当前位置:文档之家› 永磁电机设计概述

永磁电机设计概述

永磁电机设计概述
永磁电机设计概述

第1章绪论

§1.1. 无刷式永磁电机的发展概况

§1.1.1.问题的提出

据数据统计,全世界每年的用电量达到15万亿千瓦时,并且每年还在以5000亿千瓦时的速度在递增[1]。随着我国经济的发展,能源供应已经处于相对短缺的阶段[2]。另一方面,电机驱动和调速系统的应用领域也在不断扩大,对电机本体及其控制系统的技术经济指标也提出了越来越高的要求[3-5]。例如,近年来快速发展的电动汽车,就是电机驱动系统的一个崭新的应用领域,它不仅要求电机体积小,重量轻,效率高,而且还要求电机可靠性高,免维护,可控性好,调速范围宽等,以适应电动汽车能源有限、工作环境恶劣、频繁起动、速度变化范围大等特点[6]。

在电力电子器件发生革命性突破之前,在变速驱动领域,传统的有刷直流电机因其优异的调速性能,在过去相当长的时间内一直占据主要地位。但由于机械式电刷与换向器的存在,使该电机的可靠性大为降低,需要经常维护,应用受到极大限制,近年来被逐步取代。交流感应电动机结构简单可靠,基本不需维护,但该电机的速度可控性较差,效率和功率因数也较低[1, 7]。

随着永磁材料的更新换代[8],国内外对各种新型结构永磁励磁式电机的研究越来越多,在很多场合永磁电机已经取代了传统直流电机和感应电机[9, 10]。同时,由于我国是稀土大国[8, 11],研究和推广新型稀土永磁电机具有更重要的理论意义和实用价值。根据永磁体的安放位置,本文将现有的永磁电机主要分为转子永磁型和定子永磁型,下面将简要介绍目前国内外出现的这两类永磁电机结构。

§1.1.2.转子永磁型

长期以来,国内外学者研究较多的永磁电机大都采用转子永磁型[12-20],这是因为传统的交流同步电机都将建立气隙主磁场的励磁绕组安装在转子极上。而在转子永磁型电机中,利用永磁材料代替励磁绕组,减小了铜耗,电动机体积和重量大为减小,结构简单,维护方便,运行可靠,在功率密度、转矩惯性和效率方面都超过了传统的直流电机和异步电机,是高效节能电机的一个重要发展方向,近几十年来受到广泛重视[5]。但这种电机由于将永磁体放置在转子上,为克服高速运转时的离心力,需要对转子采取特别的辅助措施,如安装由不锈钢或非金属纤维材料制成的固定装置等,导致其结构较复杂,制造成本提高。同时永磁体位于转子,冷却条件差,散热困难,而温升可能会最终导致永磁铁发生不可逆退磁、限制电机出力、减小功率密度等,制约了电机性能的进一步提高[16]。

图 1-1为目前国内外主要研究的四种转子永磁型的电机结构[10, 15]。可见,四种电机的定子相同,绕组可以采用集中绕组或分布绕组。一般来说[16],集中绕组主要用于无刷直流电机(Brushless DC motor,本文简称BLDC电机,其每相绕组产生的反电动势为梯形波,控制电流为方波),而分布绕组主要用于无刷交流电机(Brushless AC motor,本文简称BLAC电机,国内一般称之为永磁同步电机[10],每相绕组反电动势和控制电流都为正弦波形)。

其中,图 1-1(a)称为表面贴装式(Surface-Mounted),顾名思义永磁体固定在圆柱型的转子表面。由于永磁体材料和空气的相对导磁率近似相等,因此这种电机无凸极效应,即交轴电感(L q)和直轴电感(L d)相等,从转矩出力的角度来说,缺少了由于交直轴电感不等而产生的磁阻转矩分量[21, 22]。

图 1-1(b)所示的电机与表面贴装式结构相似,只是转子做成了凸极结构,而将永磁体嵌在凹进去的部分,因此称为插入式(Inset)。该电机由于L d

图 1-1(c)和(d)的两种电机从本质上来说属于同一种电机,统称为内嵌式(Interior )[10, 11, 16],即将永磁体嵌入在转子铁心内部,都具有聚磁效应,气隙磁场密度可以设计得较大。两者唯一的不同就是永磁体的排放位置,导致前者永磁体产生的磁通为径向,称之为径向内嵌式(Radial Interior )。而后者产生的永磁磁通为切向(或者说周向,Circumferential Interior ),故称之为切向内嵌式。

其它形形色色的转子永磁型电机拓扑结构都是在这四种基本结构上改进而来的。针对这四种电机国内外出现了大量的的研究文献,其设计程序、研究方法、控制策略等相对都已经较为成熟。

(a) (b)

(c) (d)

