当前位置:文档之家› 动车组车轮踏面外形改进性设计

动车组车轮踏面外形改进性设计

动车组车轮踏面外形改进性设计
动车组车轮踏面外形改进性设计

高速动车组制动系统的分析研究

高速动车组制动系统的分析研究 发表时间:2018-08-21T16:39:22.757Z 来源:《基层建设》2018年第20期作者:王艳平1 麻亮2 [导读] 摘要:近年来,国内高速动车组得到了快速发展,制动技术吸收了国内外高速列车制动技术的先进经验,并进行了自主创新,技术水平得到了长足的进步,完成了时速250公里速度级、时速350公里速度级以及更高速度试验列车制动系统的匹配和应用,为高速动车组提供了安全、可靠、舒适和节能环保的制动系统。 包头车辆段呼和浩特动车所内蒙古呼和浩特市 010010摘要:近年来,国内高速动车组得到了快速发展,制动技术吸收了国内外高速列车制动技术的先进经验,并进行了自主创新,技术水平得到了长足的进步,完成了时速250公里速度级、时速350公里速度级以及更高速度试验列车制动系统的匹配和应用,为高速动车组提供了安全、可靠、舒适和节能环保的制动系统。本文就是针对高速动车制动系统进行研究和探讨,并提出新的技术发展方向。 关键词:高速动车组;制动系统;概述;发展 1制动方式概述动车组制动系统按照预设的减速度控制动车组减速或停车,按照制动方式一般分为粘着制动和非粘着制动。粘着制动即为依靠轮轨间的相互摩擦作用产生列车所需的制动力,如通过制动缸产生的空气制动和由牵引电机产生的电制动;非粘着制动即为通过利用外阻力作用在列车上,使列车产生制动力而停车,如风阻制动、磁轨制动和涡流制动等。粘着制动为国内外高速动车组主要的制动力来源,非粘着制动一般作为辅助制动方式,在高速工况下提供所需的制动力。本文以高速动车组常用的粘着制动为基础,对制动系统技术进行讨论。采用粘着制动方式的制动系统一般由电制动系统和空气制动系统两大部分组成,制动时采用复合制动方式,即电制动并用电气指令式空气制动。列车制动时,电制动优先,当电制动力不足时,由空气制动进行补足,有效降低了基础制动中制动盘和闸片的磨耗。 2高速动车组制动系统 2.1 制动模块设计 2.1.1电制动系统,动车组通过受电弓接收接触网的电力,经牵引变流器整流逆变后,提供给牵引电机,而在列车需要制动时,牵引变流器控制牵引电机切断电源,转变为发电机使用。制动时牵引电机将列车动能变为三相交流电,由牵引变流器将此三相交流转换为单相交流电,再由主变压器升压后回馈到电网,将列车运行的动能转变为电能. 2.1.2空气制动系统,空气制动系统主要由制动控制装置、风源装置和基础制动装置等组成,制动控制装置是制动系统的中枢,负责接收制动指令,进行制动控制,担负着制动力的计算和分配任务,风源装置为制动系统提供制动的源动力,高速动车组上通常由主空压机和辅助空压机构成,基础制动装置为制动系统的执行机构,将制动压力作用在车轮上,产生轮轨摩擦力,从而进行列车制动。电制动力的发挥及其与空气制动力的匹配都与制动控制系统的设计、元器件的品质密切相关。对于高速动车组来说,各种制动方式的匹配一定要处理好。 2.2 防滑控制设计 防滑控制是在制动力即将超过黏着力时(此时防滑器判断为“滑行”),降低制动力,使车轮继续处于滚动(或滚滑)状态,避免车轮滑行。防滑系统通过车辆速度传感器检测出此时的速度差和减速度,然后把检测到的信号传输到防滑控制器,通过微处理器的比较判断,发出防滑控制信号,从而迅速降低滑行车轮的制动缸压力,使滑行车轮所受的制动力快速降低。防滑控制系统主要由集成在制动控制单元中的防滑控制器、轴速度传感器及防滑排风阀组成的一个闭环控制结构。防滑控制器对轴速度脉冲信号进行处理,得到相应的轴速、轴加减速度和参考速度,对已经发生滑行的情况发出防滑控制指令,操纵防滑电磁阀,控制制动缸的压力。防滑系统能最佳利用有效黏着,以保证最短的制动距离。 2.3 安全防护设计 为了确保列车运行安全,尽管设置了准确可靠的地面信号装置,但在浓雾、风雪等气候条件下难以确认信号。另外,由于司机打磕睡或误看信号等原因,很有可能发生列车冲撞等重大事故。因此,在列车没按信号运行时需要报警引起司机注意,同时自动施行制动停车,以保证列车安全。高速列车的安全防护装置有以下几种:第一,自动停车装置,当列车接近停车信号机时,进行车内报警的装置,该装置报警后,如果司机仍不确认操作或没按规定减速度进行操纵时,便自动实施制动使列车自动停车;第二,自动控制装置,控制列车的运行速度低于地面速度信号的装置,例如,当信号速度下降时,ATC装置便自动实施制动以降低列车速度;第三,自动驾驶装置,根据多级速度信号及速度条件,对列车自动进行加速、减速的控制装置,保证列车正点运行和改善旅客的乘坐舒适度。同时,在防止列车冲撞和超速运行方面起到作用。 3.动车组新的制动技术发展方向 现阶段动车组采用的制动方式踏面制动、盘型制动、电阻制动、再生制动均属于黏着制动,制动力的产生的先决条件就是有接触黏着系数,随着旅客列车的提速,可利用的黏着资源越来越少,自然会考虑到采用越来越多的辅助紧急制动方式。现阶段的磁轨制动,轨道涡轮制动作为辅助紧急制动已经表现些有成效。 3.1.翼板制动技术 翼板制动要产生显著可靠地空气阻力,可在各车车体上,布置一定数量的空气阻力板,直接产生作用于车体的、与列车运动方向相反的外力。是一种不受轮轨间黏着限制的制动方式。翼板制动在中高速范围能够产生足够大的制动力,可以成为其主要的制动方式。同时其也带来以下问题: 3.1.1.由于处于高速扰流夏的翼板,会产生噪声和振动,必须加强车体的减震降噪设计; 3.1.2.因强大的纵向力直接作用于车体顶部,而不得不加强车体。 3.2.储能制动技术 在干线交通系统中,高速运行的列车要求启动加速度和制动减速度大。从能量相互转换的角度看,制动过程所消耗的能量相当可观,虽然这些再生能量的20%-80%被其它相邻列车吸收利用,剩余部分仍被车辆电阻以发热的方式消耗掉。在不具备再生反馈的条件时,如果能够把这些能量暂时储存,可以在随后的加速或启动过程加以利用,这也是能量再生的一种形式,对减低允许能耗、节约运输成本是非常有意义的。

