胞三维结构模型等;概念模型是指以文字表述来抽象概括出事物本质特征的模型,如对真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化的解释、达尔文的自然选择学说的解释模型等;数学模型是指用来描述一个系统或它的性质的数学形式,如“J”型种群增长的数学模型Nt=N0λt、有丝分裂过程中DNA含量变化曲线、酶的活性随pH变化而变化的曲线、同一植物不同器官对生长素浓度的反应曲线、孟德尔豌豆杂交实验中9:3:3:1的比例关系等。应该指出,物理模型既包括静态的结构模型,如真核细胞的三维结构模型、细胞膜的流动镶嵌模型等;又包括动态的过程模型,如教材中学生动手构建的减数分裂中染色体变化的模型、血糖调节的模型等。 二、模型建构的意义及教学应用 模型的方法是以研究模型来揭示原型的形态、特征和本质的方法,是以简化和直观的形式来显示复杂事物或过程的手段。在生物学教学中,如果能在教师的引导下,让学生在一定的情境中通过自己动手,建构相关模型来学习生物学知识,将会非常有利于学生对相关知识的掌握。在模型建构教学活动中,是以学生为主体,以建构模型为主线,让学生去探索、交流和学习,注重学习过程的主动性和积极性,而学生一旦掌握了模型建构的方法,也就掌握了一种科学研究的方法,这正符合新课改理念。 下面就以教材中介绍的三种模型在具体的教学活动中的应用为例,展示模型建构的实际意义。 1.建构概念模型,梳理知识间内在关系 建构概念模型可以使学生深入理解基础知识,辨析知识点之间的联系与区别,使知识结构化,同时有利于培养学生的归纳、概括和语言表述能力。 人教版《遗传与进化》模块中,在《现代生物进化理论的由来》一节,教材借助一个理论模型来介绍达尔文的自然选择学说(见下图)。

高中生物数学模型问题分析

高中生物数学模型问题分析 生命科学是自然科学中的一个重要的分支。在高中生物课程中,它要求学生具备理科的思维方式。因此在教学中,教师应注重理科思维的培养,树立理科意识,渗透数学建模思想。本文在此谈谈,在生物教学中的几个数学建模问题。 1 高中生物教学中的数学建模 数学是一门工具学科,在高中的物理与化学学科中广泛的应用。由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。所谓数学建模(Mathematical Modelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。 2 数学建模思想在生物学中的应用 2.1 数形结合思想的应用 生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。 例1:下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是() A、图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段 B、图1中CD段变化发生在减数Ⅱ后期或有丝分裂后期 C、就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂 D、图2中的三个细胞不可能在同一种组织中出现 解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1中的AB段表示的是间期中的(S期)正在进

浅谈模型教学在高中生物新教材中的使用

浅谈模型教学在高中生物新教材中的使用 四川省遂宁市高级实验学校刘鑫 关键词:模型构建概念模型物理模型数学模型 20世纪30年代,贝塔朗菲在提出机体系统论概念的同时,主张用数学和模型方法研究生命现象。从此模型方法开始在生物学领域应用。《普通高中生物课程标准(实验)》明确强调:学生应"领悟假说演绎,建立模型等科学方法及其在科学研究中的应用","领悟系统分析,建立数学模型的科学方法及其在科学研究中的应用";同时新考试大纲重新对高考所要考查的能力进行了界定,明确了假说演绎,建立模型,系统分析等科学研究方法在能力要求中的地位.无论在科学研究还是在学习科学的过程中,模型和模型方法都起着十分重要的作用.课程标准已将模型纳入基础知识范畴,并且将模型方法规定为高中学习必须掌握的科学方法之一,在近年来的生物高考试题的设计中也有所体现.那么,什么是模型,模型方法教育模型方法在新教材的哪些地方如何体现,在教师的教与学生的学中起什么作用呢如何构建相应的模型 一、模型的概念及分类 高中新课程必修1对模型的定义是:"模型是人们为了某种特定目的而对认识对象所作的一种简化的描述,这种描述可以是定性的,也可以是定量的;有的借助具体的实物或其他形象化的手段,有的则通过抽象的形式来表达".模型可分为物理模型,概念模型,数学模型。物理模型是指以实物或图画形式直观的表达认识对象特征的模型。如必修1的“细胞膜的流动镶嵌模型”, “真核生物的三维结构模型”,必修2的“DNA分子双螺旋结构模型”。概念模型是指以文字表达来抽象概括出事物本身特征的模型,如达尔文的自然选择学说的解释模型等。数学