图 1-1 四种典型的转子永磁型电机

(a) 表面贴装式,(b) 插入式,(c) 径向内嵌式,(d) 切向内嵌式

§1.1.3. 定子永磁型

针对前面提到的转子永磁型电机的缺点,很自然地就会联想到定子永磁型的结构。其实早在上世纪50年代,美国学者Rauch 和Johnson 就开始研究永磁体置于定子的新型永磁电机[23],图 1-2所示的就是最早出现的定子永磁型电机结构示意图,其提出时是作为永磁式发电机运行的。工作原理是当转子极在图中所示的ABCD 四个不同位置与定子齿对齐时,在A 位置和C 位置磁路是完全相同的,此时永磁体发出的磁通都会从左至右地进入上下两个绕组中。而当转子移动到B 或者D 时,为永磁磁通提供了不同的路径,进入绕组中的磁通方向变为从右至左。这样,固定在定子轭部的电枢绕组中匝链的磁通无论是极性还是数量都会随着转子位置而改变,根据法拉第定律,就会在绕组开路两端感应出交变的反电动势,可以直接输出。如果再与外部的整流装置相连,还可以将交变电压整流为直流电压输出。

但由于当时的永磁体材料性能较差,磁能积很低,导致满足一定输出电压需求的电机本体需要设计得很大,不能满足实际应用的需要,所以早期并未引起足够的重视。然而,该电机却为后来出现的其它定子永磁型电机奠定了理论基础。

图 1-2 最早出现的定子永磁型电机(AIEE,1955年)

随着以钕铁硼(NdFeB)为代表的新型稀土永磁材料的出现[8, 10, 11]和功率电子学、计算机、控制理论的发展[17],从上世纪90年代开始陆续出现了三种新型结构的定子永磁型无刷电机及其驱动系统,分别为:

1.1992年由美国学者T. A. Lipo教授提出的双凸极永磁电机(Doubly-Salient Permanent Magnet Motor)[24],在本文中简称为DSPM电机,见图 1-3。

2.1996年由罗马尼亚学者I. Boldea提出的磁通反向电机(Flux Reversal Machine)[25],本文简称FRM电机,见图 1-4。

3.1997由法国学者E. Hoang提出的磁通切换型永磁电机(Flux-Switching Permanent Magnet Machine)[26],本文简称FSPM电机,这也正是本课题主要研究的电机类型,见图 1-5。

这三种新型永磁无刷电机在结构上有很多共同点,比如定转子铁心都为双凸极结构,皆采用集中绕组,永磁体都置于定子,转子上既无永磁体又无绕组等。目前的研究成果表明这三种电机都具有高功率密度、高效率等优点[24-31]。虽然这三种电机因永磁体的安放位置而都属于定子永磁型电机的范畴,但工作原理却又有很大的不同,且优缺点并存。

首先看DSPM电机,实际上它是属于“开关磁阻电机+永磁体”的结构[24],因此从电磁特性和控制策略来说,也与开关磁阻电机[32]有很多相似之处。如果从其每相空载反电动势波形和电流控制方法划分,又应该属于无刷直流电机。但由于其永磁磁链为单极性且电感在一个转子周期内只变化一次,这些都与传统意义上的转子永磁型无刷直流电机不同,导致在控制策略上也有其特点,例如在恒转矩区一般采用固定开通关断角控制斩波参考电流的方式,称之为电流斩波控制(current-chop-control,简称CCC)。而在恒功率区,则固定参考电流,通过调节开通关断角来控制输出转矩,称之为角度位置控制(angle-position-control,简称APC)[27]。

到目前为止,关于DSPM电机的研究文献较多,从静态特性分析、工作原理、设计方法、控制策略和实验研究等各方面都有相关报道[27, 28, 33-38]。此外,在永磁励磁的结构基础之上,针对永磁磁场难以调节的缺点,又相继出现了基于DSPM电机的混合励磁双凸极电机(在定子上增加了一套调节气隙磁场的励磁绕组)[39]和电励磁式双凸极电机(无永磁体,励磁、电枢两套绕组都安装在定子)[40],目前都在研究之中。

值得注意的是,在文献[28]中,以东南大学程明教授为首的课题组针对四相8/6极DSPM电机,提出了可以通过转子斜槽减少永磁磁链、反电动势和电感中的高次谐波分量,使其接近正弦分布,进而分析了该电机从四相变为两相运行的可行性,并有实验结果报道[37, 38]。但还只是局限于采用与反电动势同相位的电流控制方式,其等同于矢量控制中的直轴电流为零,即i d=0控制(详见第7章)。

由此,在本文中进一步深入下去,引发了一个新的思路,即将永磁同步电机的矢量控制方式[41]完全引进到DSPM电机中,从而通过最大转矩/电流比控制、恒磁链控制和满功率因数控制[42]等方式更加丰富多变地控制该类型电机。关于DSPM电机在转子坐标系下的交直轴数学模型和具体矢量控制方式的应用将分别在本文的附录C和第9章中详细分析。