CRH2型动车组车轮踏面镟修用刀片的经济性选择共5页word资料

CRH2型动车组车轮踏面镟修用刀片的经济性选择 轮对主要由车轮、车轴、制动盘、齿轮箱及轴箱轴承等部分组成,它直接向钢轨传递重量,通过轮轨间的黏着产生牵引力或制动力,承担着动车行驶、制动等功能。车轮踏面作为动车组与铁路轨道的直接接触单元,一旦出现异常磨耗及其他缺陷,动车组振动性能下降,构架将会出现横向失稳及蛇行失稳迹象,所以车轮踏面的检修质量直接关系到动车组的安全性及舒适性。 动车组在高级检修时,需在数控车轮车床上对车轮踏面进行镟修加工;在运用检修时,只需对车轮踏面表面质量进行常规检查,一旦发现裂纹、缺损等缺陷时,也需对车轮踏面进行镟修加工。 1车轮踏面镟修要求 CRH2型动车组车轮踏面形式为LMA型(见图1),车轮踏面镟修加工后,需满足以下要求:(1)踏面及轮缘不得存在裂纹、缺损、剥离、擦伤等缺陷;(2)轮缘厚度应符合28~33mm,车轮直径不得小于800mm;(3)同一车轮轮径差不大于0.2mm;(4)表面粗糙度应不大于Ra6.3等。 2车轮踏面镟修分析 CRH2型动车组车轮材料选用具有高硬度的ER8模具钢,车轮踏面镟修过程中刀片极易磨损与刃崩,所以刀片的选择直接关系到镟修质量、人工费用及制造费用。车轮踏面镟修在数控车轮车床上进行,该车床配备有双工位车刀,刀杆上有主车刀刀片及副车刀刀片安装位,主车刀刀片对轮廓A(见图1)进行镟修,副车刀对轮廓B(见图1)进行镟修。由图可见,双工位车刀对轮缘曲面部分加工极为方便,而且车床无需配备换刀库,加

工过程中只需准备对应刀片即可。为便于计算成本,车轮踏面镟修实验中将主车刀刀片与副车刀刀片的寿命累计为单片刀片的寿命。 图1 ;LMA型踏面轮缘轮廓 3实验分析 3.1实验目的 选取不同类型的刀片对车轮踏面进行镟修加工,通过对比各刀片的切削情况,分析并计算车轮踏面镟修过程中产生的刀具成本、人工费用、制造费用等,以便选择较为经济的踏面镟修用刀片。 3.2实验描述 (1)刀片选择。刀片类型有普通硬质合金刀片、硬质合金涂层刀片、金属陶瓷涂层刀片、非金属陶瓷涂层刀片、聚晶氮化硼刀片、聚晶金刚石刀片等,因车轮材料为ER8新型模具钢,具有良好的热强性、红硬性、耐磨性,硬度约为240~260HBS,所以要求刀片具备高强度、高耐磨性、高红硬性、耐冲击等性能,满足以上特性的常用刀片有普通硬质合金刀片、硬质合金涂层刀片、金属陶瓷涂层刀片,下面就某一刀具品牌的上述三种刀片进行实验与分析。 (2)切削用量的确定。切削用量包括背吃刀量ap、主轴转速n或切削速度Vc、进给量f或进给速度Vf,根据厂家刀具切削手册查询,普通硬质合金刀片、硬质合金涂层刀片、金属陶瓷涂层刀片的切削速度Vc依次为120m/min、160m/min、180m/min,进给量f依次为0.18mm/r、0.25mm/r、0.18mm/r;根据主轴转速n=1000Vc/(π×D)、进给速度Vf=n×f可以计算出相关参数(注:式中D为车轮直径,在此取860mm,踏面镟修一般情

车轮踏面擦伤原因分析及措施

车轮踏面擦伤原因分析及措施 车轮踏面擦伤是车辆在运行之中发生的主要故障之一,危害性极大.严重危及着列车的运行安全,影响铁路运输的提高。因此,分析轮对踏面擦伤原因及制定预防措施已成为现场亟待解决的问题。 1.车轮擦伤的原因分析 1.1司机操纵不当 在长大下坡道时,司机将小闸推向缓解位,使车辆制动机车缓解.这种用车辆制动拖住机车的方法会增加车辆制动力;另一方面,由于长大货物列车的增加,列车在进入列检所停车时,采用了二次停车,此时,由于部分车辆没有缓解,车轮产生滑行,造成擦伤。 1.2温度条件变化原因 严寒季节钢轨面上有冰雪、霜冻、油污,使轮对与钢轨的粘着系数降低,制动力大于粘着力,造成车轮擦伤。 1.3车站调车作业时使用单侧铁鞋 车辆从驼峰上溜放下来受到单侧铁鞋的阻力后,有铁鞋一侧的轮对被垫起,而另一侧的轮对由于停止转动与钢轨产生剧烈摩擦,造成轮对踏面擦伤。 1.4车辆制动机故障、部分配件作用不良 冬季气温下降,三通阀油脂凝固或风道凝结水进入风管内,造成三通阀滑动部分因摩擦阻力增大,在列车紧急制动时作用缓慢不良或不起作用,造成列车制动快慢不一致,制动压力高低不均而造成车辆车轮擦伤。 1.5空重车装置调整不正确 运用部门根据车辆每轴平均载重确定“空车位”和“重车位”,使车辆产生不同的制动力。如果空车运行,而车辆的空重车手炳至于重车位时,将使制动力大于粘着力,造成车轮滑行,擦伤轮对。 1.6闸瓦自动间隙调整器故障或调整不当 现场车辆在做定期检修时,还须对闸调器做减小间隙、增大间隙实验。该项实验常常被简化,造成制动缸活塞行程过长或过短,如果行程过短时,致使制动力增大,出现闸瓦紧抱车轮,甚至抱死车轮,造成车轮严重擦伤。