模型是指用来描述一个系统或他的性质的数学形式,如“J”种群增长的数学模型 Nt=N0λt ,种群基因频率变化的数学模型等。 二、模型的构建及应用 1概念模型 新课标中对关于理解能力的要求: 旧:能把握所学知识的要点和知识之间的内在联系. 新:能理解所学知识的要点,把握知识间的内在联系,形成知识的网络结构. 区别:在"把握"的基础上,增加了"理解",并能"形成知识的网络结构". 解读: 新课标强调图文转换和知识联系,引导学生构建知识网络和提高信息转化能力。 如何绘制概念模型 首先,确定主题并置围绕主题写出关键概念和概念等级,然后,将主题概念放在顶端或中央,向下或四周按概念等级一层一层辐射开来,并用线条把概念连接起来,并用连接词语注明连线,连接词语应

高中生物模型构建的的意义与误区探讨论文

高中生物模型构建的的意义与误区探讨论文 高中生物模型构建的的意义与误区探讨全文如下: 一、模型与模型构建教学 二、构建模型教学的意义 高中生物模型构建的的意义与误区探讨 三、避免构建模型教学陷入误区 在日常生物教学中运用建模方法应该避免陷入以下误区: 1、构建过多的应用模型,增加学生学习压力。教学模型的应用可以简化一些抽象的生物概念或知识点,但是有的老师在实际教学中过度的应用模型,给学生建立起一系列的模型并希望学生按照自己的模型进行套用来理解,本来为了简化难点的模型反而使得学生学习起来更加繁琐,无形中增加了学生学习的压力。因此,老师在教学中模型应用应该适当,适用于一些难以理解的地方,一些较为容易的地方则不需要构建模型,做到具体问题具体分析。 2、重视传授模型,轻视自建模型。俗话说“授之以鱼不如授之以渔”,许多老师在教学过程中习惯于将自己构建的模型强加给学生,直接采用灌输的方法输出给学生,不注重对学生自己建立模型能力的培养和引导。固然,独立建立模型需要一定的理论基础,需要对相关知识点深入的把握和较高的思维能力,学生对自建模型的把握上可能不到位甚至有所偏颇,但是作为老师不能剥夺学生培养自创能力的权利,反而应该支持,应该教会学生如何建立模型而不是简单的给予和灌输。 3、教师对构建模型缺乏足够的思考,不具有普遍说服力。许多教师凭借多年的教学经验,随口就能构建一个模型对一些知识点进行演示或解释,但仔细研究后发现有的模型是不够严谨和科学的,缺乏足够的考虑。对于有些理解能力较强的学生来说可能可以接受

和领会,但对其他学生则不能明白,这样反而不如直接讲解来得彻底,造成生物教学效果大打折扣,也有失公平。 总之,广大高中生物教师不但要注重构建模型在教学中的运用,还要对运用的方式方法进行升级和改造,另外还应注重学生自主构建模型能力的培养,为培养具备高超思维能力的高素质人才打下良好的基础。

