当前位置:文档之家› 反射镜-金膜平面反射镜

反射镜-金膜平面反射镜

反射镜-金膜平面反射镜
反射镜-金膜平面反射镜

部分反射镜

平面部分反射镜材料K9(FS),熔石英尺寸公差+0/-0.2mm 厚度公差±0.2mm 通光孔径>90%面型/8@632.8nm λ表面质量镀膜60/40一面镀介质部分反射膜,反面镀增透膜损伤阈值>10J/20ns 20Hz @1064nm ,,,cm 2R T 分光精度单波长3%5%±,宽带±t R T 平行度<1分常用波长355532632.865078085098010301064nm 450-650nm 650-900nm 900-1200nm ,,,,,,,,,,T e T c R фS1S2T e фT c S1R S2 球面部分反射镜部分反射镜BSP K925.4350/5045°S+P 1064BSP -材料直径厚度透射率反射率入射角设计偏振波长---T/R--- S+P S P :,::针对S和P求平均设计只针对S光设计只针对P光设计T=(Ts+Tp)/2R=(Rs+Rp)/2,订购信息技术参数32K9K9FS ::熔石英

材料K9(FS) ,熔石英尺寸公差+0/-0.2mm 厚度公差±0.2mm 通光孔径>90% 面型/4@632.8nm λ表面质量镀膜60/40 S1S2面镀介质部分反射膜,面镀增透膜损伤阈值>10J/20ns 20Hz @1064nm ,,,cm 2分光精度单波长±,宽带±3%5%中心偏<3分 常用波长3555321030104710531064nm ,,,,,材料K9,熔石英(FS) 尺寸公差+0/-0.2mm 厚度公差±0.2mm 通光孔径>90%面型/8@632.8nm λ表面质量镀膜60/40 一面镀二向色性分色膜,反面镀增透膜 反射波长,透过波长R>99.5%T>85% 损伤阈值>10J/20ns 20Hz @1064nm ,,,cm 2平行度<1分 常用波长1064/532nm 分色镜λ1λ2技术参数 订购信息 BST PCV K925.43100010/900°1064BST-PCV -材料直径中心厚度曲率半径透射率反射率入射角波长----/--T R PCV PCX ::平凹平凸33技术参数 订购信息 DIM K925.43R1064/T532BST 45° BST-DIM -材料直径厚度反射波长透过波长入射角 ---/-R T K9K9 FS ::熔石英

平面与平面系统 知识点

3-1 #平面镜#平面反射镜,曲率半径无穷大,它是唯一能成完善像的最简单的光学元件。 #镜像#使一个右(或左)手坐标系的物体经光学系统后成左(或右)手坐标系的像,这种像叫镜像。 #一致像#与物坐标系一致的像,简称一致像。 #连续一次像#双平面镜成像时,依次通过两个反射面所成的像。 3-2 #平行平板#由两个相互平行的折射平面构成的光学元件。 3-3 #反射棱镜#将一个或多个反射面磨制在同一块玻璃上形成的光学元件。 #棱镜光轴#光学系统的光轴在棱镜中的部分称为棱镜的光轴,一般为折线。 #主截面#工作面之间的交线构成棱,垂直于棱的平面。 #简单棱镜#只有一个主截面,所有工作面都与主截面垂直。 #屋脊棱镜#交线位于棱镜光轴面内的两个相互垂直的反射面构成屋脊面,具有屋脊面的棱镜称为屋脊棱镜。 #立方角锥棱镜#三个反射面相互垂直,底面是一个等腰三角形,为入射面和出射面,光线从任意方向从底面入射,经三个直角面反射后,出射光线始终平行于入射光线。 #复合棱镜#由两个以上棱镜组合起来形成复合棱镜。 #成像方向判断#根据一定的规则判断棱镜系统的成像方向。 #棱镜展开#利用一等效平行玻璃平板来取代光线在反射棱镜两折射面之间的光路。 3-4 #折射棱镜#工作面由两个折射面构成的棱镜。

#光楔#折射角很小的折射棱镜。 #色散#由于同一透明介质对于不同波长的单色光具有不同的折射率,白光经过棱镜后将被分解为各种不同颜色的光,在棱镜后将会看到各种颜色,这种现象称为色散。 3-5 #平均折射率#在夫朗和费谱线中D光波长处的折射率。 #平均色散#夫朗和费谱线中F光波长和C光波长处的折射率之差。 #阿贝常数# 定义为(n D-1)/(n F-n C) #部分色散#任意一对谱线的折射率之差。 #相对色散#部分色散与平均色散之比。