TB449-1976机车车辆用车轮轮缘踏面外形

中华人民共和国铁道部部标准 TB 449-76 机车车辆用车轮轮缘踏面外形 本标准适用于经过机械加工的机车车辆车轮 标记示例:轮缘踏面外形ATB449-76 车辆用车轮轮缘踏面外形 机车及煤水车用车轮轮缘踏面外形 发布单位 铁 道 部 实施 日 期1977年10月1日 提出单位标准计量研究所 主要起草单位 标准计量研究所 1

TB 449-76 附录一 车辆用车轮轮缘曲线作图说明 1.以OX、OY为座标轴,取OE=16毫米,过E点作BE线垂直于OX,取BE=25毫米。 2.取点A、使A点的横座标为32毫米,纵座标为10毫米。 3.在OX座标上取D、F两点,使DE=1毫米,EF=2毫米,通过D、F两点分别作垂直于OX 的垂线。 4. 在OX座标上,取OK=48毫米,过K点作kk′线段,使kk’与OX成1:20斜度。 5. 求O1、O2、O3、O4各点。 (1)以B为圆为,取R=16为半径作弧,分别相交于D、F垂线,求得O1、O4。 (2)以A为圆心,取AR=18为半径作弧ee′,作线段nn′平行于kk′,两线间垂直距为18毫米,并使nn′相交于ee弧,求得O2。 (3)以O1为圆心,取R=48-16=32毫米为半径作弧dd;又以O2为圆心,取R=18+48=66毫米为半径作ff弧,使dd与ff相交求得O3。 6. 求M与N两点。 (1)以O1为圆心,取R=16毫米为半径作弧bb;通过O3、O1两点作直线延长与bb相交求得M。 (2)以O3为圆心,取R=48毫米为半径作弧gg;通过O2、O3两点作直线相交于gg,求得N。 7. 求BMNP曲线。以O1为圆心,R=16毫米为半径作BM弧;以O3为圆心,R=48 2