图 1-3 DSPM电机

磁通反向电机,简称FRM电机[25, 29, 30, 43, 44],是将永磁体直接安装在定子齿下面,见图 1-4。结构特点是在每个定子齿与空气接触的表面安装两块磁化方向相反的弧形永磁体(一般采用铁氧体材料),从而当转子旋转到不同的永磁体下面与定子齿对齐时,根据磁阻最小原理,极性相反的永磁磁通就会穿过定子侧的绕组,从而在电枢绕组中匝链极性和数值都随转子位置而改变的交变永磁磁链,感应出反电动势。因此,该电机的磁链特性为双极性,这与DSPM电机是不同的,而和本文研究的FSPM电机一致。

对比图 1-1(a)的表面贴装式永磁电机,可发现FRM电机相当于把贴在转子表面的永磁体转移到了定子齿表面上。从这个角度说,也可认为FRM电机相当于定子永磁型的表面贴装式电机。但FRM电机在结构上也有明显的缺点,即永磁体的安置无形中增加了气隙的长度,使得电机的尺寸增加,且空载气隙磁密减小,影响电机出力。更为严重的是,磁路分析表明电枢绕组产生的电枢反应磁通会直接穿过永磁体进入转子齿,即电枢磁通和永磁磁通是串联的,存在着永磁体发生不可逆退磁的危险。以上原因导致了该种电机目前研究得较少。

图 1-4 FRM电机(IAS,1996年)

磁通切换永磁电机,即FSPM电机[26, 31, 45, 46],是第三种定子永磁型电机。其结构特点将在第2章中详细分析,这里只简单说明选择该电机作为本课题研究本体的四点原因:

1.既具备DSPM电机和FRM电机转子结构简单、适合高速运行、冷却方便等优点,同时又拥有转子永磁型电机空载磁链为双极性的优点。

2.具有§1.1.2中内嵌式永磁电机聚磁效应的特点,使得气隙磁场可以设计得很大(可达

2.5T),见§

3.

4.1,导致其在定子外径一样的条件下,转矩和功率都可以高于其它两种定子永磁型电机,功率密度大,适合于严格限制电机尺寸同时又需要较高出力的场合,例如航空、航天、航海和电动汽车等领域。关于FSPM电机和DSPM电机的比较研究将在第9章中详细阐述。

3.电枢反应磁场和永磁磁场从磁路上说是并联的,具有很强的抗退磁能力,在附录D中通过对样机作发电运行时的实测电压调整率予以验证。

4.绕组具有互补型特点,可以减少或抵消永磁磁链和反电动势波形中的高次谐波分量,在采用定子集中绕组和转子直槽的条件下就可以获得较高的正弦度,具体分析见§3.4.2,较适合无刷交流的方式运行。

正是基于以上优点,本文选择了FSPM电机作为研究主体,并将比较其与DSPM电机的性能优劣。

图 1-5 FSPM电机

§1.1.4.永磁电机分类

由以上分析可知,根据绕组中匝链的永磁磁链极性,可将DSPM电机称为单极性永磁电机,而将FRM电机、FSPM电机和所有转子永磁型电机都称之为双极性电机。另一方面,依据永磁体的安装位置,又可分为定子永磁型和转子永磁型电机。此外,由每相电枢绕组反电动势波形和电流控制方式,又能将永磁电机分为无刷直流电机(方波电流)和无刷交流电机(永磁同步电机,正弦波电流)[10]。综合上述,可将现有径向磁场的永磁电机按图 1-6分类。