多面反射镜的超精密切削

多面反射镜的超精密切削 一、多面反射镜 过去多面反射镜只用作测量角度的标准光学元件,在一般情况下,是用它作为测量回 转工作台分度精度的角度标准。随着科学技术的发展,多面反射镜的用途也在不断地扩 大,目前广泛地用于激光扫描的装置中,即让多面反射镜高速回转,使照射在多面反射镜上的激光束进行扫描。利用多面反射镜制作的激光扫描装置用途很广,例如在激光打印 机上使激光通过多面反射镜在感光鼓筒上进行扫描,而实现高速印刷。除此之外,还在检查轧制钢板的表面缺陷及检查胶片等的缺陷,零件、物品等的识别,用a岛激光淬火、焊接等装置上都要使用多面反射镜。在上述的各种用途中,以用在激光打印机上的多面反 射镜精度最高、最有代表性。图7-20所示是激光打印机的原理图。多面反射镜是构成激 光打印机的核心零件,只有多面反射镜的精度高,反射率高,打印机才能有高的析像度,像汉字、画像这样复杂的图像才能高速地印刷。因此要求多面反射镜的几何形状精度高,反 射镜面的粗糙度R。值低。图7—21所示是激光打印机用多面反射镜的技术要求。从图中225 可以看出,镜体的平行度和平面度精度均为0.5f,tm,镜面的角度误差在1“~y,而镜面所 要求的粗糙度为R,0.01,ttm,平面度要求为A/5~2/10(Ne—Ni激光A=0.682 8『』m)c 在一般情况下,作为激光反射镜必须满足 的加 工精度是:形状精度(平面度)低于0.1“m, 表面粗 糙度R。0.01弘m,表面反射率大于85%, 而且没有 散乱光和衍射光。

过去因多面反射镜形状复杂,对几何形状精度和表面粗糙度的要求很高,故多采用研磨的方法进行加工。图7—22为其工艺路线,因为加工工艺复杂,效率较低,所以成本很高。 近来由于多面反射镜用途的不断扩大,用研臃方法进行加工已远远满足不了要求,因而开发了丹j 铜及铜铝系合金等软金属以及塑料等材料,采用金刚石刀具超精密切削加工出多面反射镜的技术,其工艺路线见图7-23。 加工多面反射镜采用超精密切削与采用研磨 相比,可以看出:采用超精密切削,工艺路线大大地 l一感光滚筒:2一激比发振器; 3~数字信号:4一电fi十算机; 5一变调器;6-一激光束放大器; 7一多【酊反射镜;8一壤焦透镜。

表面粗糙度选用标准

表面粗糙度选用 ----------------------------------------------------------- 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 ----------------------------------------------------------- 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 ----------------------------------------------------------- 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 ----------------------------------------------------------- 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 ----------------------------------------------------------- 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 ----------------------------------------------------------- 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

高精密平面光学零件加工工艺汇编

河南工业职业技术学院 Henan Polytechnic Institute 毕业设计 题目高精度平面光学零件加工工艺系别光电工程系 专业精密机械技术 班级 姓名 学号 指导教师 日期

毕业设计任务书 设计题目: 高精密平面光学零件加工工艺 设计要求: 1.熟悉高精度平面光学零件加工的工艺,达到图纸的设计要求。 设计任务: 1.画出高精度平面光学零件加工原理图; 2.根据图纸要求选用合适的加工方法; 3.写出详细毕业设计说明书(10000字以上),要求字迹工整,原理叙述正确,会计算主要元器件的一些参数,并选择元器件。 设计进度要求: 第一、二周:收集选题资料;在图书馆查看书籍,在实践中听取师傅的教导,在网上查找各类相关资料尽量使资料完整、精确。 第三、四周:熟悉相关技术,将收集到的资料仔细整理分类,及时与导师进行沟通。将设计的雏形确立起来 第五、六周:根据毕业设计格式确定、撰写毕业设计; 第七、八周:准备答辩 指导教师(签名):

摘要 光学平面零件是指由光学平面作为工作面的光学零件。它包括平晶、平行平板、平面反射镜、光楔、滤光片及棱镜等。由两个互相平行的光学平面构成的光学零件系统称为平行平板。 通常以平面光学零件的面形精度和角度精度来衡量平面制造的精度,并以此将平面光学零件区分为高精度零件、中精度零件和一般精度零件。 平面面形精度为N=o.5~o.1,△ N=o.1以上;角度精度为20〞~ 5〞以上的零件,称为高精度平面光学零件。属于这类的光学零件有平面平行零件、平面样板、棱镜、多面体等。高精度平面的抛光除需要很好地解决加工中的装夹变形、热变形、应力变形、重力变形等问题外,还应采用先进的加工技术和精密的测试手段。 这篇设计主要介绍,高精度平面零件的加工过程,指出加工过程中存在的问题,总结经验以及所得到的体会。 关键词::平面零件、加工要求、抛光、精度