浅谈模型教学在高中生物新教材中的使用

浅谈模型教学在高中生物新教材中的使用 关键词:模型构建概念模型物理模型数学模型 20世纪30年代,贝塔朗菲在提出机体系统论概念的同时,主张用数学和模型方法研究生命现象。从此模型方法开始在生物学领域应用。《普通高中生物课程标准(实验)》明确强调:学生应"领悟假说演绎,建立模型等科学方法及其在科学研究中的应用","领悟系统分析,建立数学模型的科学方法及其在科学研究中的应用";同时新考试大纲重新对高考所要考查的水平实行了界定,明确了假说演绎,建立模型,系统分析等科学研究方法在水平要求中的地位.无论在科学研究还是在学习科学的过程中,模型和模型方法都起着十分重要的作用.课程标准已将模型纳入基础知识范畴,并且将模型方法规定为高中学习必须掌握的科学方法之一,在近年来的生物高考试题的设计中也有所体现.那么,什么是模型,模型方法教育?模型方法在新教材的哪些地方如何体现,在教师的教与学生的学中起什么作用呢?如何构建相对应的模型? 一、模型的概念及分类 高中新课程必修1对模型的定义是:"模型是人们为了某种特定目的而对理解对象所作的一种简化的描述,这种描述能够是定性的,也能够是定量的;有的借助具体的实物或其他形象化的手段,有的则通过抽象的形式来表达".模型可分为物理模型,概念模型,数学模型。物理模型是指以实物或图画形式直观的表达理解对象特征的模型。如必修1的“细胞膜的流动镶嵌模型”, “真核生物的三维结构模型”,必修2的“DNA分子双螺旋结构模型”。概念模型是指以文字表达来抽象概括出事物本身特征的模型,如达尔文的自然选择学说的解释模型等。数学模型是指用来描述一个系统或他的性质的数学形式,如“J”种群增长的数学模型 Nt=N0λt ,种群基因频率变化的数学模型等。 二、模型的构建及应用 1概念模型 1.1新课标中对关于理解水平的要求: 旧:能把握所学知识的要点和知识之间的内在联系. 新:能理解所学知识的要点,把握知识间的内在联系,形成知识的网络结构. 区别:在"把握"的基础上,增加了"理解",并能"形成知识的网络结构". 解读:新课标强调图文转换和知识联系,引导学生构建知识网络和提升信息转化水平。 1.2如何绘制概念模型 首先,确定主题并置围绕主题写出关键概念和概念等级,然后,将主题概念放在顶端或中央,向下或四周按概念等级一层一层辐射开来,并用线条把概念连接起来,并用连接词语注明连线,连接词语应能说明两个概念之间的关系。最后寻找概念图不同部分概念之间交叉连线的联结,并标明连接线。要注意的是在概念图中每个概念只能出现一次。条件好的学校也能够用电脑制作,便于修改和在以后的学习中持续地补充完善。 1.3利用概念图实行生物教学

高中生物中常见的模型和研究方法1

数学模型是指用来描述一个系统或它的性质的数学形式,如探究培养液中酵母菌种群种群数量的变化的实验(必修三),要求学生具有建立数学模型的思想和方法。人教版教科书中也有较多的应用。在《分子与细胞》中有:细胞有氧呼吸的方程式,细胞无氧呼吸的方程式,光合作用的方程式,酶降低化学反应活化能的图解,酶活性受温度影响示意图,酶活性受PH影响示意图,叶绿素和类胡萝卜素的吸收光谱变化曲线,不同细胞的细胞周期持续时间等。在《遗传与进化》中有:黄色圆粒豌豆和绿色皱粒豌豆的杂交实验,果蝇杂交实验图解,种群中基因频率和基因变化等。在《稳态与环境》中有:HIV浓度和T细胞数量的关系,某岛环颈雉种群数量的增长,大草履虫种群的增长曲线,东亚飞蝗种群数量的波动,雪兔和猞猁在90年间的种群数量波动,赛达波格湖能力流动图解,我国人口增长等。 物理模型是指以实物或图画形式直观地表达认识对象特征的模型,物理模型既包括静态的结构模型,如真核细胞的三维结构模型、细胞膜的流动镶嵌模型等;又包括动态的过程模型,如教材中学生动手构建的减数分裂中染色体变化的模型、血糖调节的模型等;概念模型是指以文字表述来抽象概括出事物本质特征的模型,如对真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化的解释、达尔文的自然选择学说的解释模型等; 1、线粒体比喻成细胞的动力车间—类比法 2、DNA的双螺旋结构—物理模型 3、种群S曲线—数学模型 4、利用高倍显微镜观察叶绿体和线粒体—显微观察法 5、孟德尔遗传规律的发现—假说—演绎法 6、萨顿提说基因位于染色体上的假说—类比推理法 7、利用甲基绿将DNA染成绿色,吡罗红将RNA染成红色—染色法 8、噬菌体侵染细菌的实验—离心法和同位素标记法 9、从盖玻片的一侧滴加蔗糖溶液,另一侧用吸水纸吸引—引流法 10、研究分泌蛋白的合成和分泌途径—同位素标记法