关于高速动车组制动系统的研究

龙源期刊网 https://www.doczj.com/doc/7b11764676.html, 关于高速动车组制动系统的研究 作者:郭超 来源:《中国科技博览》2018年第04期 [摘要]作为高速动车组的重要核心部件,制动系统性能的优劣直接影响着其运行状态。本文从基本的参数计算、设计要求、制动方式等方面对高速动车组制动系统设计的相关理论知识进行了概括,并从制动控制、防滑控制、安全防护等方面分析了高速动车组制动系统的构成。 [关键词]高速动车组;制动系统;防滑控制 中图分类号:S188 文献标识码:A 文章编号:1009-914X(2018)04-0345-01 引言 在城镇建设和发展过程中,交通体系得到完善和发展,动车组成为城市轨道交通的重要组成部分。随着技术的进步和经济的发展,动车组的速度越来越高,使用次数越来越频繁,每日行驶的里程也越来越多,这都对动车组的制动系统提出了更高的要求:既要保证行车安全,又要在尽量短的距离内停车,而且还要尽量减小制动过程中产生的纵向冲击力,传统的列车制动系统已经不能满足此要求。这就需要铁路有关科研单位加强高速动车组制动系统的控制方式、系统配置的优化设计,积极借鉴国内外高速列车制动技术的先进经验,并进行了自主创新。 1 高速动车组制动系统设计要点 1.1 基本参数计算原理 高速动车组运行在铁路快速客运专线或高速铁路上,速度高,固定编挂,一般分为动力集中型与动力分散型两类。根据质点动力学理论,得出了比照300km/h动车组以各种不同匀减速停车时的理论制动时间、停车距离和每吨质量所需的平均制动功率(如图1)。以300km/h动车组为例,经计算,其每吨质量的动能E为3472kJ,每吨质量在各种不同匀减速度下停车时 的最大瞬时制动功率是平均制动功率的2倍。也就是说,如果该动车组每轴14t,那么以1m/s 的匀减速度停车时所需的平均轴制动功率为583.4kw轴,最大瞬时制动功率为1166.8kw轴,纯制动距离为3472m。这些数值提供了一个高速动车组量化的各制动减速度下制动距离和制动功率的概念。当然,实际的制动过程不是一个匀减速运动,而是一个变速运动。 1.2 基本设计要求 第一,尽可能缩短制动距离以保障行车安全,高速列车必须尽可能缩短制动距离,因为自动闭塞的信号区间长度完全由列车允许的制动距离来决定,当制动距离一经确定后,不间断的机车信号装置中就将保存这些制动曲线,因而高速列车的制动系统必须保证在大雪、大雾、结冰、粘着下降,甚至系统部分失灵的情况下,也不能超过允许的制动距离,避免安全事故发