高精度离轴凸非球面反射镜的加工及检测_张峰

第18卷 第12期 2010年12月 光学精密工程  O ptics and Precision Enginee ring V ol .18 N o .12 Dec .2010 收稿日期:2010-09-25;修订日期:2010-10-27. 基金项目:国家自然科学基金重点资助项目(N o .61036015) 文章编号 1004-924X (2010)12-2557-07 高精度离轴凸非球面反射镜的加工及检测 张 峰 (中国科学院长春光学精密机械与物理研究所光学系统先进制造技术中国科学院重点实验室,吉林长春130033) 摘要:为了提高离轴凸非球面反射镜的面形精度和光轴精度,研究了离轴凸非球面反射镜的加工与检测技术。首先,描述了离轴三反消像散(TM A )光学系统以及作为该光学系统次镜的离轴凸非球面反射镜的光学参数和技术指标。然后,介绍了非球面计算机控制光学表面成型(CCOS )技术及FSG J 非球面数控加工设备。最后,给出了非球面研磨阶段检测用的轮廓测量法和离轴凸非球面抛光阶段检测用的背部透射零位补偿检测法,并对背部透射零位补偿检测中离轴凸非球面反射镜光轴精度的控制技术进行了研究。检测结果表明:采用背部透射零位补偿检测法检测得到的离轴凸非球面反射镜的面形精度为0.017λ(均方根值,λ=0.6328μm );用Leica 经纬仪测量反射镜的光轴精度其结果达到9.4″,满足光学设计技术指标要求。 关 键 词:凸离轴非球面;计算机控制光学表面成型;轮廓测量;背部透射零位补偿检测;光轴精度中图分类号:T H703;T Q 171.68 文献标识码:A doi :10.3788/O P E .20101812.2557 Fabrication and testing of precise off -axis convex aspheric mirror ZH ANG Feng (K ey Laboratory of Optical S ystem Ad vanced Manu f acturing Technology ,Changchun I nstitute of Optics ,Fine Mechanics and P hysics ,Chinese Academy o f Sciences ,Changchun 130033,China )A bstract :To im pro ve the fine surface figure accuracy and optical axis accuracy of an o ff -axis co nvex aspheric mirro r ,the fabricatio n and testing techno logies o f the off -axis convex aspheric mirror w ere studied .Firstly ,a Three Mirror Anastig mat (TM A )o ptical sy stem and the specification requirements of the seco nd off -axis convex aspheric mirror in the TM A optical system w ere presented .Then ,the technique of Computer -controlled Optical S urfacing (CCOS )fo r manufacturing the asphe ric mirror and the FSGJ num erical control machine fo r processing asphe ric surface w ere introduced .Finally ,the con -to ur testing in a lapping stage and the back transmission null testing in a polishing stage for the co nvex aspheric mirro r w ere described ,and the co ntro lling technolo gy fo r the optical axis accuracy of off -axis convex aspheric mirro r w as studied .The testing results indicate that the surface fig ure accuracy and the o ptical axis accuracy of the off -axis convex aspheric mir ro r are 0.017λRMS and 9.4″,respectively .All the specificatio ns of the off -axis convex aspheric mir ro r can meet the requirements of the optical desig n .Key words :off -axis convex aspheric surface ;Computer -co ntrolled Optical Surfacing (CCOS );contour testing ;back transmissio n null testing ;optical axis accuracy