图 1-6 径向旋转式永磁电机分类

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

大功率高速永磁同步电机的设计与分析

大功率高速永磁同步电机的设计与分析 发表时间:2016-07-19T10:13:33.690Z 来源:《电力设备》2016年第8期作者:陆焕瑞王钢汪佳龙[导读] 从安全性、可靠性、稳定性、准确性等方面入手,通过自主研发,以此来研制出满足用户要求的高性能产品。陆焕瑞王钢汪佳龙(上海海事大学上海 201306) 摘要:针对西气东输过程中的10MW级变频驱动压缩机组(PDS)中,对高速直驱电动机的技术、结构和组成的要求,提出了大功率高速永磁同步电机的研制方案。本文尝试以10MW等级调速范围3120~4800rpm和额定频率160Hz的技术要求,来设计适合西气东输PDS中的大功率高速永磁同步电机。本文主要以Ansoft软件来设计电机,通过选择合适的技术参数来完成相应的设计。 关键词:PDS组,大功率,高速,永磁同步电机,Ansoft,设计与分析1 引言 根据10 MW级变频电驱压缩机组中压大功率变频调速驱动系统(简称PDS)国产化研制及应用的项目背景,提出了10MW级变频电驱系统的技术要求,通过比较分析市场各种变频器的结构特点和国产变频电驱系统技术力量,电机通常为正压通风防爆无刷励磁同步电机,一般有低速(1000~1500 r/min)加齿轮箱和4500~5200 r/min与压缩机高速直联驱动2种方式。由于国内厂家没有成熟的产品和应用业绩,主要由SIEMENS,ABB,TEMEI。由于变频永磁同步电机能够通过降低输入电压频率实现自起动,而内置的永磁体能够提供磁通以及产生相应的同步转矩,这样可以保证电机稳定运行时为同步电机运行状态。同时对于电机来说无需励磁电流,大大减少了定子上电流以及相应的损耗,并且在转子上几乎无电流以及铜耗。因此与传统的感应电机和励磁电机相比,具有效率高、功率因数高的优点。 2 大功率高速永磁同步电机的设计2.1 主要设计特点永磁同步电机的定子一般与相应的异步电机的定子冲片相同,最主要的是对转子的设计。本文设计的大功率高速永磁同步电机的使用场合较为特殊,对于这样的大电机要求运行可靠、大功率、高转速、高效率、防爆要求较高。所以不仅要设计合理的电磁磁路,又要在相应的技术参数基础上(机、电、热、材料、工艺、环境)对电机的性能进行改善。所以在设计过程中要综合以下方面综合考虑:(1)高压变频 高压变频起动永磁同步电机无需起动绕组,这样需要大功率的变频器来与之相匹配,同样还要加强电气强度,提高安全系数。 (2)大容量 电机为4级,定子额定电流约为660A,额定电压约为10kV,额定功率约为10MW,定子绕组采用Y型连接方式,相数为3相,额定频率为160Hz,额定转矩为20 。 (3)高转速 电机额定转速约为4800rpm,功率大、效率高、转速高,调速宽而且能持续运行。结合实际大功率高速永磁电机技术水平,合理选择驱动压缩机方式。 (4)防爆 天然气是极易发生燃烧爆炸的气体,所以对电机要进行防爆措施,选择合适的材料以及防爆等级。 (5)冷却 中小功率电机一般是利用空气进行通风冷却,但随着单机容量的增加,大功率高速电机的散热面积和风路安排受到诸多限制,使通风冷却较为困难。所以,为了保证电机温升不超过允许值需要用不同的冷却方式和通风系统。一般采用水风混合冷却,即内循环冷却采用水冷,外循环冷却采用风冷。 2.2 定转子设计 图1 定转子结构主要计算公式:

永磁交流伺服电机原理

永磁交流伺服电机原理 近年来由于无刷式伺服(马达)电机(brushless servo motor)制造与控制技术的急速发展,再加上大规模集成电路与半导体功率组件的进步,使其商品化产品日益增多,在高性能伺服应用场合如计算机控制数值工具机、工业机器人等,均已逐渐取代了传统式的有电刷的直流伺服电机(dc servo motor)。无刷式伺服电动机主要可分为两大类(表1) (1)无刷式直流伺服电机(brushless dc servo motor),一般亦称的为永磁式同步电机(PM synchronous motor) 或永磁式交流伺服电机(PM ac servo motor),(2)感应式交流伺服电机(induction ac servo motor)。 无刷式直流伺服电机采用内装式的霍尔效应(Hall-effect)传感器组件来检测转子的绝对位置以决定 功率组件的触发时序,其效用有如将直流伺服电机的机械式电刷换相(mechanical commutation)改为电子式换相(electronic commutation),因而去除了直流伺服电动机因电刷所带来的限制。目前一般永磁式交流伺服电机的回接组件多采用解角器(resolver) 或光电解编码马器(photo encoder),前者可量测转子绝对位置,后者则祇能测得转子旋转的相对位置,电子换相则设计于驱动器内。 表1伺服电机的分类 永磁式直流伺服电动机如图1(a)所示,其永久磁铁在外,而会发热的电枢线圈(armature winding)在内,因此散热较为困难,降低了功率体积比,在应用于直接驱动(direct-drive)系统时,会因热传导而造成传动轴(如导螺杆)的热变形。但对交流伺服电机而言,不论是永磁式或感应式,其造成旋转磁场的电枢线圈,如图1(b)所示,均置于电机的外层,因而散热较佳,有较高的功率体积比,且可适用于直接驱动系统。 交流电机依其扭矩产生方式可分为两大类(1)同步交流电机(synchronous ac motor)与(2)感应交 流电机(induction ac motor),同步交流电机因其转子可由外界电源或由本身磁铁而造成的磁场与定子的旋转磁场交互作用而达到同步转速,但是感应交流电机的转子则因定子与转子间的变压器效应(transformer effect)而产生转子感应磁场,为了维持此感应磁场以产生旋转扭矩,转子与定子的旋转磁场间必须有一相对运动—滑差(slip),因此感应电机的转速无法达到同步转速。