地铁轮对踏面镟修经济性分析

地铁轮对踏面镟修经济性分析 摘要:随着轨道交通的快速发展,对车辆相关设备的维保管理愈显重要。轮对 作为车辆易耗件,其维修或更换的资金是地铁维保的重要支出项。因为车轮与轨 道之间一直存在相互作用,所以在地铁运营中轮缘和踏面被不断磨损。踏面的磨 耗直接影响列车运行平稳性和轮轨的使用寿命,需要及时对其进行镟修或者更换 作业。对于轮对踏面的维修,目前都是车削加工,以恢复其几何形状。但是,通 过对检修数据的分析发现,加工轮对踏面时切削掉的有用金属要比车辆运行中磨 损消耗的金属量大得多,这必然造成了极大的浪费。因此,本文对轮对镟修的经 济性进行重点分析,以期对节约成本做出指导。 关键词:铁;轮对踏面;镟修; 随着城市轨道交通的快速发展,对列车和铁轨等相关设备的维修保养和寿命 管理提出了更高的要求。轮对作为地铁车辆的关键部件之一,对行车安全和运行 稳定性起着至关重要的作用。由于地铁车辆在运行过程中导致轮对不断的磨损, 应及时对其进行镟修或更换等维修保养工作,所带来的相关费用是地铁系统维修 开销的重要组成部分之一。因此,对地铁车辆轮对磨耗故障预报方法和镟修策略 进行研究,制定合理的镟修策略,不仅有利于及时发现轮对存在的隐患,还对延 长轮对使用寿命和降低轮对维修费用具有重要的意义。 一、轮对磨耗和镟修特点 轮对是保证机车车辆在轨道上正常行驶和转向的关键部件,对车辆安全行驶 和稳定运行有着十分重要的作用。轮对型面的尺寸参数包括轮缘厚度、轮缘高度 和轮缘角度,以及踏面直径。车辆行驶过程中与轮轨接触所引起的轮缘和踏面的 磨耗是轮对的主要失效形式。此外,闸瓦制动也是影响车轮磨耗的因素之一,尤 其是对于地铁车辆这种停车时间短、停车要求准确的轨道交通车辆。当列车运行 线路曲率较小时,轮对轮缘对轮轨的压力更大,从而导致轮缘发生较大磨损。通 常状况下,轮缘和踏面都是逐渐磨损的,在正常轮轨匹配和轮对磨损状态下,地 铁车轮的轮缘厚度磨损速率大于轮径磨损速率,且两者理论上都是递减的,但不 排除由于轮径异常磨耗等原因造成轮径磨损速率大于轮缘厚度磨损速率的情况, 为了确保铁道和地铁车辆的行车安全和乘坐舒适性,有关部门对轮对的型面参数、故障状况和轮径差都有严格的规定。由实际经验可知,轮对的踏面直径和轮缘厚 度是维修人员利用特定的尺子不定期测量的。轮对磨耗受到速度、载荷、环境、 润滑和轨道状况等诸多因素的影响,轮对镟修策略须保持轮缘厚度恢复和踏面直 径损失的平衡。通过镟修恢复的轮缘厚度越多,踏面直径损失的也越多,从而使 车轮由于最小踏面直径的要求必须更早更换。另一方面,镟修恢复的轮缘厚度越少,进行下次镟修的时间就越早,镟修的次数和费用将会随之增大。因此,找到 最佳的策略使镟修费用最小化或车轮寿命最大化是很有必要的。 二、对磨耗形式 目前常见的车轮损伤形式主要有车轮踏面和裂纹、剥离等。这些损伤会产生 振动和噪声,降低乘客乘坐的舒适度,尤其是踏面的损伤,更容易引起振动以导 致车辆配件装配松动,大大降低轴承等配件的使用寿命,严重影响车辆运行速度 的提高以及列车运行的安全性。 1、车轮踏面的磨损。车辆的全部载重都是经过车轮传递给钢轨,车辆运行时,轮对不断地在钢轨上滚动,车轮踏面与钢轨形成一定的摩擦副。所谓踏面的磨损,是指踏面在工作过程中,沿车轮半径方向尺寸的减小。若踏面磨损过甚,其斜度