高中生物中的模型种类

高中生物中的模型种类 在教学过程中微观、复杂的内容给学生和教师会带来一定的困难。在生物学研究中,由于种种原因,不能直接对研究对象进行实验时,可以用模型代替研究对象来进行实验。 模型是人们为了某种特定目的而对认识的对象所做的一种简化的概括性描述,这种描述可以是定性的,也可以是定量的。有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。这种运用模型解释复杂的研究对象的方法称之为模型方法 1、物理模型:以实物或图画形式直观地表达认识对象的特征,这种模型就是物理模型。例如沃森和克里克制作的DNA双螺旋结构模型,动植物细胞模式图、细菌结构模式图、分泌蛋白合成和运输示意图(注意用文字表示就是概念模型)等。 在显微镜绘制的细胞图(注意显微镜下的照片不是模型而是实物影像)

2、概念模型:通过分析大量的具体形象,分类并揭示其共同本质,将其本质凝结在概念中,把各类对象的关系用概念与概念之间的关系来表述,用文字和符号突出表达对象的主要特征和联系。例如:用光合作用图解描述光合作用的主要反应过程,甲状腺激素的分级调节等。

3、数学模型:数学模型是用来描述一个系统或它的性质的数学形式。对研究对象的生命本质和运动规律进行具体的分析、综合,用适当的数学形式如,数学方程式、关系式、曲线图和表格等来表达,从而依据现象作出判断和预测。例如:细菌繁殖N代以后的数量N n=2n,孟德尔的杂交实验“高茎:矮茎=3:1”,酶活性受温度影响示意图等。 注意有些模型既是物理模型也是概念模型,例如学生用卡片建立血糖调节模型,有些模型既是物理模型也是数学模型,例如用橡皮泥构建减数分裂中染色体变化模型

2020届高中生物人教版必修2实验专练:(9)制作DNA双螺旋结构模型 Word版含答案

2020届高中生物人教版必修2实验专练:(9)制作DNA双螺旋结构模型 1、在制作DNA分子的双螺旋结构模型时,会发现制成的DNA分子的平面结构像一架“梯子”,那么组成这架“梯子”的“扶手”、“扶手”间的“阶梯”、连接“阶梯”的化学键依次是( ) ①磷酸和脱氧核糖②氢键③碱基对④肽键 A.①②③ B.①③② C.③①② D.①③④ 2、某同学在构建DNA分子模型时,想用不同的几何图形代表核苷酸的三个不同组成部分。那么该同学组建的DNA分子模型中共有多少种不同的几何图形( ) A.五种 B.六种 C.七种 D.八种 3、某研究小组用下图所示的6 种卡片、脱氧核糖和磷酸之间的连接物、脱氧核糖和碱基之间的连接物、代表氢键的连接物若干,成功搭建了一个完整的DNA分子模型,模型中有4 个 ) T和6 个G。下列有关说法正确的是( A.代表氢键的连接物有24 个 B.代表胞嘧啶的卡片有4 个 C.脱氧核糖和磷酸之间的连接物有38 个 D.理论上能搭建出410种不同的DNA分子模型 用卡片构建DNA平面结构模型,所提供的卡片类型和数量如下表所示,以下说法正确的是Array ( ) A. 最多可构建4种脱氧核苷酸,5个脱氧核苷酸对 B.构成的双链DNA片段最多有10个氢键 C.DNA中每个脱氧核糖均与1分子磷酸相连 D.最多可构建44种不同碱基序列的DNA 5、在DNA分子模型搭建实验中,如果用一种长度的塑料片代表C和T,那么由此搭建而成的DNA双螺旋的整条模型( ) A.粗细相同,因为嘌呤环必定与嘧啶环互补

B.粗细相同,因为嘌呤环与嘧啶环的空间尺寸相似 C.粗细不同,因为嘌呤环不一定与嘧啶环互补 D.粗细不同,因为嘌呤环与嘧啶环的空间尺寸不同 6、下列各图中,图形分别代表磷酸、脱氧核糖和碱基,在制作脱氧核苷酸模型时,各部件之间需要连接。下列连接中正确的是( ) A. B. C. D. 7、下面是四位同学拼制的RNA分子平面结构模型,正确的是( ) A. B. C. D.