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

永磁同步电机伺服驱动系统概述

文献综述 ——永磁同步电机伺服驱动系统 一.前言 自上世纪八十年代以来,随着微电子技术、电力电子技术、传感器技术、电机制造技术以及先进的控制理论等支撑技术的飞速发展,以交流伺服电动机为控制对象的交流伺服系统逐步取代直流伺服系统,在机电一体化、工业自动化、数控机床、大规模集成电路制造、航空航天、雷达和各种军用武器随动系统等方面得到广泛应用。以永磁同步电机作为执行电机的数字交流伺服系统在高精度运动控制和驱动领域得到了越来越广泛的应用。 永磁材料的选择对电机的结构和性能影响很大。目前广泛应用于永磁体主要有铁氧体、稀土钴以及钕铁硼三类永磁材料。其中钕铁硼是近年来出现的一种新型永磁材料,其矫顽力和剩磁密度都高于其他两类永磁材料,且成本比稀土钴低得多,是目前应用最为广泛的永磁材料。永磁材料的发展也对永磁同步电机的应用起着至关重要的作用。 二.正文 1. 交流伺服系统的概念及分类 1.1 概念 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。 在交流伺服系统中,电动机的类型有永磁同步交流伺服电机(PMSM)和感应异步交流伺服电机(IM),其中,永磁同步电机具备十分优良的低速性能、可以实现弱磁高速控制,调速围宽广、动态特性和效率都很高,已经成为伺服系统的主流之选。普遍应用的永磁伺服电机有两大类:一类称为无刷直流电机(BLDC),另一类称为三相永磁同步电机(PMSM)。永磁同步电机的特点是用永磁体取代绕线式同步电机转子中的励磁绕组,从而省去了励磁线圈、滑环和电刷,因此具有转子转动惯量小、响应速度快、效率高、功率密度高等优点,在要求高性能的伺服领域得到了广泛的应用。永磁同步电机的定子与绕线式同步电机基本相同,要求输入定子的电流仍然是三相正弦的,所以称为三相永磁同步电机。而异步伺服电机虽然结构坚固、制造简单、价格低廉,但是在特性上和效率上存在差距,只在大功率场合得到重视。 1.2 分类 交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和 全数字式伺服。如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步 伺服电动机构成的伺服系统;另一种是用鼠笼型异步电动机构成的伺服系统。二者的不同之处

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

永磁电机磁路结构和设计计算

1.1 磁路结构和设计计算 永磁发电机与励磁发电机的最大区别在于它的励磁磁场是由永磁体产生的。永磁体在电机中既是磁源,又是磁路的组成部分。永磁体的磁性能不仅与生产厂的制造工艺有关,还与永磁体的形状和尺寸、充磁机的容量和充磁方法有关,具体性能数据的离散性很大。而且永磁体在电机中所能提供的磁通量和磁动势还随磁路其余部分的材料性能、尺寸和电机运行状态而变化。此外,永磁发电机的磁路结构多种多样,漏磁路十分复杂而且漏磁通占的比例较大,铁磁材料部分又比较容易饱和,磁导是非线性的。这些都增加了永磁发电机电磁计算的复杂性,使计算结果的准确度低于电励磁发电机。因此,必须建立新的设计概念,重新分析和改进磁路结构和控制系统;必须应用现代设计方法,研究新的分析计算方法,以提高设计计算的准确度;必须研究采用先进的测试方法和制造工艺。 1.2 控制问题 永磁发电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。这些使永磁发电机的应用范围受到了限制。但是,随着MOSFET、IGBTT等电力电子器件的控制技术的迅猛发展,永磁发电机在应用中无需磁场控制而只进行电机输出控制。设计时需要钕铁硼材料,电力电子器件和微机控制三项新技术结合起来,使永磁发电机在崭新的工况下运行。 1.3 不可逆退磁问题 如果设计和使用不当,永磁发电机在温度过高(钕铁硼永磁)或过低(铁氧体永磁)时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。因而,既要研究开发适合于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时采用相应措施保证永磁式发电机不会失磁。 1.4成本问题 由于稀土永磁材料目前的价格还比较贵,稀土永磁发电机的成本一般比电励磁式发电机高,但这个成会在电机高性能和运行中得到较好的补偿。在今后的设计中会根据具体使用的场合和要求,进行性能、价格的比较,并进行结构的创新和设计的优化,以降低制造成本。无可否认,现正在开发的产品成本价格比目前通用的发电机略高,但是我们相信,随着产品更进一步的完美,成本问题会得到很好的解决。美国DELPHI(德尔福)公司的技术部负责人认为:“顾客注重的是每公里瓦特上的成本。”他的这一说法充分说明了交流永磁发电机的市场前景不会被成本问题困扰。 1.5永磁转子特点: 结构1: 并联磁场结构;转采用采用铸造压制而成,里面嵌放永磁体,能量大、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。 专利号;ZL96 2 47776.1 结构2: 串联磁场式结构;转子采用钢结构,表面按顺序嵌放永磁铁,转子表面磁通强、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。 专利号:ZL98 2 33864.3 整机稳压系统特点: 采用可控硅和二极管组成半控桥式整流电路。稳压系统是一种斩波调制型稳压装置,其稳压精度为正负0.1v,故该发电机具有能瞬间承受较大电流、运行可靠和耐用等特点,又因可直接利用发电机发出的交流电的反向电压使可控硅自行关断,故无需加关断电路,使电路结构简单、可靠。 2、永磁发电机的优点