高速动车组运行状态地面监测系统的研制及应用分析_李旭伟

文章编号:1008-7842(2016)06-0025-04 高速动车组运行状态地面监测系统的研制及应用分析 李旭伟 (中国铁道科学研究院铁道建筑研究所,北京100081 )摘 要 动车组运行状态地面监测系统主要用于识别车轮踏面损伤以及运行状态不良的车辆,并兼有车辆偏载监测功能, 是确保动车组运行安全的重要技术装备,对预防行车事故、减少车辆及轨道部件伤损具有重要作用。文章介绍了系统测试原理及测区布置方案、系统功能及构成,以及系统在兰新第二双线、大西客专试验中的应用,并利用测试数据分别对踏面损伤识别、 系统垂直力测试精度进行了分析。关键词 动车组;运行状态不良;踏面损伤;垂直力;全连续 中图分类号:U260.11+ 1 文献标志码:A doi:10.3969/j .issn.1008-7842.2016.06.07 随着四纵四横高速铁路骨干网的基本建成, 我国高速铁路发展已经由大规模建造步入长期安全运营管理与维护阶段。其中,轮轨状态的控制是车辆安全性和舒适度维护的关键,目前采用定期修来实现,成本较高。若能准确识别车轮踏面损伤(车轮磨耗、车轮剥离、多边形车轮等),实现动车组轮对的状态修,将有效提高动车组维修的经济性。 中国铁道科学研究院(简称:铁科院)在既有有砟轨道客货通用车辆运行品质轨边动态监测系统(TPDS)的基础上,攻克了无砟轨道二维传感器技术、全连续测区测力技术、电磁兼容技术、动车组踏面损伤识别技术、动车组运行状态识别技术,研制了动车组运行状态地面监测系统(DTPDS),该系统是国内首创的基于无砟轨道的高速轮轨力动态监测系统,能在较高行车速度条件下自动识别动车组运行状态、车轮踏面损伤。1 监测系统的测试原理及测区布置方案1.1 测试原理 车辆运行品质轨边动态监测系统(TPDS )基于自主知识产权的“ 移动垂直力综合检测方法”[1- 4],单元测区有效长度达到了米级,如图1所示;为实现踏面的全轮周覆盖以及车辆蛇行失稳波长的识别,TPDS通常采用多个单元测区连续设置、相邻单元测区共用端部剪力传感器的模式,如货车TPDS采用加大轨枕间距(760 mm)的3个单元测区连续布置,每个单元测区长度1.6m,如图2所示。客货通用TPDS采用标准轨枕间距(600mm)的5个单元测区连续布置,每个单元测区长度1.2m, 如图3所示 。图1  轮轨垂直力测试原理图 图2 货车TPDS  3单元测区连续布置图 由于剪力传感器存在测量过渡区, 使得相邻单元测区间有一中断区(如图2、图3红圈部分),中断区长度约为一个轨高,中断区个数随单元测区的数量增加而增加。5单元测区连续布置的测量时序图如图4所示,从图中看到因剪力过渡区的影响,相邻单元测区间存在不连续现象,从而对多边形轮对边数的确定、运行状态不 李旭伟(1975—)男,副研究员(修回日期:2016-08-01 )第36卷第6期2016年12月 铁道机车车辆RAILWAY LOCOMOTIVE &CAR Vol.36 No.6 Dec. 2 016

