当前位置:文档之家› 头盔显示器光学检测系统-液晶与显示

头盔显示器光学检测系统-液晶与显示

头盔显示器光学检测系统-液晶与显示
头盔显示器光学检测系统-液晶与显示

光学系统设计

光学系统设计(五) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.对于密接双薄透镜系统,要消除二级光谱,两透镜介质应满足 ( )。 A.相对色散相同,阿贝常数相差较小 B.相对色散相同,阿贝常数相差较大 C.相对色散相差较大,阿贝常数相同 D.相对色散相差较小,阿贝常数相同 2.对于球面反射镜,其初级球差表达公式为 ( )。 A.?δ2h 81L =' B. ?δ2h 81L -=' C. ?δ2h 41 L =' D. ?δ2 h 41 L -=' 3.下列光学系统中属于大视场大孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 4.场曲之差称为 ( )。 A.球差 B. 彗差 C. 像散 D. 色差 5.初级球差与视场无关,与孔径的平方成 ( )。 A.正比关系 B.反比关系 C.倒数关系 D.相反数关系 6.下面各像差中能在像面上产生彩色弥散斑的像差有( )。 A.球差 B.场曲 C.畸变 D.倍率色差 7.不会影响成像清晰度的像差是 ( )。 A.二级光谱 B.彗差 C.畸变 D.像散 8.下列光学系统中属于大视场小孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 9.正弦差属于小视场的 ( )。 A.球差 B. 彗差 C. 畸变 D. 色差 10.初级子午彗差和初级弧矢彗差之间的比值为 ( )。 :1 :1 C.5:1 :1 11.光阑与相接触的薄透镜重合时,能够自动校正 ( )。 A.畸变 B.场曲 C.球差 D.二级光谱 12.在子午像差特性曲线中,坐标中心为z B ',如0B '位于该点左侧,则畸变值为 ( )。 A.正值 B.负值 C.零 D.无法判断 13.厚透镜之所以在校正场曲方面有着较为重要的应用,是因为 ( )。 A.通过改变厚度保持场曲为零 B.通过两面曲率调节保持光焦度不变 C.通过改变厚度保持光焦度不变 D.通过两面曲率调节保持场曲为0 14.正畸变又称 ( )。 A.桶形畸变 B.锥形畸变 C.枕形畸变 D.梯形畸变 15.按照瑞利判断,显微镜的分辨率公式为 ( )。 A.NA 5.0λσ= B. NA 61 .0λ σ= C.D 014' '=? D. D 012' '=? 16.与弧矢平面相互垂直的平面叫作 ( )。 A.子午平面 B.高斯像面 C.离焦平面 D.主平面 17.下列软件中,如今较为常用的光学设计软件是 ( )。 软件 软件 软件 软件 18.光学传递函数的横坐标是 ( )。 A.波长数 B.线对数/毫米 C.传递函数值 D.长度单位 19.星点法检验光学系统成像质量的缺陷是 ( )。

optilia HD高清光学检测系统

Optilia W30x-HD全高清1080p 照相显微镜 W30x-HD拥有功能强大的30倍光学变焦和超高的放大倍率。因此对于一些需要近距离监测的任务来说它大有益处。它也将自动把Optilia 带入新的应用领域。并且,Optilia 杰出的全高清图片质量以及其精准自动对焦,对于那些熟悉当前产品的操作者而言也是极其吸引人的通。过采用改进过的快速自动对焦技术Optilia 享有盛誉的光学元件,故与其他的是视频系统相比,它用于检测物件的时间将会大大减少。集成的激光指示器是定位监测区域的极佳指导器。通过全高清的视频输出组件,相机可以轻松连接到与Full-HD或者HD-ready 显示器或者是相应大小的电视机。设备可以自动设置图像属性,比如亮度,对比度,焦距,锐度,色彩以及其他参数,但同时操作者也可以通过软件进行手动控制。通过Optilia 的PIC高速图像采集卡和Optilia软件,可将系统连接至计算机,进行记录,测量和获取数字图像。W30x-HD 采用优质元件和防静电的保护外壳制造而成。仪器按照电子工业制造标准设计,图像质量高,设备灵活,效率高,成本低。 购买该产品 OP-209 003-E,包含以下组件: Full HD Camera, 1080P with 30x zoom, laser pointer, 245mm WD Camera Control Unit with Joystick Power Supply 5/12V, 30W with MiniDin connector User’s manual

Boom stand Optilia W30x-HD FreeSight 照相显微镜 Freesight 版本拥有500mm 的超长工作距离,配有一个特殊设计的工作台和支架,您既可以在超高放大倍率下观测,也可以同时拥有一个整洁的工作空间。与其他视频系统相比,Optilia 配置了急速变焦系和优质的光学配件,大大缩短了您的检测时间。集成的激光指示器是定位监测区域的极佳指导器。通过全高清的视频输出组件,相机可以轻松连接到与Full-HD或者HD-ready 显示器或者是相应大小的电视机。设备可以自动设置图像属性,比如亮度,对比度,焦距,锐度,色彩以及其他参数,同时操作者也可以通过软件进行手动操控。通过Optilia 的PIC高速图像采集卡和Optilia软件,可将系统连接至计算机,进行记录,测量和获取数字图像。W30x-HD FreeSight 采用优质元件和防静电的保护外壳制造而成。与其他的生产线上使用的产品一样,其外壳同样可以适用于工厂和电子应用领域。且仪器按照电子工业制造标准设计,图像质量高,设备灵活,效率高,成本低。 当您购买该产品 OP-209 016,包含以下组件: Full HD Camera, 1080P with 30x zoom, laser pointer, 500mm WD Remote camera control PC software package for HD cameras Bench-top Single-rod Boom Stand (Table Clamp mount OP-006 662 on request)

