当前位置:文档之家› 数学归纳法

数学归纳法

数学归纳法
数学归纳法

备课

时间

教学 课题 教时 计划 1 教学 课时 1 教学

目标 1.了解归纳法的意义,培养学生观察、归纳、发现的能力. 2.了解数学归纳法的原理,能以递推思想作指导,理解数学归纳法的操作步骤.

3.抽象思维和概括能力进一步得到提高.

重点难点

重点:借助具体实例了解数学归纳的基本思想,掌握它的基本步骤,运用它证明一

些与正整数n (n 取无限多个值)有关的数学命题。

难点:1、学生不易理解数学归纳的思想实质,具体表现在不了解第二个步骤的作

用,不易根据归纳假设作出证明;

2、运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。 教学过程

(一)创设情景

对于数列{an},已知11=a , a a a n

n

n +=+11(n=1,2,…), 通过对n=1,2,3,4前4项的归纳,猜想其通项公式为n a n 1= 。这个猜想是否正确需要证明。

一般来说,与正整数n 有关的命题,当n 比较小时可以逐个验证,但当n 较大时,验证就很麻烦。特别是n 可取所有正整数时逐一验证是不可能的。因此,我们需要寻求一种方法:通过有限个步骤的推理,证明n 取所有正整数都成立。

(二)研探新知

1、了解多米诺骨牌游戏。

可以看出,只要满足以下两条件,所有多米诺骨牌就都能倒下:

(1)第一块骨牌倒下;

(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。

思考:你认为条件(2)的作用是什么?

可以看出,条件(2)事实上给出了一个递推关系:

当第k 块倒下时,相邻的第k+1块也倒下。

这样,要使所有的骨牌全部倒下,只要保证(1)(2)成立。

2、用多米诺骨牌原理解决数学问题。

思考:你认为证明数列的通过公式是n a n 1= 这个猜想与上述多米诺骨牌游戏有相似性吗?你能

类比多米诺骨牌游戏解决这个问题吗?

分析:

多米诺骨牌游戏原理

通项公式 n a n 1= 的证明方法 (1)第一块骨牌倒下。 (1)当n=1时a1=1,猜想成立

(2)若第k 块倒下时,则相邻的第k+1块也倒下。 (2)若当n=k 时猜想成立,即

k a k 1= ,则当n=k+1时猜想也成立,即

111+=+k a k 。

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

数学归纳法(1)

数学归纳法(1) 常州市第一中学高二数学备课组 【教学目标】 知识与技能: 理解数学归纳法的概念,掌握数学归纳法的步骤; 过程与方法: 经历观察、思考、分析、抽象、概括出数学归纳法的两个步骤, 初步形成归纳、猜想和发现的能力; 情感态度价值观:通过数学归纳法的学习初步形成严谨务实的科学态度和严谨的 数学思维品质与数学理性精神。 【教学重点】 理解数学归纳法的实质意义,掌握数学归纳法的证题步骤。 【教学难点】 运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推 关系。 【教后反思】 【教学过程】 一.创设情景 1. 摸球实验 已知盒子里面有5个兵乓球,如何证明盒子里面的球全是橙色? 2. 今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是得出:这所学校里的学生都是男同学。 象这种由一系列特殊事例得出一般结论的方法,我们把它叫做归纳法。 (1) 是完全归纳法,结论正确(2)是不完全归纳法,结论不一定正确。 问题:这些问题都与自然数有关,自然数有无限多个,我们无法对其一一验证,那么如何证明一个与自然数有关的命题呢?例如对于数列{}n a ,已知 111,1n n n a a a a +== +, 通过对n=1,2,3,4前4项的归纳,猜想其通项公式为1n a n = 。 这个猜想是否正确,如何证明?数学中常用数学归纳法证明。 二.探索新知 1、了解多米诺骨牌游戏,可得,只要满足以下两条件,所有多米诺骨牌就都能倒下: (1)第一块骨牌倒下; (2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。 思考:条件(1)(2)的作用是什么? 2、用多米诺骨牌原理解决数学问题。 思考:你能类比多米诺骨牌游戏解决这个问题吗?