基于平面反射镜的物体全方位三维测量方法与制作流程

本技术公开了一种基于平面反射镜的物体全方位三维测量方法,首先是搭建摄像机和投影仪组成的条纹投影轮廓术系统,将贴附有标定纸条的左平面反射镜和右平面反射镜设置在被测物体后面,使用投影仪向被测物体投出相移条纹,并触发摄像机同步采图,将缠绕相位图解算为绝对相位图,由绝对相位得到被测物体的三维点云数据,并用标定纸条对平面反射镜进行标定,实现通过单次测量即可得到物体全方位的三维点云数据,最后利用ICP迭代算法对点云进行配准,使点云之间相同的部分尽可能地重合。本技术具有低成本,简单高效,高精度的优势。 技术要求 1.一种基于平面反射镜的物体全方位三维测量方法,其特征在于步骤如下: 步骤一:搭建基于平面反射镜的条纹投影轮廓术系统,首先搭建摄像机和投影仪组成的条纹投影轮廓术系统,然后将贴附有标定纸条的左平面反射镜和右平面反射镜设置在被测物体后面,调节贴有标定纸条的平面反射镜的位置,通过平面反射镜的反射作用,摄像机同时观察到被测物体的三个视角的信息; 步骤二:投影相移条纹并采图,使用投影仪向被测物体投出相移条纹,并触发摄像机同步采图; 步骤三:求解相位并重构点云,对于步骤二中采集到的条纹图案,采用基于条纹投影的相移轮廓术解算出不同频率条纹下的缠绕相位图,随后利用时域相位解缠算法,将缠绕相位图解算为绝对相位图,利用投影仪和摄像机的标定参数,由绝对相位得到被测物体的三维点云数据; 步骤四:用标定纸条对平面反射镜进行标定,即利用步骤二和步骤三中的方法对平面反射镜上面的标定纸条的三维信息进行重构,得到标定纸条的三维空间姿态信息,并进行平面拟合,用以近似代替平面反射镜的空间姿态信息,计算拟合平面的单位法向量以及世界坐标系原点到拟合平面的距离,完成两块平面反射镜的标定工作; 步骤五:三维点云的转换,根据步骤四得到的平面反射镜的标定参数,计算得到左右平面镜反射镜中三维点云数据到真实世界坐标系的转换矩阵,从而将左右平面镜中的三维点云数据转化到物体实际所在的统一的世界坐标系下,以此方式实现通过单次测量即可得到物体全方位的三维点云数据; 步骤六:三维点云的配准,利用ICP迭代算法对点云进行配准,使点云之间相同的部分尽可能地重合。 2.根据权利要求1所述的方法,其特征在于步骤一中,一块标定纸条贴附在左平面反射镜的下部偏左部位,另一块标定纸条贴附在右平面反射镜的下部偏右部位,调节平面反射镜的位置,使两块平面反射镜的交线正对被测物体和投影仪,左平面反射镜、右平面反射镜的夹角在115°-125°之间,以摄像机观察到的三个像均匀分布在视场中,互不重合,且三个像不被标定纸条遮挡。 3.根据权利要求1所述的方法,其特征在于步骤二中,利用基于条纹投影的相移轮廓术,使用投影仪向被测物体投出一系列正弦条纹图案,经过物体漫反射后被摄像机同步采集,采集到的光强表示为:

表面粗糙度标准

表面粗糙度:指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ① 表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ② 表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③ 表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④ 表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤ 表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。此外,表面粗糙度对零件的外观、测量精度也有影响。 表面粗糙度有Ra,Rz,Ry 之分,据GB 3505摘录: 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是: 轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。

表面粗糙度设定规范

粗糙度设定规范 目录 1.粗糙度的定义-----------------------------------------------------------------2 2.内容-----------------------------------------------------------------------------2 4.1粗糙度介绍--------------------------------------------------------------2 4.1.1粗糙度产生的原因-------------------------------------------------2 4.1.2粗糙度的评价标准-------------------------------------------------3 4.1.3表面粗糙度代(符)号及其注法------------------------------6 4.2表面粗糙度的选用----------------------------------------------------11 4.2.1表面粗糙度的选用原则-----------------------------------------11 4.2.2表面粗糙度参数值的适用表面--------------------------------12 4.2.3轴和孔的表面粗糙度参数推荐值-----------------------------13 4.2.4各种常用加工方法可能达到的表面粗糙度-----------------14 4.2.5座椅常用部品粗糙度设定--------------------------------------15 4.3表面粗糙度的检测方法----------------------------------------------16 3.相关文件---------------------------------------------------------------------17 4.实施要求---------------------------------------------------------------------17 5.附件---------------------------------------------------------------------------17

全向反射镜

全方位反射镜(1D ) 对1D 光子晶体,在立体空间中有完全带隙结构,在不同方向传播的光子的带隙有重合部分,使在一定的频率范围内的光子以不同的入射角度射向光子晶体时都被高反射啦,无法透过光子晶体。 物理属性: 1.平行波矢在任何平行于层的界面上都是守恒的,只要照射的光源足够远,在平行方向上结构的平移对称性就不会受到破坏。 2.从空气中入射的光要满足条件w>c|K |||,即在the light line 上面,对应于其上的自有传播模式,而在其下方是从远光源无法到达反射镜的消失模(指数衰减场)。 图15: YZ :入射平面 Y 方向:平行于层 Z 方向:垂直于层; 两种可能的极化: TM 波(S 极化):电场垂直于YZ 平面 TE 波(p 极化):电场在平面内,磁场垂直与平面; 2:132:1=εε,λ4 1堆结构。 w 与ky 关系,能带图: 绿色和蓝色都是传播态。 空白处是消失态(带隙) 红线是the light line ,w=cKy 黄色区域:Ky=0(正入射)全角度反射带(对于给定的频率)。TM 波和TE 波在正入射时反射带是重合的,但随着入射角度变化也会分离;