(完整版)光学系统设计(一)答案

光学系统设计(一) 参考答案及评分标准 20 分) 二、填空题(本大题14小题。每空1分,共20 分) 21.球心处、顶点处、齐明点处(r n n n L '+=) 22.%100y y y q z ?''-'=' 23.0 24.球差 25.冕牌、火石 26.?ννν?2111-=、?ννν?2 122--= 27.两面的公共球心处、两面的公共球心处 28.阿贝常数、C F D D n n 1n --= ν 29.畸变 30.圆 31.0 32.二级光谱 33.f 00052.0L FCD '='? 34.EFFL 三、名词解释(本大题共5 小题。每小题2 分,共 10 分) 35.像差:实际光学系统所成的像和近轴区所成的像之间的差异称为像差。 评分标准:主要意思正确得2分。 36.子午场曲:某一视场的子午像点相对于高斯像面的距离称为子午像面弯曲,简称子午场曲。 评分标准:答对主要意思得2分。 37.二级光谱:如果光学系统已对两种色光校正了位置色差,这两种色光的公共像点相对于第三种色光的像点位置仍有差异,该差异称为二级光谱。 评分标准:答对主要意思得2分。 38.色球差:F 光的球差和C 光的球差之差,称为色球差,该差值也等于边缘光和近轴光色差之差。 评分标准:答对得2分。 39.渐晕:轴外点成像光束的宽度较轴上点成像光束的宽度要小,造成像平面边缘部分照度要比像平面中心部分照度低的现象,称为渐晕。 评分标准:答对主要意思得2分。

四、简答题(本大题共 6 小题。每小题 5 分,共30 分) 40.一物体的峰-谷比(peak to valley )是λ23.0,问是否满足Rayleigh 条件? 答:满足Rayleigh 条件,因为根据Rayleigh 判断,实际波面和参考波面之间的最大波像差(峰谷比)不超过0.25λ时,此波面可看作是无缺陷的成像质量较好。 评分标准:答对主要意思得5分。 41.在七种几何像差中,仅与孔径有关的像差有哪些?仅与视场有关的像差有哪些?与视场和孔径都有关系的又有哪些? 答:仅与孔径有关的像差有:球差、位置色差;仅与视场有关的像差有:像散、场曲、畸变、倍率色差;与视场和孔径都有关系的有:彗差 评分标准:第一问中每个答案正确得1分,第二问中每个答案正确得0.5分,第三问中每个答案正确得1分。 42.一物体置于折射球面的球心处,其像在哪?放大倍率多少?若物在球面顶点,其像又在何位置?放大倍率多少? 答:像分别在球心处和顶点处,放大倍率分别为n 1和1。 评分标准:两位置答对各得1分,第一个放大倍率答对得2分,第二个得1分。 43. 什么是焦深,若像面向前或向后离焦半倍焦深,引起的波像差多大? 答:(1)实际像点无论在高斯像点之前或之后'?0l 范围内,波像差都不会超过1/4 波长,所以把'02l 定义为焦深,即20u n l 2''='λ (2)引起的波像差为4/λ。 评分标准:第一问答对大意得3分,第二问答案正确得2分。 44. 近视眼应佩戴何种透镜加以矫正?为什么? 答:应佩戴凹透镜加以矫正,使光线经过水晶体后发散,重新汇聚到视网膜上。 评分标准:答对大意得5分。 45. 在对称式光学系统中,当1-=β时,哪几种初级像差可以得到自动校正?其它初级像差有何特性? 答:垂轴像差:彗差、畸变、倍率色差均为0。 轴向像差:球差、像散、场曲、位置色差均为半部系统相应像差的两倍。 评分标准:第一问每个答案正确得1分,共3分;第二问每个答案正确得0.5分,共2分。 五、计算题(每题10分,共20分) 46.设计一齐明透镜,第一面曲率半径95m m r 1-=,物点位于第一面曲率中心处,第二球面满足启明条件,若该透镜厚度5mm d =,折射率5.1n =,该透镜位于空气中,求 (1)该透镜第二面的曲率半径; (2)该启明透镜的垂轴放大率。 解: (1)根据题意得,物点发出光线经第一面后按直线传播,相对于第二面,其物距100m m 595l 2-=--=,根据齐明条件100mm r n n n l 22 222-='+=,可得