数学归纳法

《数学归纳法》说课稿 各位专家、评委:大家好! 我是陇西一中的数学教师王耀文,很高兴能有机会参加这次说课活动. 我要讲的课题是《数学归纳法》(第一课时),用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本)数学第三册(选修Ⅱ),本课是高中数学第三册第二章第一节. 下面我就从教材分析、教学目标的确定、教学方法的选择、学法的指导、教学过程的设计和板书设计六个方面进行说明. 1教材分析 1.1教材的地位和作用 数学中许多与正整数有关的命题,用不完全归纳法证明是不可靠的,用完全归纳法证明又是不可能的,为解决这一“有限”与“无限”的矛盾,数学归纳法应运而生.所以数学归纳法是一种十分严谨而又重要的方法,也是历年高考中比较常考的证明方法. 它可以证明某些与正整数有关且具有递推性的数学命题,也可以通过“有限”来解决某些“无限”问题. 1.2重点、难点 重点是如何在较短的时间内,使学生理解“归纳法”和“数学归纳法”的实质,接受数学归纳法的证题思路. 难点有两个,一是学生初步对数学归纳法原理的理解;二是数学归纳法的两个步骤及其作用. 2教材目标的确定

2.1知识目标使学生了解数学归纳法的发现过程,理解数学归纳法原理;理解数学归纳法的操作步骤;能用数学归纳法证明一些简单的数学命题并能正确书写证明步骤. 2.2能力目标培养学生观察、猜想、归纳、发现问题的能力;培养学生数学思维能力、推理论证能力以及分析问题和解决问题的能力. 2.3情感目标使学生在发现数学归纳法的过程中,体验数学研究的过程和发现的乐趣,激发学生学习数学的兴趣,使学生经历数学思维过程,获得成功的体验. 3教学方法的选择 本节课我主要采用“…发现?的过程教学”和“启发探究式”的教学方法,根据教材特点和学生实际在教学中体现两点: ⑴由学生的特点确定启发探究和感性体验的学习方法. 由于本节课安排在高三阶段,且为数学基础较好的理科学生的选修内容,考虑到学生的接受能力比较强这一重要因素,在教学中我通过创设情境,启发引导学生在观察、分析、归纳的基础上,自主探索,发现数学结论和规律,掌握数学方法,突出学生的主体地位. ⑵由教材特点确定以引导发现为教学主线. 根据本节课的特点,教学重点应该是方法的应用.但是我认为虽然数学归纳法的操作步骤简单、明确,教师却不能把教学过程简单的当作方法的灌输,技能的操练.对方法作简单的灌输,学生必将半信半疑,兴趣不大.为此,我在教学中通过实例给学生创造条件,让学生直观感受到数学归纳法的实质,再在教师的引导下发现理解数学归纳法,揭示数学归纳法的实质. 对于数学归纳法的应用,只要求学生在理解原理的基础上掌握应用原理证题的步骤,学会证明一些简单的问题. 4学法的指导

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

最新数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

(完整版)数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立, ②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果

① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立; (4)双重归纳法 设 是一个含有两上独立自然数 的命题. ① 与 对任意自然数 成立; ②若由 和 成立,能推出 成立; 根据(1)、(2)可断定, 对一切自然数 均成立. 3.应用数学归纳法的技巧 (1)起点前移:有些命题对一切大于等于1的正整数正整数n 都成立,但命题本身对0=n 也成立,而且验证起来比验证1=n 时容易,

高中数学数学归纳法(1)苏教版选修2-2

数学归纳法(1) 一、教学目标: 1.了解数学归纳法的原理,理解数学归纳法的一般步骤。 2.掌握数学归纳法证明问题的方法。 3.能用数学归纳法证明一些简单的数学命题。 二、教学重点:掌握数学归纳法的原理及证明问题的方法。 难点:能用数学归纳法证明一些简单的数学命题。 三、教学过程: 【创设情境】 1.华罗庚的“摸球实验”。 2.“多米诺骨牌实验”。 问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法? 数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。 【探索研究】 1.数学归纳法的本质: 无穷的归纳→有限的演绎(递推关系) 2.数学归纳法公理: (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 【例题评析】 例1:以知数列{a n }的公差为d,求证: 1 (1) n a a n d =+- 说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。 ②数学归纳法证明的基本形式; (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 EX: 1.判断下列推证是否正确。 P88 2,3 2. 用数学归纳法证明 2 )1 ( )1 3( 10 3 7 2 4 1+ = + + + ? + ? + ?n n n n K 例2:用数学归纳法证明 111 1 1231 n n n ++???≥ +++ (n∈N,n≥2) 说明:注意从n=k到n=k+1时,添加项的变化。

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

高中数学归纳法证明题

高中数学归纳法证明题 高中数学归纳法证明题 1/2+2/2^2+3/2^3+......+n/2^n=2-n+2/2^n. 1/2+2/2^2+3/2^3+......+n/2^n=2-(n+2)/2^n. 1、当n=1时候, 左边=1/2; 右边=2-3/2=1/2 左边=右边,成立。 2、设n=k时候,有: 1/2+2/2^2+3/2^3+......+k/2^k=2-(k+2)/2^k成立, 则当n=k+1时候:有: 1/2+2/2^2+3/2^3+.....+k/2^k+(k+1)/2^(k+1) =2-(k+2)/2^k+(k+1)/2^(k+1) =2-[2(k+2)-(k+1)]/2^(k+1) =2-(k+3)/2^(k+1) =2-[(k+1)+2]/2^(k+1) 我觉得不是所有的猜想都非要用数学归纳法. 比如a1=2,a(n+1)/an=2,这显然是个等比数列 如果我直接猜想an=2^n,代入检验正确,而且对所有的n都成立,这时候干嘛还用数学归纳法啊.可是考试如果直接这样猜想是不得分的,必须要用数学归纳法证明.