高速永磁电机

摘要 高速电机现正成为电机领域的研究热点之一。其主要特点有两个:一是转子的高速旋转;二是定子绕组电流和铁心中磁通的高频率。由此决定了不同于普通电机的高速电机特有的关键技术。本文针对一台已经研制出的100KW高速永磁电机的机械特性进行了分析研究。主要包括以下内容: 首先,对高速永磁电机的定子、转子结构,工作原理和ANSYS软件进行了简单的介绍。定子主要由机座、主磁极、换向极和电刷装置组成,作用是产生磁场。转子由电枢铁心和电枢绕组,换向器,轴及风扇等组成,作用是产生电磁转矩和感应电动势。电机中的电磁能与机械能的转换是在磁场中完成的,本设计中采用永磁体建立磁场,完成能量的转换。 其次,对高速永磁电机的转子强度进行了分析。基于弹性力学理论和有限元接触理论建立了高速永磁转子应力计算模型,确定了护套和永磁体之间的过盈量,分析了永磁体和护套的强度。永磁体与护套之间采用过盈配合,用护套对永磁体施加静态预压力抵消高速旋转产生的拉应力,使永磁体高速旋转时仍能承受一定的压应力,从而保证永磁转子的安全运行。 关键词:高速永磁电机,转子强度,ANSYS软件

Abstract The high-speed electrical motors are now becoming one of the hot areas of research. There are two main features: First, the rotor high-speed rotation and the other is the stator windings current and iron hearts of the high-frequency magnetic flux. This decision is different from the ordinary high-speed electrical motor unique key technologies. This paper has developed a 100 KW of high-speed permanent magnet motor of the mechanical properties of the analysis. Mainly include the following: First, It is the simple introduction to the high-speed permanent magnet motor stator and rotor structure, working principle and ANSYS software. Stator mainly consists of the main magnetic pole, and brush, acting as generating the magnetic field. Rotor consists of the armature core and armature winding, commentator, shaft and fan, and other components, acting a role in the electromagnetic torque sensors and EMF. The conversion between the electromagnetic energy and mechanical energy is completed in the magnetic field, and permanent magnet was applied in this designing to establish magnetic field to complete the conversion of energy. Secondly, the analysis of the rotor strength of the high-speed permanent magnet motor. On the basis the elasticity theory and finite element contact theory established a high-speed permanent magnet rotor stress model to determine the sheath between the permanent magnet and a win amount of sheathing and the permanent magnet strength. Permanent magnet and used between the jacket fit, with the permanent magnet sheath static pre-imposed pressure to offset high-speed rotation of the stress so that the permanent magnet can bear a certain stress at high-speed rotation, thus ensuring permanent magnet rotor the safe operation. Key words:high-speed permanent magnet motor, the rotor strength, ANSYS software

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

Ansoft永磁同步电机 设计 报告

现代电机设计 利用Ansoft软件对异步起动永磁同步电动 机的分析计算 2013 年7 月

目录 第1章引言………… 第2章 RMxprt在永磁同步电机中的电机性能分析………… 2.1 Stator项设置过程………… 2.2 Rotor项设置过程………… 2.3 Line Start-Permanent Magnet Synchronous Machine的电机仿真………… 2.4 计算和结果的查看………… 第3章静态磁场分析………… 3.1 电机模型和网格剖分图………… 3.2 磁力线分布图…………………… 3.3 磁密曲线 3.3.1 气隙磁密分布………… 3.3.2 定子齿、轭部磁密大小………… 3.3.3 转子齿磁密大小………… 第4章瞬态场分析………… 4.1 额定稳态运行性能………… 4.1.1 电流与转矩大小………… 4.1.2 各部分磁密………… 4.2 额定负载启动………… 4.2.1 转矩-时间曲线………… 4.2.2 电流-时间曲线………… 4.2.3 转速-时间曲线………… 4.2.4 转矩-转速曲线…………

第1章引言 Ansoft Maxwell作为世界著名的商用低频电磁场有限元软件之一,在各个工程电磁场领域都得到了广泛的应用。它基于麦克斯韦微分方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解。该软件包括二维求解器、三维求解器和RMxprt旋转电动机分析专家系统这3个主要模块,不仅可以进行静磁场、静电场、交直流传导电场、瞬态电场、涡流场、瞬态磁场等不同的基本电磁场的特性分析,还可以通过RMxprt电动机模块仿真多种电动机模型,为实际电动机设计提供帮助。利用Ansoft软件进行仿真可以帮助我们了解电动机的结构特性。 本文是一台4极、36槽绕组永磁同步电动机,利用RMxprt模块进行电机的建模、仿真以及导入到Maxwell2D的有限元模块的方法,然后再对Maxwell2D 中的永磁体模型进行修正,最后对该电机在静态磁场和瞬态磁场的情况下进行分析。