落点实时光学测量系统的设计与实现

落点实时光学测量系统的设计与实现 飞行器落点的测量是某部队一项重要的任务,落点测量是否及时准确将对飞行试验结果的判别、后续残骸的搜索等产生很大的影响。但受飞行试验落点区域条件限制和机动性要求,超声波、雷达或无线电等定位设备在本文中并不适合,简易的光学测量系统最适合本文的应用。 传统的落点光学测量主要依靠某型望远镜捕获目标,利用人工读数的方式获得角度值信息,再通过数传电台将各观测点的信息传输至计算中心,中心操作手再手工将角度信息录入计算软件,得出交会结果,最后进行结果复核计算。这种传统的方式存在时效低、人为误差大等缺点,需要构建更加自动化、精确度更高的落点实时光学测量系统。 本论文正式针对上述实际问题,将比较成熟的光电编码技术与易于操作的望远镜进行组合,增加微处理器控制电路及收发数据、交会处理的软件,使操作手确认捕获到目标后,能自动完成角度信息采集、传输、交会计算和向上级指挥所发送结果的全过程,提高了测量速度、效率和精度。本文的主要内容为:1.落点实时光学测量系统的关键技术研究。 介绍了该系统中的关键技术,两点前向交会方法、高斯投影、光电编码技术等,并通过推导计算得出一种基于最小二乘法的交会算法的优化方法。2.落点实时光学测量系统的需求分析。 基于落点测量的实际情况,对落点测量的环境、条件及主要流程进行了全面分析。对需要开发的落点实时光学测量系统的需求进行分析。 3.落点实时光学测量系统的设计。在需求分析的基础上,完成系统设计,主要包括体系架构、功能结构、网络拓扑等。

4.落点实时光学测量系统的实现。搭建系统环境,采购并接入光电编码器、数传电台等硬件,完成了数据通信、数据处理、交会计算和辅助决策等功能的实现。 在此基础上,通过模拟计算对优化算法进行了验证。5.落点实时光学测量系统的测试。 为确保系统有较高的可靠性,对系统进行相关测试,发现并解决系统中存在的问题。目前,该系统已实际应用,机动性强、受环境干扰小、性能稳定,实现了提高落点测量速度,减小人为差错的目标。

高灵敏度光学检测系统的制作技术

本技术公开了一种用于检测化学和生物分析物的高灵敏度光学系统,其包括容器、光导、分析物、激发光源、检测器、激发和发射滤光片以及导光组件。新颖的光学系统被固定在外壳中,并以外部连接或内部连接方式连接到设备,以进行数据输入、处理、显示、存储和通信。该光学系统可以以廉价的移动即时医疗方式对多种疾病进行临床水平的诊断。它可以是具有单个或一组光学结构的独立单元,也可以与其他检测系统例如移动显微镜结合使用成为定性和定量检测设备。它也可以在某些商业仪器中实施以提高灵敏度。此外,光学系统的尺寸可以大大减小,以形成高度集成的芯片实验室解决方案。 权利要求书 1.一种用于检测化学和生物分析物的光学系统,其包括容器、与容器分离的光导、在容器近端和/或在容器侧面的激发光源、在容器远端的检测器、激发和发射滤光片、透镜和沿激发与发射光路的其他光学组件。 2.根据权利要求1所述的光学系统,其中,所述光源是水银或氙弧灯、激光、LED和OLED 等,所述光源以单个光源或多个光源形式存在。 3.根据权利要求1所述的光学系统,其中,所述光导和容器:

由玻璃、石英、其他无机材料、聚合材料、金属或它们的组合材料制成;并且 是透明的、或部分不透明的、或部分被不透明材料覆盖;并且 是圆柱形、矩形或其他形状;并且 是实心的或空心的,或者全部或部分是其他结构。 4.根据权利要求1所述的光学系统,其中,所述分析物: 是容器与光导之间和/或在容器和光导表面上的吸收性或发射性材料;并且 是自吸收性的或发射性的,或者是有吸收性或发射性材料标记物的。 5.根据权利要求1所述的光学系统,其中,所述滤光片: 是吸收滤光片、干涉滤光片或衍射滤光片、或它们的组合;并且 是单个、数列或以多种形式存在。 6.根据权利要求1所述的光学系统,其中,所述检测器是光电二极管、CMOS、CCD、PMT 等。 7.根据权利要求1所述的光学系统,其中,所述光学系统包括分立的、部分集成的或高度集成的光学组件,所述光学组件是单个、数列或以多种形式存在。 8.根据权利要求1所述的光学系统,其中,所述光学系统: 通过连接器或无线通信被外部连接至设备,例如(移动)电话、平板电脑、计算机等,用于数据输入、处理、显示、存储和通信;或者