高速动车组总结报告

高速动车组的几项关键技术 摘要:对我国高速动车组的几项关键技术进行分析并指出其发展方向。 关键词:高速铁路,动车组,关键技术 1 概述 2004年10月铁道部组织完成了140列时速200km动车组的采购项目合同签订,成功引进了川崎重工(与四方机车车辆股份有限公司合作)、庞巴迪(与青岛BSP股份公司合作)、阿尔斯通(与长春轨道客车股份公司合作)的动车组先进技术,05年11月又引进西门子(与唐山机车车辆厂合作)的动车组先进技术,成立合资公司进行动车组的生产,至今国产化工作进展顺利。 2 动车组的组成及主要技术参数 CRH1:5M+3T,8节编组,动力分散装置,421吨,总牵引功率5500kw,总长213.5m,车辆宽度3.328m,车辆高4.04m。 CRH2:4M+4T,8节编组,动力集中装置,359.7吨,总牵引力4800kw,总长201.4m,车辆宽度3.38m,车辆高3.7m。 CRH3:4M+4T,8节编组,动力分散装置,425.08吨,总牵引力8800kw,总长200m,车辆宽度3.265m,车辆高3.89m。 CRH5:5M+3T,8节编组,动力集中装置,451.3吨,总牵引力5500kw,总长211.5m,车辆宽度3.2m,车辆高4.27m. 3动车组的几项关键技术 3.1牵引传动系统 CRH1:(1)系统组成。该动车组中有2动1拖和1动1拖两种基本动力单元,其中2动1拖得基本动力单元位于整车的两端。(2)网侧高压电气设备。主要包括受电弓、主断路器、避雷器、电压和电流互感器、接地开关等。(3)牵引变压器。一个基本动力单元有1个,全列共计3个。采用芯式结构、车体下吊挂、油循环强迫风冷方式。具有1个原边绕组(25kv,1600kvA),4个牵引绕组(930v,4X400kvA),1个谐振滤波电抗器(1000V)。外形尺寸(LXWXH)为3900X2200X730(mm),重4200kg。(4)牵引变流器。全列共计5个(2M1T基本动力单元有2个、1M1T基本动力单元有1个)。采用车下吊挂、水冷却方式。(5)牵引电动机。每个动力车4个牵引电机,全列共计20个。牵引电动机为三相鼠笼式异步电动机,采用架悬、强迫风冷方式,通过绕性浮动齿式连轴节连接传动齿轮。电机额定功率为265KW,额定电压1287V,转差率0.012,重596kg,效率94%。(6)系统性能。动车组牵引功率5300KW,满足动车组运营速度200km/h和最高试验速度250km/h的要求。定员载荷的动车组平直道上的起动加速度大于0.6m/s2;200km/h运行时,其剩余家加速度不小于0.1m/s2。 CRH2:(1)系统组成。该动车组中有2动2拖为一个基本动力单元。一个基本动力单元的牵引传动系统主要由网侧高压电气设备、一个牵引变压器、2个牵引变流器、8台三相交流异步牵引电动机等组成。(2)网侧高压电气设备。主要包括受电弓、主断路器、避雷器、电流互感器、接地保护开关等。(3)牵引变压器。一个基本动力单元有1个,全列