新型永磁电机转子磁路结构设计与分析

新型永磁电机转子磁路结构设计与分析 方案计算中采用了二维平面电磁场时步有限元结合场路耦合的方法,采用该计算方法的优点是能够考虑机械运动、导体区域感应涡流产生的集肤效应以及绕组邻近效应的影响,通过合理的简化模型,可以获得较高的计算精度和合理的计算时间[7]。 永磁同步电机电磁场时变问题中的Maxwell方程组表达式为: (2) 当考虑到电机铁芯的饱和因素,则非线性时变运动电磁场问题的偏微分方程表达式[8]为:(3) 式中:A—矢量磁位;Js—外部强加的源电流密度;v—媒质的磁阻率;V—媒质相对坐标系的运动速度;—媒质的电导率。 3 电磁场仿真计算与分析 根据上述分析,针对以上转子磁路结构类型,本文建立了3种磁路结构的模型,分别是表贴式、内置式和本文提出的新磁路结构。 该永磁同步电动机的定子槽数(36槽)及结构尺寸相同。转子采用不同的磁路结构,即表贴式转子磁路结构、内置式转子磁路结构和本文提出的新型磁路结构。转子极数为8极。图3、图4和图5分别为表贴式转子磁路结构、内置式转子磁路结构(转子磁路為一字型结构)、以及本文提出的新型转子磁路结构。 建立有限元仿真模型后,将分别计算3种磁路结构的空载反电动势波形,电机运行转速为1 000rpm,磁钢温度20℃。图6、图7和图8分别是表贴式转子磁路结构的空载反电动势波形、内置式转子磁路结构的空载反电动势波形和本文提出的新型转子结构的空载反电动势

波形。 通过对比图6、图7和图8的有限元仿真计算结果可知,当采用本文提出的新型转子磁路结构时,电机空载反电动势波形具有更高的正弦度,谐波含量最低,其谐波畸变率约为0.3%,远小于表贴式结构的2.6%和内置式转子结构的1.1%。 在空载工况下,对3种磁路结构电机的交直轴电感进行有限元仿真分析,得到电机交、直軸电感随时间的变化波形。计算结果如图9、图10、图11所示。 图9为表贴式转子结构的交直轴电感仿真结果。由于表贴式电机的交直轴磁导近似相等,因此仿真曲线中交直轴电感相近,即电机的凸极率近似为1。由图10可知,内置式电机的交直轴电感相差较大,其凸极率约等于1.5。图11为本文提出的新型转子磁路结构的电感仿真曲线,该结构的凸极率约为1.06,十分接近表贴式转子结构的凸极率,所以该磁路结构的控制方式与表贴式电机基本一致,使电机的控制方式更加简单。 4 试验验证 本文对新型转子磁路结构电机进行设计分析,根据设计参数制作了样机,并对样机的空载反电动势波形以及电机线电感进行试验测试。图12为新型转子结构样机空载反电动势波形。实测反电动势有效值与仿真计算值误差2.6%,满足工程设计要求。 本文通过对新型转子结构样机电感测试,得到样机线电感最大值约为105μH,线电感最小值约为90μH,因此其凸极率约为1.16,远低于内置式电机的凸极率,与表贴式电机的凸极率接近。 5 结论 本文提出了一种新型永磁同步电机转子磁路结构,通过分析得出以下结论。1)本文提出的新型永磁同步电机转子磁路结构,能够实现电机的高速运行,提高了磁钢在高速运行和冲击

永磁直流电机性能参数

ZYT直流永磁电机 概述 ZYT直流永磁电机采用铁氧体永磁磁铁作为激磁,系封闭自冷式。作为小功 率直流马达可以用在各种驱动装置中做驱动元件。 产品说明 (1)产品特点:直流电动机的调速范围宽广,调速特性平滑;直流电动机 过载能力较强,热动和制动转矩较大;由于存在换向器,其制造复杂,价格较高。 (2)使用条件:海拔w 4000m环境温度:-25 C —+40C ;相对湿度w 90%(+25C时);允许温升,不超过75K。 型号说明 90ZYT08/H1 1.90位置表示机座号。用55、70、90、110和130表示。其相应机座号外径为 55mm 70mm 90mm 110mn和130mm 2. ZYT表示直流永磁马达。 3.08位置表示铁芯长度。其中01-49为短铁芯,51-99为长铁芯和101-149为超长铁芯。 4.H1位置为派生结构。其代号用H1、H2 H3??…。 安装形式 1. A1表示单轴伸底脚安装,AA1表示双轴伸底脚安装。 2. A3表示单轴伸法兰安装,AA3表示双轴伸法兰安装。 3. A5表示单轴伸机壳外圆安装,AA5表示双轴伸机壳外圆安装。 使用条件 1. 海拔不超过4000米。 2. 环境温度:-25度到40度。 3. 相对温度:小于等于95度。 4. 在海拔不超过1000米时,不超过75K. 技术参数 以下数值为参考使用,在实际生产时可以根据客户要求调整。 1. 型号55ZYZT01-55ZYZ10转矩55.7-63.7(毫牛米),速度3000-6000(r/min), 功率20-35(W),电压24-110(V),电流1.5-3.2 (A)和允许逆转速度差