光学薄膜技术

光学薄膜概论 光学薄膜 光学薄膜泛指在光学器件或光电子元器件表面用物理化学等方法沉积的、利用光的干涉现象以改变其光学特性来产生增透、反射、分光、分色、带通或截止等光学现象的各类膜系。它可分为增透膜、高反膜、滤光膜、分光膜、偏振与消偏振膜等。光学薄膜的应用始于20世纪30年代。现代,光学薄膜已广泛用于光学和光电子技术领域,制造各种光学仪器。 光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。 光学薄膜的基本原理: 1.利用光线的干涉效应,当光线入射於不同折射系数物质所镀成的薄膜,产生某种特殊光学特性。 分类:光学薄膜就其所镀材料之不同,大体可分为金属膜和非金属膜。 a.金属膜:主要是作为反射镜和半反射镜用。在各种平面或曲面反射镜,或各式稜镜等,都可依所需镀上Al、Ag、Au、Cu等各种不同的材料。不同的材料在光谱上有不同的特性。AI的反射率在紫外光、可见光、近红外光有良好的反射率,是镀反射镜最常使用的材料之一。Ag膜在可见光和近红外光部份的反射率比AI膜更高,但因其易氧化而失去光泽,只能短暂的维持高反射率,所以只能用在内层反射用,或另加保护膜。 b.非金属膜:用途非常广泛,例如抗反射镜片.单一波长滤光片、长或短波长通过滤光片、热光镜、冷光镜、各种雷射镜片等,都是利用多种不同的非金属材料,蒸镀在研磨好之镜杯上,层数由单层到数十、百层不等,视需要的不同,而有不同的设计和方法。目前这些薄膜中被应用得最广泛,最商业化,也是一般人接触到最多的,就是抗反射膜。例如眼镜、照相机镜头、显微镜等等都是在镜片上镀抗反射膜。因为若是不加以抗反射无法得到清晰明亮的影像了,因此如何增加其透射光线就是一个非常重要的课题。 2.利用光波干涉原理,在镜片的表面镀上一层薄膜,厚度为1/4 波长的光学厚度,使光线不再只被玻璃—空气界面反射,而是空气—薄膜、薄膜—玻璃二个界面反射,因此产生干涉现象,可使反射光减少。若镀二层的抗反射膜,使反射率更低,但是镀一层或二层都有缺点:低反射率的波带不移宽,不能在可见光范围都达到低反射率。1961年Cox、Hass和 Thelen 三位首先发表以1/4一1/2一1/4波长光学厚度作三层抗反射膜可以得到宽波带低反射率的抗反射膜。多层抗反射膜除了宽波带的,也可做到窄波带的。也就是针对其一波长如氨氟雷射632.8nm波长,要求极高的透射,可使63Z.8nm这一波长透射率高达99.8%以上,用之於雷射仪器。但若需要对某一波长的光线有看极高的反射率需要用高低不同折射系数的材料反覆蒸镀数十层才可达到此效果。 光学薄膜的制造方式:热电阻式、电子枪式和溅射方式。最普通的方式为热电阻式,是将蒸镀材料在真空蒸镀机内置於电阻丝或片上,在高真空的情况下,加热使材料成为蒸气,直接镀於镜片上。由於有许多高熔点的材料,不易使用此种方式使之熔化、蒸镀。而以电子枪改进此缺点,其方法是以高压电子束直接打击材料,由於能量集中可以蒸镀高熔点的材料。另一方式为溅射方式,是以高压使惰性气体离子化,打击材料使之直接溅射至镜片,以此方式

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

光学元件外观缺陷检测系统

一、光学元件检测系统描述 本系统用于光学元件外观缺陷识别以及产品位置获取,系统采用进口高分辨率工业相机,可 以快速获取产品图像,通过图像识别、分析和计算,给出产品外观缺陷,给出产品坐标,并 输出相应检测结果信号,以便于设备对不合格产品的处理。 二、光学元件检测系统设计方案 台州振皓自动化科技有限公司基于机器视觉图像处理技术研发的光学元件外观缺陷检测系统,具有高精度、高速、多样品化的特点。系统主要模块有:触发模块、图像处理模块。根据用 户需求,样品移动到检测位,触发相机并及时由视觉系统输出检测信号,从而完成检测功能。为了达到高精度的检测要求,首先要产品来料的位置一致,达到的效果是位置准、稳定。 三、系统主要功能 1.高速识别检测功能2/s; 2.检测精度±0.08mm; 3.自动完成被检产品与相机获取图像同步; 4.自动完成光学元件的外观缺陷检测; 5.还可根据需要对不同颜色产品类型学习并检测; 6.对产品图像进行自动存储,可进行历史查询; 7.自动统计(良品、不良品、总数等); 8.异常时可提供声、光报警、并可控制设备停机; 9.系统有自学习功能,且学习过程操作简单。 四、项目系统检测界面 五、系统主要技术特点 1.操作界面清晰明了,简单易行,只需简单设定即可自动执行检测; 2.检测软件及算法完全自主开发,系统针对性强; 3.可灵活设置检测模板、检测范围; 4.可选择局部检测功能,提高检测速度; 5.专业化光源设计,成像清晰均匀,确保测量任务完成; 6.支持多种型号产品的检测、具备产品在线自动检测等功能; 7.安装简单、结果紧凑,易于操作、维护和扩充; 8.可靠性高,运行稳定,适合各种现场运行条件。