随着入射角的增大,TM 波和TE 波的反射带向着高频方向移动,并逐渐分离; p 极化在布鲁斯特角(B 点)时对任何频率都出现了透射带,B 出现在两种材料的接口,无反射,两条带相交。 但全向反射不是1D 的一般性质,两个必要条件: 1. 两种介质材料介电常数比要足够大; 2. 其中较小的介电常数还要比周围环境介电常数要大(所以图15选择的介电常数是2不是1,比空气介电常数大) 图16: λ4 1堆结构,图中显示的是全向带隙大小与a εεεε212,的函数关系。 光线是从介电常数为a ε的介质中入射的;2ε>1ε;粉色阴影区是非零全向带隙区。 λ4 1堆结构并不一定可以使全向带隙最大; 若不使用λ4 1堆结构,通过最优化层间距,那图中等高线的位移会小于2%(?); 若界面不平坦,或有物体靠近界面,平行波失不再守恒,此时,光通常会与晶体中传播的扩展模式耦合,并一起被传输;但可以通过其他对称性,比如旋转对称性代替平移对称性,使光可以在内部定位,同样可以呈现指数衰减模式。

前表面反射镜

前表面反射镜 它是一种利用反射定律工作的光学元件,反射镜按形状可分为平面反射镜、球面反射镜和非球面反射镜三种,介绍下平面反射镜(前表面反射镜)。 在光学玻璃的前表面,通过真空镀膜镀一层金属银(或铝)薄膜,使入射光反射的光学元件。采用高反射比的反射镜可使激光器的输出功率成倍提高;且是第一反射面反射,反射图像不失真,无重影,为前表面反射作用。如采用普通反射镜为第二反射面,不仅反射率低,对波长无选择性,而且易产生重影。而采用镀膜膜面反射镜,得到的图象不仅亮度高,而且精确无偏差,画质更清晰,色彩更逼真。前表面反射镜广泛为光学高保真扫描反射成像之作用。 应用:广泛应用于扫面仪,投影机,扫描仪,条码机,安防监控系统,舞台灯光、医疗器材等光学应用设备,鑫晨时代提供以下几种。 显微镜用反射镜舞台灯光用反射镜 幻影成像反射镜 JDSU反射镜

激光灯用反射镜面板玻璃 ? ?RGB 投影仪反射镜背投电视用反射镜? ? 开关玻璃设备玻璃 美国进口反射镜前表面反射镜 投影仪反射镜手电筒玻璃盖 扫描仪用反射镜

基本参数: 厚度:0.55mm-2.3mm 10/10/ 13 mm 12/12/ 2”8/8/ 2” 4 mm 12/12/ 2”8/8/2”20/20/ 4” ,16/16/ 4” 5 mm 根据玻璃厚度划分的种类: 0.5mm/0.7mm/1.1mm/1.25mm/1.9mm/2.0mm/3.0mm/4.0mm/5.0mm 反射率Reflection rate HR-94 (400~700波长平均达到94%以上,成像通用标准) For Scanner,Copier,PTV,OHP---等 HR-97- # ,HR-98- # (某个颜色光波长达到97%以上) For Scanner,PTV,LCD Projector ---等

表面粗糙度仪的国家标准及术语

图一:放大n倍后的工件截面/表面粗糙度及轮廓: 图二:各种加工方法能得到的表面光度: 图三:常见的表面粗糙度仪的工件测量:

表面粗糙度关键技术术语: (1)表面粗糙度:取样长度L 取样长度是用于判断和测量表面粗糙度时所规定的一段基准线长度,它在轮廓总的走向上取样。 (2)表面粗糙度:评定长度Ln 由于加工表面有着不同程度的不均匀性,为了充分合理地反映某一表面的粗糙度特性,规定在评定时所必须的一段表面长度, 它包括一个或数个取样长度,称为评定长度Ln。 (3)表面粗糙度:轮廓中线(也有叫曲线平均线)M 轮廓中线M是评定表面粗糙度数值的基准线。 评定参数及数值: 国家规定表面粗糙度的参数由高度参数、间距参数和综合参数组成。 表面粗糙度高度参数共有三个: (1)轮廓算术平均偏差 Ra :