高中生物《构建DNA模型》教学设计

第二节DNA分子的结构 第二课时《构建DNA模型》的教学设计 设计思路 以新课程教学理念为指导,利用已有的生物学基础知识、物理模型与现代化的多媒体教学手段相结合,通过探究性教学,充分调动学生学习生物的积极性、主动性和创造性,使学生能以多种方式、多种途径主动地参与到学习中来,引导学生发现问题,解决问题,按照从小到大,从单体到多聚体,从平面到立体来构建DNA分子结构模型,实现对学生的科学思维方法和探究方法的培养,从而提高学生生物科学素质的目标。 二、教材分析 《DNA分子的结构》一节是新课标教材人教版必修二《遗传与进化》第3章第2节的内容,它与前面所学的有关《核酸》和《细胞的增殖》的知识相联系,同时也是学习《DNA的复制》、《基因的表达》、《基因突变》等生物的遗传和变异理论和选修教材中《基因工程》的基础。通过科学的有效的学习,不但可以理解本节知识点还可以进一步加深高二学生对后面各章节知识的学习和理解奠定了基础。 本节内容包含两课时。第一课时,学生通过阅读教材,搜集资料,交流讨论等方式按照“空间结构→平面结构→单链结构→基本单位”初步认识了DNA。本节课主要是制作模型以加深对DNA 分子结构特点的认识和理解。在教学中,通过发挥学生的主体作用,让学生根据已有知识大胆推理,假设,并且自己的假设转化为物理模型,最后通过小组间的交流、比较和归纳,水到渠成得出DNA 分子结构的主要特点,同时体会科学发展史中蕴含的科学方法和科学思想,达到在探究活动中获得知识的教学目标。

三、学情分析 (1)学生已经掌握核酸的元素组成等相关知识,认识了有丝分裂、减数分裂和受精作用等细胞学基础,掌握了生物的生殖过程、染色体的化学组成等相关知识,懂得DNA是主要的遗传物质,这为新知识的学习奠定了认知基础。 (2)学生对DNA分子结构的特点有了一定了解,但对于细节知识的认识不够深刻,例如,DNA的两条链为什么“反向平行”?“碱基互补配对时为什么必须A-T,G-C配对”?另外,学生对于科学家进行科学研究的科学思想和科学态度也不能感同身受、有感而发地领悟。 四、教学目标 (1)知识目标:概述DNA分子结构的主要特点。 (2)能力目标:制作DNA分子双螺旋结构模型。 (3)情感态度与价值观目标:体验DNA双螺旋结构模型的构建历程,感悟科学研究中蕴含的科学思想和科学态度。 五、教学重点与难点 (1)DNA分子结构的主要特点。 (2)制作DNA分子双螺旋结构模型。 六、教学手段 而教师利用多媒体课件精讲点拨,以学生探究制作DNA模型为主,并可利用实物投影仪让学生展示作品,分析讨论DNA结构特点。 七、教学过程 知识回顾:组成DNA的基本单位是什么? 教师引导,学生根据资料信息利用材料尝试构建DNA结构模型 (一)、组装一个脱氧核苷酸模型:(注意三种物质的连接位置:碱基连在1'碳原子上,磷酸连在5'碳原子上)