光学系统设计作业

显微物镜光学参数要求为:β=2?,NA =0.1,共轭距离为195mm 。 1)根据几何光学计算相应参数; 2)运用初级像差理论进行光学系统初始结构计算; 3)使用光学设计软件对初始结构进行优化,要求视场角o 5±; 4)根据系统的特点列出优化后结构的主要像差分析; 5)计算优化后结构的二级光谱色差。 一、显微物镜的基本参数计算 为有效控制显微镜的共轭距离,显微镜设计时,一般总是逆光路设计,即按1/β进行设计。该显微物镜视场小,孔径不大,只需要校正球差、正弦差和位置色差。因此,采用双胶合物镜。 '''' 1 2 195111l l l l l l f β==- -=-= 解,得 ''6513043.33l l f ==-= 正向光路 根据 '' ' J nuy n u y == sin NA n u = 在近轴情况下 NA nu = ' 2y y β== 由此可求解 ''' 0.05NA n u == 由此可知逆向光路的数值孔径 综上,该显微物镜的基本参数为 NA 'f 'l l 0.05 43.33 65 130- 二、求解初始基本结构

1)确定基本像差参量 根据校正要求,令'0L δ=、'0SC =、' 0FC L ?=,即 0C S S S I ∏ I ===∑∑∑,即 43332220 00 z C S h P S h h P Jh W S h C φφφφI I ∏ I ===+===∑∑∑ 解,得 0P W C I === 将其规化到无穷远 11sin 0.1NA n u ==,11n = 则 11sin 0.1/2u U β=?=-,11 6.5h l u mm =?= 规化孔径角为 110.1 20.3333071 6.543.33 u u h φ-== =-? 由公式 () ()() 21141522P P W u W W u μμ∞∞ =++++=++可求得规化后的基本像差参量 代入可得 0.36560.8832 P W ∞∞ ==- 2)选择玻璃组合 取冕牌玻璃在前 得 ( ) 2 00.850.1 0.155792P P W ∞ ∞ =-+=- 根据0P 和C I ,查表选取相近的玻璃组合为BaK7-ZF3,其参数为 Bak7:56,5688.111==v n ZF3:5.29,7172.122==v n 0010.11520, 4.295252, 2.113207P Q ?=-=-= 2.397505A =, 1.698752K = 3)求形状系数Q

光学投影层析三维成像测量实验系统的设计概述

光学投影层析三维成像测量实验系统的设计

摘要 光学投影式三维轮廓测量在机器/机器人视觉、CAD/CAM以及医疗诊断等领域有重要的应用,这种测量方法具有非接触性、无破坏、数据获取速度快等优点,其测量系统是宏观光学轮廓仪中最有发展前途的一种。 本课题拟采用激光光源(或普通卤素灯作为光源),应用光学系统、计算机控制,进行图像采集、图像处理,设计成像系统的断层图像重建及三维图像显示实验系统,并对其成像理论、成像质量及成像误差进行理论分析。该项目完成的光学投影层析三维成像测量实验系统适用于光学教学演示,其理论分析有利于学生积极的汲取现代光学发展的科研成果、思路和方法,从而潜移默化的培养学生的科学素养和创新能力。 关键词:光学投影层析,三维成像,CT技术

目录 1.引言 (1) 2.CT原理及重建算法 (2) 整个实验用到的理论相关联名称 2.1 CT技术原理 (3) 2.2 OPT原理简介 (4) 3.1 滤波反投影算法的快速实现 3. 光学投影层析三维成像测量实验系统 (5) 3.1实验系统的设计 (6) 3.2 光学投影层析三维成像测量实验系统 3.3 影响图像重建质量的因素分析 (7) 4. 结论 (11) 5. 参考文献 (13)

图表清单

1.引言 2002年4月英国科学家Sharpe在《Science》上首次报道了光学投影层析技术(optical projection tomography,OPT),这是一种新的三维显微成像技术,是显微技术和CT技术的结合。光学投影层析巧妙的利用了光学成像中“景深”的概念,实现了光学CT,和其它光学三维成像技术相比,结构简单、成本较低、成像速度快,在对成像分辨率要求不高的情况下,容易建立起光学投影层析三维成像测量系统。 光学三维成像代表着光学领域的前沿技术,这些技术涉及光学、计算机和图像处理等相关领域的知识,通过本项目--光学投影层析三维成像测量实验系统的设计,将是基础光学通向现代光学科技的不可多得的窗口之一,不仅显示基础知识的生命力,也反映基础知识的时代性,而且本项目实现所需成本较低、物理思想清晰,适用于物理实验教学,并适合作为大学生的综合设计性物理实验项目进行开发研究,同时对于激发大学生的学习兴趣、开阔大学生的视野和思路、培养综合科研素养均有很大的帮助。 2 CT技术原理及重建算法 2.1 CT技术原理 CT(计算机断层成像,mography ComputerTo的缩写)技术的研究自20世纪50至70年代在美国和英国发起,美国科学家A.M. Cormark和英国科学家G. N. Hounsfield在研究核物理、核医学等学科时发明的,他们因此共同获得1979年的诺贝尔医学奖。第一代供临床应用的CT设备自1971年问世以来,随着电子技术的不断发展,CT技术不断改进,诸如螺旋式CT机、电子束扫描机等新型设备逐渐被医疗机构普遍采用。除此之外,CT技术还在工业无损探测、资源勘探、生态监测等领域也得到了广泛的应用。 与传统的X射线成像不同,CT有自己独特的成像特点。下面以一个一般的图示来说明。 如图1所示,假设有一个半透明状物体,如琼脂等,在其内部嵌入5个不同透明度的球,如果按照图1中(a)所示那样单方向地观察,因为其中有2个球被前面的1个球挡住,我们会误解为只有3个球,尽管重叠球的透明度比较低,但我们仍无法确定球的数目,更不可能知道每个球的透明度。而如果按照图1(b)