在取样长度L内,轮廓偏距绝对值的算术平均值。 (2)微观不平度十点高度Rz 在取样长度L内最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和。 (3)轮廓最大高度Ry 在取样长度内,轮廓峰顶线和轮廓谷底线之间的距离。 表面粗糙度间距参数共有两个: (4)轮廓单峰平均间距S 两相邻轮廓单峰的最高点在中线上的投影长度Si,称为轮廓单峰间距,在取样长度L内,轮廓单峰间距的平均值,就是轮廓单 峰平均间距。 (5)轮廓微观不平度的平均间距Sm

含有一个轮廓峰和相邻轮廓谷的一段中线长度Sm i,称轮廓微观不平间距。 表面粗糙度综合参数: (6)轮廓支承长度率t p 轮廓支承长度率就是轮廓支承长度n p与取样长度L之比。 另附: 中美表面粗糙度对照表 中国旧标准(光洁度)中国新标准(粗糙度)Ra美国标准(微米 )Ra美国标准(微英寸),Ra ▽4 6.38.00320 6.30250 ▽5 3.25.00200 4.00160 3.20125 ▽6 1.62.50100 2.0080 1.6063 ▽70.81.2550 1.0040 0.8032 ▽80.40.6325 0.5020 0.4016 国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm) 表面光洁度 ▽1▽2▽3▽4▽5▽6▽7

反射镜成像

反射镜成像 几何光学成像包括小孔、折射、反射三种形式,其中反射成像在古代最为常见。反射成像也可以分为三种形式:平面镜成像、凸面镜成像、凹面镜成像。 反射镜成像的起源大概是受“以水鉴面”的启发。古人发现平静的水可以照出像来,后来又进一步发现具有光滑表面的物体都能映出像来,由此启示他们去把金属表面打磨光滑,这就导致了古代主要成像工具——铜镜的产生。当铜镜表面曲率不等于零时,相应的铜镜就成了凸面镜或凹面镜。 铜镜的发明在我国非常遥远。出土文物表明,早在商代,就已经有了一定水平的铜镜。商周以后,铜镜日益增多,使用上渐趋普遍,由此促进了人们对其成像的研究。这些研究可以分为成像机理、成像规律及应用几个不同方面。 对于反射成像机理,古人很少从光路角度出发去分析,较多地是一些抽象的哲学议论。《淮南子·原道训》说:“夫镜水之与形接也,不设智故,而方圆曲直弗能逃也。”“与形接”,说明镜子成像是对外部的反映;“不设智故”,说明这种反映完全是客观的,因而是可信的。西晋陆机《演连珠》也说:“镜无畜影,故触形则照。”镜子本身并未贮存像的信息,它一旦接触到外来的光,就能照出相应的像。这种认识,与《淮南子》是一致的。 陆机还说:“鉴之积也无厚,而照有重渊之深。”积,这里指镜的反射面。因为只是一个面,故说其“无厚”。镜子的成像功能就在这个反射面上,认识到这一点,也是一个进步。 相应于成像机理而言,古人对反射成像规律及应用的研究,内容还是比较丰富的。这里我们分别就平面镜、凸面镜、凹面镜三种形式做一叙述。 对于平面镜成像特征,《墨经》中曾有所涉及。墨家称平面镜为正鉴,认为正鉴所成之像是单一的,不像曲面镜那样,存在放大、缩小、正立、倒立等多种情况。平面镜成像,物与像于镜面是对称的。物体移动,像也移动,二者始终对称。物在镜前,像在镜后,像与物是全同的。《墨经》对于平面镜成像特征的记述,文字比较简朴,上述内容是总结了《墨经》该条中心意思后得到的,与平面镜成像的实际情形也一致。 在应用上,古人除了用平面镜作为鉴形之器,还以之作为光路转换装置。《淮南万毕术》说:“高悬大镜,坐见四邻。”这里所说的大镜,指的是凸面镜,因为只有凸面镜,才能具有“坐见四邻”的效果。平面镜只能窥见邻家某一特定角度的情景。但东汉高诱对这一条的注解则无疑涉及到平面镜的反射作用:“取大镜高悬,置水盆于其下,则见四邻矣。”这里水盆的作用就相当于一个平面镜,它把高悬着的凸面镜上的四邻景象,反射给视者。本来,要“坐见四邻”,只需抬头仰视凸面镜即可,但仰视不便,故通过水盆中水的反射而转为俯视。这里水盆的作用就是一个光路转换器,通过它的转换,使得视者能够从比较舒适的角度出发进行观察。 利用平面镜对光的反射作用,可以生成复像。这对古人来说,是不难办到的,只要有两块平面镜在手,便能轻易实现。由此,要考证古人究竟何时实现了用平面镜的多次反射生成复像,没有多大意义,因为文献中反映出的年代肯定远远落后于实际。我们需要了解的,是古人究竟如何记载并解释此事。就记载的清晰度而言,唐代陆德明《经典释文》在注解《庄子·天下篇》有关内容时说了这样一段话:“鉴以鉴影,而鉴亦有影,两鉴相鉴,其影无穷。”这已经对成复像问题做了相当直观的解释。南唐道士谭峭在《化书·形影》中的说明,则更进了一步: “以一镜照形,以余镜照影,镜镜相照,影影相传,不变冠剑之状,不夺黼黻之色。是形也,与影无殊;是影也,与形无异:乃知形以非实,影以非虚,无实无虚,可与道俱。”