高中生物教学中构建模型方法的研究

高中生物教学中构建模型方法的研究 发表时间:2011-05-27T10:58:02.640Z 来源:《教育学文摘》2011年7月下供稿作者:李洪伟 [导读] 不难看出,模型的特点就是以简化和直观的形式来显示复杂事物或过程。 ◆李洪伟山东省平度市开发区高中266740 摘要:模型是人们为了某种特定目的而对认识对象所做的一种简化的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。 关键词:模型种类重建转换 实行新课标之后,在全国高考生物科考试大纲考试内容部分考核目标与要求中,关于实验与探究能力有如下要求:具有对一些生物学问题进行初步探究的能力,包括运用观察、实验与调查、假说演绎、建立模型与系统分析等科学研究方法。其中建立模型是新课标探究教学中的一个难点。 下面就模型的种类、构建和转换特点进行具体的分析。 一、模型的概念和种类 必修1教材对模型的定义是:“模型是人们为了某种特定目的而对认识对象所做的一种简化的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。”《美国国家科学教育标准》中的表述是:模型是与真实物体、单一事件或一类事物对应的而且具有解释力的试探性体系或结构。关于模型的形式或种类,不同论著中的说法有所相同。 下面这道试题就是要求学生判断模型种类的: 模型是人们为了某种特定目的而对认识对象所作的一种简化的概括性的描述。模型的形式有多种,下列各项中正确的是______。 A、沃森和克里克的DNA双螺旋结构模型属于物理模型 B、种群增长模型属于生物模型 C、血糖调节模型属于化学模型 D、生物膜的流动镶嵌模型属于概念模型 (参考答案与解析:种群增长模型属于数学模型,血糖调节模型属于动态物理模型,生物膜的流动镶嵌模型属于物理模型;选A。) 二、模型的重建 在课本上我们可以看到许多模型构建的具体实例,通过具体的构建体验,可以加深对模型特点的认识,理解模型在反映事物或过程方面的简化和直观性。在原有模型的基础上,为了进一步加深或拓展对重点问题的认识,可以适当进行典型模型的进一步分析和重建,以提高学生对相关模型的认知能力。 下面是两个典型的例子:下图中,如果横坐标改变,则曲线的变化趋势最大的是______。 A、①将横坐标的“光照强度”改为“CO2浓度” B、②将横坐标的“温度”改为“O2浓度” C、③将横坐标的“有丝分裂”改为“减数分裂第二次分裂” D、④将横坐标的“血糖浓度”改为“内环境温度” 不难看出,本题的命题意图就是要通过数学模型的重新构建来考察学生对相关内容的掌握情况。 三、模型间的转换 利用模型间的转换来考察学生对相关生物学问题的认识水平,也越来越频繁地出现在高考试题中。例如:下图表示用3H—亮氨酸标记细胞内的分泌蛋白,追踪不同时间具有放射性的分泌蛋白颗粒在细胞内的分布情况和运输过程。其中正确的是_____。 显然,该题是将课本上的相关物理模型(见必修1第48页资料分析:豚鼠胰腺腺泡细胞分泌物形成过程图解)转换成了数学模型,考察学生的模型转换能力。 不难看出,模型的特点就是以简化和直观的形式来显示复杂事物或过程。培养学生进行必要的模型构建、分析和重建,以及尝试进行同一模型不同表达形式或不同模型间的转换,无疑是提高学生科学素养的有效手段。在教学中,如果能够较好地结合课本上各种模型的讲解,有目的地进行模型构建分析、重建和转换专题训练,学生完全可以掌握通过模型构建解决实际问题的科学探究方法。

高中生物学中的数学模型word版本

高中生物学中的数学 模型

高中生物学中的数学模型 山东省嘉祥县第一中学孙国防 高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。 1. 细胞的增殖 【经典模型】 1.1间期表示 1.2 有丝分裂中各时期DNA、染色体和染色单体变化 1.3 减数分裂中各时期DNA、染色体和染色单体变化

【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。 2. 生物膜系统 【经典模型】 【考查考点】 3物质跨膜运输 【经典模型】 【考查考点】 自由扩散、协助扩散和主动运输的影响因素和特点。 4. 影响酶活性的因素 【经典模型】

【考查考点】 影响酶活性的因素,主要原因在于对酶空间结构的影响。酶促反应是对酶催化的更高层次的分析。 5. 影响细胞呼吸及光合作用的因素 【经典模型1】 【考查考点】 真正光合速率= 净光合速率+呼吸速率 光合作用实际产O2量=实测O2释放量+呼吸作用耗O2 光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放 光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量【经典模型2】 【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存 中的原因。 6 基因的分离和自由组合定律

【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关) 正常的概率: _________同时患两种病的概率: _________患病的概率: _________ 只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________ 【经典模型】 【考查考点】乘法原理和加法原理 7. 中心法则 【经典模型】 DNA分子的多样性:4N DNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%, A1%+T1%=A2%+T2%=A%+T% DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G 15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1 【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。 8. 现代生物进化理论 【典型例题】某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是 A.10/19 B.9/ 19 C.1/19 D.1/2 答案:A 【经典模型】

制作生物细胞模型课稿_图文(精)