液晶显示屏背光源模组表面缺陷自动光学检测系统设计

液晶显示屏背光源模组表面缺陷自动光学检测系统设计 发表时间:2019-06-17T08:46:59.063Z 来源:《建筑模拟》2019年第16期作者:范明生 [导读] 在当今的科学技术不断发展以及社会经济水平不断提升的时代之中,液晶显示器已经在电视、电脑以及手机等的众多电子产品之中得到了广泛的应用和全面的普及。所以,光学检测技术也得到了进一步的发展。 范明生 深圳秋田微电子股份有限公司深圳龙岗 518000 摘要:在当今的科学技术不断发展以及社会经济水平不断提升的时代之中,液晶显示器已经在电视、电脑以及手机等的众多电子产品之中得到了广泛的应用和全面的普及。所以,光学检测技术也得到了进一步的发展。本文研究了一种自动的光学检测系统的设计,这种光学系统可以对液晶显示品的背光源模组表面存在的缺陷进行自动的检测。 关键词:液晶显示屏;背光源模组;表面缺陷;自动光学检测 引言:在液晶显示屏的生产过程中,原料方面的原因或者是技术方面的原因都有可能导致其背光源模组的表面产生缺陷,由于这些缺陷的存在,液晶显示屏的使用性能将会受到十分严重的不利影响。因此,为了让生产的成本得到有效降低,让液晶显示屏的生产成品率得到有效的提升,就应该在生产的过程之中,从宏观方面以及微观方面对液晶显示屏的背光源模组之中的各个光学膜片进行自动的检测。因此,自动光学检测系统对于液晶显示屏质量的保障有着至关重要的作用。下图就是液晶显示屏背光源模组的自动光学检测系统的设计简图: 一、表面缺陷的自动光学检测技术简介 在对液晶显示屏背光源模组表面的缺陷进行检测之中,自动光学检测技术发挥着十分显著的作用,在这一技术之中,不仅将光学的传感技术加以合理应用,同时也将信号的处理技术以及运动的控制技术等实现了有效的集成与应用,在工业生产之中可以实现识别、检测、测量以及引导等的诸多任务。就当今的工业生产而言,光学自动检测技术已经得到了相当广泛的应用,通过分辨率很高、灵敏度很强的成相技术,对检测的目标图形进行有效获取,然后通过快速的图形识别以及图像处理等的算法,在图像之中实现对目标方向、位置、尺寸以及所存在的缺陷等这些信息的获取,这样就实现了对目标产品的有效检测,对装配线上的目标进行有效的识别以及两阿红的鉴定,对目标进行准确的定位,对装配机制起到良好的引导作用。 二、对自动上料机构的设计 1、将一个负责监视的相机放在传输带(1)工位上,在完成了对模组的组装之后,就会将已经组装好的模组传输到(1)工位上,然后,负责监视的相机就可以对这个有待检测的模组图片进行拾取,然后就可以对其在(1)工位上的位置及其姿态方面的信息来实现有效的计算,同时会给后续的上料以及检测的系统发送工作同步的指令。 2、当负责监视的相机将同步指令发给检测系统之后,这个用电动缸以及气动缸所组成的专门负责送料的系统就会把正处在(1)工位上的模组给吸起来,然后,气动滑台会带着模组向(2)工位进行运送。在这一动作发生以前,首先应该计算出负责监视的相机在(1)工位上面所获取到图片之中的位置信息以及姿态信息,用对角度的位置负责校正的气缸来初步校正模组的空间角度。当把模组送到了(2)工位以后,四个气动的滑缸将会在四个不同的方向一起移动到中间来,进而有效校正模组的位置,这时候,模组的下面也会有一个相机,对模组进行及时的成相,通过这种方法就可以识别出将要进行测量的模组的编码序号,以便进行返修信息的获取。 3、当(1)工位上的吸盘对模组进行抓取的时候,右面吸盘就会在(2)工位上吸起校正完的模组,经过气滑台的作用,把模组送到(3)工位进行检测。 在这三步完成之后,一道上料的工序就已经完成。 三、对检测机构的设计 在这一系统的检测机构之中,主要的工位有探测上料位置的工位、检测模组画面的工位、进行间隙性转动的转盘、检测模组异常情况的工位以及检测模组外观情况的工位。以下是其工作的原理: 自动送料的机构会将模组传到转轮的(3)工位上,然后,转盘会受到系统的控制,并且把模组传送到转轮的(4)工位上。在转轮的(4)工位上也进行了相机的设置,通过这个相机可以确定模组的位置,还可以检测LED等的工作状况,同时负责向主控计算机传递检测的信息。如果检测发现所有元件都是正常的,就会按照之前预定的检测方案对进行后续的检测,如果检测过程中发现存在异常,那么在后续的检测过程中,就不要再花费时间来检测这个模组,可以直接把这个模组传输给(9)工位,这时候,分选机构就会按照不良品来抓取这个模组,把这个模组传送到不良品的传输带上。 2、在被检测的模组传送到了转轮的(5)到(8)工位之后,缺陷扫描以及成相系统就会扫描和检测缺陷的画面。在对模组的缺陷进行