表面粗糙度对照表

国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm)

另附:粗糙度仪新旧标准参数变化对照表现将TR200粗糙度仪依据新标准更改参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详见表)

另附:表面粗糙度国际标准加工方法 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是:轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。

Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。 表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在

1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸轮、偏心轮的侧面;平键及键槽上下面、花键非定心表面、齿顶圆表面;所有轴和孔的退刀槽;不重要的连接配合表面;犁铧、犁侧板、深耕铲等零件的摩擦工作面;插秧爪面等。1、外观的光滑与摩擦是一个矛盾问题,总的来说,既要光滑美观,又要有相当的摩擦, 以方便安装,以下是常见的一些粗糙度数值: 2、粗糙度0.8以下:抛光 3、粗糙度0.8:用磨床加工的面 4、粗糙度1.6—3.2:车床、铣床加工面 5、粗糙度3.2—12.5:一般性的常规加工 6、一般而言,既要光滑美观,又要有相当的摩擦,以方便安装的话,粗糙度0.8可以,既显得美观高档,手感也可以的 7、如果手拧部分需要减低等级的话也可以的,建议选择粗糙度1.6—3.2,但是,好看吗?会不会影响外观的美感呢? 8、如果需要重视手拧的功能,最好是做滚花处理,滚花有“直纹”和“网纹”两种,图纸上的标注:网纹0.8(用箭头指明需要滚花的部位,再写上文字) 如有侵权请联系告知删除,感谢你们的配合!

立方反射镜失调特性的研究

文章编号:0258 7025(2005)03 0306 05立方反射镜失调特性的研究 梁 倩,施翔春,付文强 (中国科学院上海光学精密机械研究所,上海201800) 摘要 结合理想坐标系下立方镜镜面微小倾斜后其三个平面法线坐标,利用刚体微量转动的反射法线向量公式,获得非理想立方镜反射矩阵;为了研究在光斜入射时镜面倾斜对出射光方向的影响,利用立方镜绕顶点旋转等效于光斜入射的方法,计算出光束夹角 与单一镜面偏差角 和立方镜旋转角 之间的关系式;对于理想情况下的立方镜,利用几何光学可以证明出射光与入射光不但平行,而且过顶点作任意截面交于两光线所得的两个交点关于顶点对称,从而计算出立方镜绕顶点以外任意轴旋转造成出射光束相对原出射光的偏移量与旋转角关系式,理论计算值与实验数据吻合得很好;介绍了立方镜的制作、调整及检测方法,偏差角的测量与计算.关键词 光电子学;失调;立方镜;反射矩阵中图分类号 T N 248.1 文献标识码 A Misalignment Property Analysis of Corner Cube Reflector LIANG Qian,SHI Xiang chun,FU Wen qiang (Shanghai I nstitute of Op tics and F ine M echanics ,T he Chinese A cademy of S ciences ,S hanghai 201800,China )Abstract T he r eflectio n matr ix o f non ideal corner cube is o bt ained by using the r eflecting nor mal vector equation o f rig id bo dy w ith slight r otation.In o rder to find the effects of dihedral ang le er ro rs o n the emer ging beam,the equivalent pr inciple of co rner cube r otation ar ound a pex is used to calculat e the ang le between the incident beam and the emerg ing beam as a functio n of dihedral angle er ror s and ro tation ang le of corner cube.Fo r an ideal cor ner cube,the emer ging beam is parallel to the incident beam and two int ersect ions that any plane thro ug h the apex cuts the tw o beams must be synmet rical abo ut t he a pex.After cor ner cube r andomly rot ates around apex ,the relat ions betw een the rot ation ang le and offset o f emer ging beam co mpar ing w ith the or ig ina l are investig ated theo retically and ex perimentally.T he results ar e in go od ag reement.T he making ,adjusting and t esting o f the cor ner cube r eflector including the measurement and calculation of the dihedral ang le er ro rs are presented.Key words optoelectro nics;misalig nment;corner cube reflecto r;reflectio n mat rix 收稿日期:2003 12 12;收到修改稿日期:2004 04 14 作者简介:梁 倩(1979 ),女,广西人,中国科学院上海光学精密机械研究所硕士研究生,主要从事激光技术研究.E mail:kadlingzi@hotmail.co m 随着激光技术的不断发展,人们对激光的输出光束质量也有所要求[1~5].如何通过改变激光腔结构设计,提高高功率输出光束质量,是现在面临的主要研究课题.立方镜负支环形非稳腔中的一个重要 组成部分就是立方镜,它具有稳定性好,抗扰动性能强,而且能使腔内激光束产生180 旋转等特点,这就从很大程度上降低了对调整精度的要求.若采用失调灵敏度低,同时又具有良好的模式控制等特点的立方反射镜负支环形非稳腔,使光束在自再现周期内发生旋转或翻转,进而使增益分布不均匀相对 光场得到了均匀化改善,从而提高了光束质量[6]. 很多人对立方镜都作过不少有价值的研究[7~12].立方反射镜具有立方棱镜的特点,即最终出射光光轴与入射光光轴平行而与入射角的变化无关.但是,由于立方镜是由三面全反射平面镜两两垂直放置组合而成的,当面间角并不是恰好精确为90 时,出射光会发生偏离,不再平行于入射光.在立方镜的设计和安装调试过程中,需要了解镜面角度的偏差以及由此造成与出射光偏离之间的关系,以便有效地将安装精度控制在允许的范围内,同时如 第32卷 第3期2005年3月 中 国 激 光 CH INESE JOURNAL OF LASERS Vo l.32,N o.3 M ar ch,2005