边做边学“制作真核细胞模型” “制作真核细胞模型”是普通高中课程标准实验教科书《分子与细胞》 (苏教版第三章的重点内容, 《生物课程标准》中也明确“尝试建立真核细胞的模型”为具体内容标准。在学习了细胞的三大基本结构和细胞器的结构与功能的基础上,本节内容主要是通过让学生亲自动手制作真核细胞模型, 使学生全面思考细胞的基本结构与功能特点,加深学生对细胞结构与功能的理解。针对细胞这样肉眼看不见的微观世界,力图让学生从枯燥的文字中摆脱出来,通过动手和思考使学生建构细胞模型,全面掌握细胞的基本知识, 引导学生理解结构与功能的统一性。 新课改把“科学探究”作为基本理念的核心,提倡学生在“做中学” ,需要学生通过在“做中学” 、“学中做”的实践,达到“学做统一” ,使“活动教学”与“讲授教学”相互融合,彼此促进。 细胞在电子显微镜下才能观察到它的微细结构, 因而学生缺乏感性认识。因此,亲身体验模拟制作“细胞”的立体结构模型有助于在现有的实验条件下让细胞变“微观”为“宏观” ,而更好地构建完整的知识体系。且能激发他们的求知欲,真正实现在“做中学” 。 【三维学习目标】 1.知识目标:说出细胞的基本结构,阐明细胞器的功能。 2.能力目标:通过制作细胞结构模型,锻炼学生的逻辑思维能力和创新能力,培养学生的动手、思维、合作,交流和语言表达等能力。 3. 情感态度价值观目标:认同结构与功能的统一性、细胞结构的统一性、局部与整体的关系。 1 【教学重点】制作真核细胞结构模型。

【教学重点】细胞基本结构的模型构建,结构与功能的统一性。 【教学方法】实验法、汇报总结、生生师生讨论。 【教学准备】学生准备细胞模型制作的材料 (如:橡皮泥、水果等 ; 预制作的细胞模型等。 【教学设计思路】 导入时利用学生猎奇心理,利用北京自然博物馆中的“ 细胞屋” 引起学生学习兴趣。结束时采用学生拼装,创设情景,使学生在潜移默化中领悟细胞结构与功能的统一性。力求使整个课堂变成学生主动建构知识、提高素质的过程。总体上体现教师主导、学生主体的新课改精神。 【教学过程】

人教版高中生物必修3教案《建立血糖调节的模型》

人教版高中生物必修3教案《建立血糖调节的模型》 一、教学设计思路 有关血糖调节的内容抽象复杂,在传统的教学过程中,老师们基本都是以描述为主,虽然有时结合相关的图形甚至多媒体课件,但对学生而言仍然更多地是以被动的方式接受。这种被动的学习既不利于学生对相关知识的建构,也不利于学生能力的培养和发展。为了改变这种状况,新课程人教版必修3《稳态与环境》的第二章第2节特别地安排了一个“建立血糖调节的模型”的活动。 血糖的平衡调节是一个非常复杂的过程。教材所构建的血糖调节的模型中,主要演示了胰岛素与胰高血糖素与血糖升高或降低之间的结果关系,而对血糖的来源与去路基本未能涉及。但是血糖平衡的调节与血糖的来源与去路恰恰是密切联系的,所以教材“建立血糖调节的模型”还不能让学生建构起完整的血糖平衡调节知识结构。 为了弥补以上不足,在认真研读教材的基础上,我对教材“建立血糖调节的模型”进行了大胆的创新和拓展: 1.给学生提供模拟葡萄糖、胰岛素、胰高血糖素、肝糖原、肌糖原、食物中的糖类、脂肪和氨基酸、CO2+H2O+能量的卡片作为供选择的材料,然后通过提供资料、设置问题,引导学生构建吃饭后和运动时血糖调节的动态模型。在指导学生进行构建模型时,不局限于教材中提供的方案,不束缚学生的思路,鼓励学生大胆设想、求异创新,设计出既简便易行,又科学准确的设计方案。 2.通过小组演示来暴露出一些在小组活动过程中可能出现的不科学或者不准确的模拟内容,及时给予纠正,推广一些成功的经验,观摩富有创新性的模型。在学生以一种精神愉快、思维活跃的形式构建模型后,学生再构建出正常情况下血糖的来源和去路图解式模型和血糖调节的图解式模型,在此基础上理解胰岛素和胰高血糖素在调节血糖平衡中的拮抗作用和血糖调节的机制,这样既突破了重点和难点,有突出了学生在课堂中的主体地位,最终达到让学生通过构建模型来建构起完整的血糖平衡调节的知识结构。 3.联系社会生活实际,分析当身体不能产生足够的胰岛素时,将会发生什么情况? 引导学生利用所学知识对实际问题加以解释和说明,增强学生自我保健意识,使学生更加珍爱生命,养成良好的生活习惯,懂得选择健康的生活方式。 二、教学目标

相关主题
文本预览
相关文档 最新文档