光学设计作业答案Word版

现代光学设计作业 学号:2220110114 姓名:田训卿

一、光学系统像质评价方法 (2) 1.1 几何像差 (2) 1.1.1 光学系统的色差 (3) 1.1.2 轴上像点的单色像差─球差 (4) 1.1.3 轴外像点的单色像差 (5) 1.1.4 正弦差、像散、畸变 (7) 1.2 垂直像差 (7) 二、光学自动设计原理9 2.1 阻尼最小二乘法光学自动设计程序 (9) 2.2 适应法光学自动设计程序 (11) 三、ZEMAX光学设计.13 3.1 望远镜物镜设计 (13) 3.2 目镜设计 (17) 四、照相物镜设计 (22) 五、变焦系统设计 (26)

一、光学系统像质评价方法 所谓像差就是光学系统所成的实际像和理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在光学系统成像质量优劣的问题,从不同的角度出发会得出不同的像质评价指标。 (1)光学系统实际制造完成后对其进行实际测量 ?星点检验 ?分辨率检验 (2)设计阶段的评价方法 ?几何光学方法:几何像差、波像差、点列图、几何光学传递函数 ?物理光学方法:点扩散函数、相对中心光强、物理光学传递函数 下面就几种典型的评价方法进行说明。 1.1 几何像差 几何像差的分类如图1-1所示。 图1-1 几何像差的分类

1.1.1 光学系统的色差 光波实际上是波长为400~760nm 的电磁波。光学系统中的介质对不同波长光的折射率不同的。如图1-2,薄透镜的焦距公式为 ()'121111n f r r ??=-- ??? (1-1) 因为折射率n 随波长的不同而改变,因此焦距也要随着波长的不同而改变, 这样,当对无限远的轴上物体成像时,不同颜色光线所成像的位置也就不同。我们把不同颜色光线理想像点位置之差称为近轴位置色差,通常用C 和F 两种波长光线的理想像平面间的距离来表示近轴位置色差,也成为近轴轴向色差。若l ′F 和l ′c 分别表示F 与C 两种波长光线的近轴像距,则近轴轴向色差为 '''FC F C l l l ?=- (1-2) 图1-2 单透镜对无限远轴上物点白光成像 当焦距'f 随波长改变时,像高'y 也随之改变,不同颜色光线所成的像高也不 一样。这种像的大小的差异称为垂轴色差,它代表不同颜色光线的主光线和同一基准像面交点高度(即实际像高)之差。通常这个基准像面选定为中心波长的理 想像平面。若'ZF y 和'ZC y 分别表示F 和C 两种波长光线的主光线在D 光理想像平面 上的交点高度,则垂轴色差为 '''FC ZF ZC y y y ?=- (1-3)

光学系统设计(四)答案

光学系统设计(四) 参考答案及评分标准 20 分) 二、填空题(本大题11小题。每空1分,共20 分) 21.彗差、像散、畸变 22.圆、彗星 23. ∑' '- ='I 2 S u n 21L δ 24.细光束像散 25.位置色差、倍率色差 26.视场、孔径 27.-20mm 、-13.26mm 或-13.257mm 、-33.36mm 或-33.3586mm 28.2 12 2 1 r r d n )1n ()r 1r 1)( 1n (-+ --=? 29.齐明透镜、球差 30.边缘、0.707 31.位置色差 三、名词解释(本大题共5 小题。每小题2 分,共 10 分) 32.调制传递函数:由于光学系统像差及衍射等原因,会造成像的对比度低于物的对比度。将像的对比度与物的对比度的比值,称之为调制传递函数。 评分标准:答对主要意思得2分。 33.赛得和数:赛得推导出仅有五种独立的初级像差,即以和数∑I S 、∑II S 、 ∑III S 、∑IV S 、∑V S 分别表示初级球差、初级彗差、初级像散、初级场曲、 初级畸变,统称为赛得和数。 评分标准:答对主要意思得2分。 34.出瞳距:光学系统最后一个面顶点到系统出瞳之间的距离,称为出瞳距。 评分标准:主要意思正确得2分。 35.像差容限:根据瑞利判断,当系统的最大波像差小于λ41 时,认为系统像质 是完善的,当系统满足这一要求时,各像差的最大允许值称为像差容限,又称像差允限。 评分标准:主要意思正确得2分。 36.复消色物镜:校正了系统二级光谱的物镜,称为复消色物镜。 评分标准:答对主要意思得2分。 四、简答题(本大题共 6 小题。每小题 5 分,共30 分) 37.简述瑞利判断和斯托列尔准则,二者有什么关系? 答:瑞利判断:实际波面与参考球面波之间的最大波像差不超过4/λ时,此波面