高速永磁电动机设计的关键问题

中图分类号!!"#(*!!!!!!文献标识码!)!!!!!!文章编号!*++*,-.$."’++-#+.,+++-,+$ 高速永磁电动机设计的关键问题 黄允凯!余!莉!胡虔生 !东南大学电气工程系"南京!’*++‘- #摘!要!高速电机具有功率密度大!尺寸小!响应快!可直接与高速机械设备连接等优点"永磁电机因其高效率!高功率因数等特点成为高速电机研究的热点"该文详细讨论了高速永磁电机设计应考虑的关键问题#包括材料选取!铁耗计算方法!转子结构和轴承选取等"关键词!高速$永磁电机$材料$铁耗$轴承$设计 9%0A B C4#C 0A D %*)(A #C 0E #*F A B G H ’I %%DJ %*K )C %C (L )B C %(L #(#*00?)8A f :4,X J <"f ?=<"0?g ;!铁心材料 在高速永磁电机中"由于工作频率较高"定子铁 ) -)微电机!’++-年!第#‘卷!第.期!总第*((期# 万方数据

永磁电机的工作原理

永磁电机的工作原理 永磁同步电机的种类繁多,按照定子绕组感应电动势的波形的不同,可以分为正弦波永磁同步电机(PMSM)和梯形波永磁同步电机。机床设备组成中触摸屏维修结构上,使用的正弦波永磁同步电机定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在转子上的安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式和内埋式。 一、电机控制方式 目前,三相同步电机现在主要有两种控制方式,一种是他控式(又称为频率开环控制);另一种是自控式(又称为频率闭环控制)。他控式方式主要是通过独立控N#l-部电源频率的方式来调节转子的转速不需要知道转子的位置信息,常常采用恒压频比的开环控制方案。自控式永磁同步电机也是通过改变外部电源的频率来调节转子的转速,与他控式不同,外部电源频率的改变是和转子的位置信息是有联系关系的,转子转速越高,定子通电频率就越高,转子的转速是通过改变定子绕组外加电压(或电流)频率的大小来调节的。 因为自控式同步电机不存在他控式同步电机的失步和振荡问题,并且永磁同步电机永磁体做转子也不存在电刷和换向器,降低了转子的体积和质量,进步了系统的响应速度和调速范围,且具有直流电念头的机能,所以本文采用了自控式交流永磁同步电机。当把三相对称电源加到三相对称绕组上后,天然会产生同步速的旋转的定子磁场,同步电机转子的转速是与外部电源频率保持严格的同步,且与负载大小不要紧。 二、永磁电机的原理 系统采用的是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、控制电路、三相交流永磁电机和位置传感器构成。50HZ的市电经整流后,由三相逆变器给电机的三相绕组供电,三相对称电流合成的旋转磁场与转子永久磁钢所产生的磁场相互作用产生转矩,拖动转子同步旋转,通过位置传感器实时读取转子磁钢位置,变换成电信号控制逆变器功率器件开关,调节电流频率和相位,使定子和转子磁势保持不乱的位置关系,才能产生恒定的转矩,定子绕组中的电流大小是由负载决定的。定子绕组中三相电流的频率和相位随转子位置的变化而变化的,使三相电流合成一个与转子同步的旋转磁场,通过电力电子器件构成的逆变电路的开关变化实现三相电流的换相,代替了机械换向器。 正弦波永磁同步电机属于自控式电机,只是电念头的定子反电势和电流波形均为正弦波,并且保持同相,其可以获得与直流电机相同的转矩特性,而且能实现恒转矩的调速特性。本位置伺服系统是通过正弦波永磁同步电机来实现位置伺服功能的。 三、旋转式编码器 由自控式正弦波PMSM构成的伺服系统,需要实时检测电机转子的位置及转速,本系统是通过旋转编码器来获取相关的信息。根据编码器的工作原理不同可分为磁性编码器和光学编码器,而根据编码器的输出信号的不同又分为增量式(incremental)和绝对式(absolute)编码器两种。绝对式编码器可以直接测得转子的绝对位置,每次为检测到转子的位置提供一个唯一无二的编码数字值。绝对式型编码器(旋转型)码盘上有很多道光通道刻线,每道刻线依次以2线、4线、8线、16线??编排,在编码器的每一个位置,通过读取每道刻线的通、暗,

相关主题
文本预览
相关文档 最新文档