结果带入递推公式验证是对n属于正整数成立. 用数学归纳法,无论n=1,还是n=k的假设,n=k+1都需要带入递推公式验证,不是多此一举吗.我又不是一个一个验证,是对n这个变量 进行验证,已经对n属于正整数成立了.怎么说就是错误的. 这说明你一眼能看出答案,是个本领。 然而,考试是要有过程的,这个本领属于你自己,不属于其他人,比如你是股票牛人,直接看出哪支会涨哪支会跌,但是不说出为什么,恐怕也不会令人信服。 比如你的问题,你猜想之后,代入检验,验证成功说明假设正确,这是个极端错误的数学问题,请记住:不是验证了一组答案通过, 就说明答案是唯一的!比如x+y=2.我们都知道这是由无数组解的方程。但是我猜想x=y=1,验证成功,于是得到答案,你觉得对吗?所 以你的证明方法是严格错误的! 说说你的这道题,最简单的一道数列题,当然可以一下看出答案,而且你的答案是正确的。但是证明起来就不是那么容易了,答案不 是看出来的,是算出来的。你的解法就是告诉大家,所有的答案都 是看出来,然后代入证明的。假设看不出来怎么办?那就无所适从, 永远也解不出来了!这就是你的做法带来的.答案,你想想呢?你的这 种做法有什么值得推广的? OK,了解! 数学归纳法使被证明了的,证明数学猜想的严密方法,这是毋庸置疑的。在n=1时成立;假设n=k成立,则n=k+1成立。这两个结论 确保了n属于N时成立,这是严密的。 你的例题太简单,直接用等比数列的定义就可以得到答案(首项 和公比均已知),不能说明你的证明方法有误。我的本意是:任何一 种证明方法,其本身是需要严格证明的,数学归纳法是经过严格证 明的;而你的证明方法:猜想带入条件,满足条件即得到猜想正确的 结论。未经证明,(即使它很严密,我说即使)它不被别人认可。事 实上,你的证明方法(猜想带入所有条件均成立)只能得到“必要”

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

《用数学归纳法证明不等式》参考教(学)案

课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512, …… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n<b n,即n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关 系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│ 当n=k+1时,

数学归纳法证明整除

数学归纳法证明整除 数学归纳法证明整除数学归纳法 当n=1 的时候 上面的式子 = 3^4-8-9=64 成立 假设当n=k 的时候 3^(2k+2)-8k-9能够被64整除 当n=k+1 式子= 3^(2k+4)-8k-17 =9[3^(2k+2) -8k-9] +64k+64 因为 3^(2k+2)-8k-9能够被64整除 ∴ 9[3^(2k+2) -8k-9] +64k+64 能够被64整除 n=k+1 时,成立 根据上面的由数学归纳法 3的2n+2次方-8n-9(n属于N*)能被64整除。 2 当n=1时 3^4-8-9=81-17=64 能被4整除·····(特殊性) 设当n=k时,仍然成立。 当n=k+1时,·····················(一般性) 3^(2(k+1)+2)-8(k+1)-9=3^(2K+2+2)-8K-17

=9*3^(2K+2)-72K+64K-81+64=9(3^(2k+2)-8k-9)+64k+64 因为3^(2k+2)-8k-9能被64整除 不用写了吧·· 正确请采纳 数学归纳法 当n=1 的时候 上面的式子 = 3^4-8-9=64 成立 假设当n=k (k>=1) 3^(2k+2)-8k-9能够被64整除 当n=k+1(k>=1) 式子= 3^(2k+4)-8k-17 =9[3^(2k+2) -8k-9] +64k+64 由9[3^(2k+2) -8k-9] +64k+64-(3^(2k+2)-8k-9)可以被64整出n=k+1 时,成立 根据上面的由数学归纳法 3的2n+2次方-8n-9(n属于N*)能被64整 3.证明:对于任意自然数n (3n+1)*7^n-1能被9整除 数学归纳法 (1)当n=1时 (3*1+1)*7-1=27能被9整除 (2)假设当n=k时 (3k+1)*7^k-1能被9整除 则当n=k+1时 [3(k+1)+1]*7^(k+1)-1=[21k+28]*7^k-1

相关主题
文本预览
相关文档 最新文档