光学薄膜技术第三章--薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

自动光学检测系统(AOI)的原理及应用

自动光学检测系统(AOI)的原理及应用 摘要:主要介绍AOI的工作原理、技术模块以及其在PCB检测上的应用。 关键词:AOI,PCB,检测作用. 随着集成电路的迅猛发展及特殊电子元器件的不断出新,从而促使PCB技术发生相应的转变。由于PCB产品也向着高密度、超薄型、细间距,小元件的方向发展,这样导致线路板上的元器件组装密度要求提高,PCB板上的线宽、间距、焊盘越来越细,现已经达到微米级,相应板的层数也越来越多。因而传统的人工目视检测和在线飞针检测(ICT),已经不能适用当今制造技术发展的需要,自动光学检测系统(AOI)就迅速发展起来,并已经逐步替代传统的人工检测和在线飞针检测(ICT)。由于AOI在线检测的检测效率和准确率及检测精度远高于人工检测,现在许多大型的PCB生产厂家都使用AOI设备进行PCB在线检测,用于监视和保证生产过程的品质。现代AOI不仅用于PCB制造行业中,并扩展到SMT封装线、MCM基片组装线、玻璃模板、胶片模板的制造,多层陶瓷的封装,Wafer封装等半导体行业等领域。现在国际上比较有名的AOI生产厂家有以色列的Orbotech、Camtek,日本的Sony等. 1. PCB中常见缺陷及AOI的检测作用 PCB的制造过程中,内外层主要缺陷有短路、断路、缺口、突起、针孔、残铜、线宽不足、间距不足、图形丢失、漏钻孔、孔尺寸不符、孔破等。AOI 系统的作用就是检测PCB在生产过程中有可能出现的上述不良缺陷,通过控制并及时调整工艺,从而提高产品的品质与生产产能。通常AOI 系统检测系统用在内外层生产的关键工序控制点上,防止大批批量的报废。 AOI的系统通常有运动工作平台、电气控制、CCD成像系统、图像软件处理系统等四大模块组成。 3. AOI的系统工作原理 AOI的工作原理简单的说,就是标准图像与实际板层图像进行比较对比。核心就是CCD摄像系统抓取图片,然而通过图像处理卡与计算机处理软件系统等系列的算法处理后,与标准图像进行对比,发现缺陷,并生产文件,等待操作者确认或送检修站检修。工作原理如下图一 4. AOI的系统技术模块 AOI系统是集精密机械、自动控制、光学图像处理、软件系统等多学科的自动化设备。具体分为四大精密机械驱动模块、电气控制模块、图像处理模块(CCD、Len.及光源)、软件系统.

光学系统设计

光学系统设计报告 一.设计要求: 1.物镜的有效焦距f=4mm; 2.光谱范围:400nm-700nm,其中要求400nm,550nm,650nm复消色差; 3.放大倍率-40; 4.物方数值孔径NA=0.65; 5.工作距离不小于0.6mm; 6.后焦距146mm。 二.设计过程: 由于像方焦距设计起来会相对容易,因此把物镜倒过来进行设计,此时物方焦距变成了新光路的像方焦距。倒过来设计以后,系统的相关参数也相应变化,物镜的放大倍率变为-0.025,物方数值孔径变为0.01625,镜组的第一个面到物平面的距离为146mm。 通过网络及相关教材,我找到类似的结构,初始设计参数如下 系统2D结构图: (最右侧的镜片是盖玻片) 仿真结果:

传递函数图(FFT MTF) 色焦移曲线(Focal Shift)

相差图(Ray Fan) 点列图(Spot Diagram)System/Prescription Data File : E:\光学系统设计\光学系统设计.ZMX Title: Lens has no title.

Date : MON DEC 3 2012 LENS NOTES: GENERAL LENS DA TA: Surfaces : 12 Stop : 7 System Aperture : Object Space NA = 0.01625 Glass Catalogs : CHINA Ray Aiming : Off Apodization : Uniform, factor = 0.00000E+000 Effective Focal Length : 3.854214 (in air at system temperature and pressure) Effective Focal Length : 3.854214 (in image space) Back Focal Length : -0.182259 Total Track : 18.25 Image Space F/# : 0.7451534 Paraxial Working F/# : 0.7726446 Working F/# : 0.7759774 Image Space NA : 0.5432923 Object Space NA : 0.01625 Stop Radius : 1.756853 Paraxial Image Height : 0.02511427 Paraxial Magnification : -0.02511427 Entrance Pupil Diameter : 5.172376 Entrance Pupil Position : 13.12902 Exit Pupil Diameter : 3.520975 Exit Pupil Position : -2.805925 Field Type : Object height in Millimeters Maximum Field : 1 Primary Wave : 0.55 Lens Units : Millimeters Angular Magnification : 1.469018 Fields : 3 Field Type: Object height in Millimeters # X-Value Y-Value Weight 1 0.000000 0.000000 1.000000 2 0.000000 1.000000 1.000000 3 0.000000 1.000000 1.000000 Vignetting Factors # VDX VDY VCX VCY VAN 1 0.000000 0.000000 0.000000 0.000000 0.000000 2 0.000000 0.000000 0.000000 0.000000 0.000000

相关主题
文本预览
相关文档 最新文档