高速动车组制动防滑系统分析

高速动车组制动防滑系统分析 陈春棉 (湖南铁道职业技术学院,湖南株洲412001) 摘要:本文首先介绍了滑行产生的机理以及列车制动过程中出现滑行的危害,以CRH2动车组为例,阐述了高速动车组防滑系统的组成和工作原理,分析了列车制动控制系统对滑行判别的依据和防滑控制的过程,明确了防滑控制对列车安全运行的必要性。 关键词:动车组制动滑行防滑系统黏着 Analysis of Brake Anti-sliding System of High Speed Motor Train Unit Chen Chunmian (Hunan Railway Professional College, Hunan Zhuzhou 412001) ABSTRACT:The mechanism of sliding is introduced in this paper firstly, as well as the disadvantage of sliding in train brake process. Take the CRH2 for example, the components and operating principle of anti-sliding system working on high speed motor train unit are explained. How the train brake control system to distinguish sliding and the anti-sliding control process are analyzed in the paper. The necessity of anti-sliding control for the train safety running is ascertained. Keywords: motor train unit, brake, sliding, anti-sliding system, adhesion 1. 滑行的产生及危害 与在雨雪天气的公路上运行的汽车在制动时容易出现滑行一样,在钢轨上运行的高速列车,如果制动时制动力过大,也会出现制动闸片抱死制动盘而使轮对在钢轨上滑行的情况。下面就从制动力的产生过程去分析轮对的滑行时如何出现的。 图1是一个轮对利用闸瓦制动产生制动力的示意图,假设一个轮对上有两块闸瓦,在忽略其他各种摩擦阻力的情况下,轮对在平直道上滚动惰行。若每块闸瓦以压力K压向车轮踏面,闸瓦和踏面间产生与车轮转动方向相反的滑动摩擦力。对于列车来说,该摩擦力是内力,不能使列车减速,可是通过轮轨间的黏着,引起与列车运行方向相反的外力,以此来实现列车的减速或停车。摩擦力2Kφk对车轮的作用效果相当于制动转矩M b,即M b=2Kφk R i,转矩M b可以用轴心和轮轨接触处的力偶(B i、B i’)来等效。力偶的力臂为车轮的半径R i,作用力B i=B i’=M b/R i=2Kφk。轮轨接触处因轮对的正压力P i而存在黏着,切向力B i将引起钢轨对车轮的静摩擦反作用力b i,b i= B i=2Kφk。B i作用在车轮踏面的O’,作用方向与列车运行方向相反,是阻止列车运行的外力,称为制动力。制动力b i也由轮轨间的黏着产生,因而也受到黏着条件的限制。若制动力的大小大于黏着条件允许的极限值,车轮会被闸瓦“抱死”,车轮与钢轨间产生相对滑动,车轮的制动力变为滑动摩擦力,数值立即减小,这种现象称为“滑行”。 图1 制动力的产生 当轮对和钢轨间出现滑行时,轮对在钢轨上滚动的线速度将远远小于列车的运行速度,

相关主题
文本预览
相关文档 最新文档