表面粗糙度新国标

表面结构的图样表示法 加工零件时,由于刀具在零件表面上留下刀痕和切削分裂时表面金属的塑性变形等影响,使零件表面存在着间距较小的轮廓峰谷。这种表面上具有较小间距的峰谷所组成的微观几何形状特性,称为表面粗糙度。机器设备对零件各个表面的要求不一样,如配合性质、耐磨性、抗腐蚀性、密封性、外观要求等,因此,对零件表面粗糙度的要求也各有不同。一般说来,凡零件上有配合要求或有相对运动的表面,表面粗糙度参数值小。因此,应在满足零件表面功能的前提下,合理选用表面粗糙度参数。 1.评定表面结构常用的轮廓参数 ①算术平均偏差Ra是指在一个取样长度内纵坐标值Z(x)绝对值的算术平均值 ② 轮廓的最大高度Rz是指在同一取样长度内,最大轮廓峰高和最大轮廓谷深之和的高度 图9-27 评定表面结构常用的轮廓参数 2.有关检验规范的基本术语 检验评定表面结构参数值必须在特定条件下进行。国家标准规定,图样中注写参数代号及其数值要求的同时,还应明确其检验规范。有关检验规范方面的基本术语有取样长度、评定长度、滤波器和传输带以及极限值判断规则。本有关检验规范仅介绍取样长度与评定长度和极限值判断规则。 (1)取样长度和评定长度 以粗糙度高度参数的测量为例,由于表面轮廓的不规则性,测量结果与测量段的长度密切相关,当测量段过短,各处的测量结果会产生很大差异,但当测量段过长,则测得的高度值

中将不可避免地包含了波纹度的幅值。因此,在X轴上选取一段适当长度进行测量,这段长度称为取样长度。但是,在每一取样长度内的测得值通常是不等的,为取得表面粗糙度最可靠的值,一般取几个连续的取样长度进行测量,并以各取样长度内测量值的平均值作为测得的参数值。这段在X轴方向上用于评定轮廓的并包含着一个或几个取样长度的测量段称为评定长度。当参数代号后未注明时,评定长度默认为5 个取样长度,否则应注明个数。例如:Rz0.4、Ra30.8、Rz13.2分别表示评定长度为5个(默认)、3个、1个取样长度。 (2)极限值判断规则 完工零件的表面按检验规范测得轮廓参数值后,需与图样上给定的极限比较,以判定其是否合格。极限值判断规则有两种: ① 16%规则运用本规则时,当被检表面测得的全部参数值中,超过极限值的个数不多于总个数的16%时,该表面是合格的。 ②最大规则运用本规则时,被检的整个表面上测得的参数值一个也不应超过给定的极限值。 16%规则是所有表面结构要求标注的默认规则。即当参数代号后未注写“max”字样时,均默认为应用16%规则(例如Ra0.8)。反之,则应用最大规则(例如Ramax0.8)。 3. 标注表面结构的图形符号 标注表面结构要求时的图形符号种类、名称、尺寸及其含义见表9-1。 表9-1 表面结构符号

相关主题
文本预览
相关文档 最新文档