当前位置:文档之家› IC芯片的电磁兼容性设计方案

IC芯片的电磁兼容性设计方案

IC芯片的电磁兼容性设计方案
IC芯片的电磁兼容性设计方案

IC芯片的电磁兼容性设计方案

2011-12-19 22:48:43| 分类:EMC/EMI | 标签:|字号大中小订阅

IC芯片的电磁兼容性设计方案

论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点

1、分析和解决电磁兼容性的一般方法

随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProlemSolvingApproach)、规范法(SpecificationApproach)和系统法(SystemsApproach)。

1.1问题解决法

问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决在调试过程中出现的电磁兼容性问题的方法。系统内或系统间存在的干扰问题有三要素,即干扰源、接受器和干扰的传播路径。因此用问题解决法解决系统内或系统间的电磁兼容性问题时,首先必须正确地确定干扰源。为了做到这一点,从事电磁兼容性方面工作的工程师要比较全面地熟悉各种干扰源的特性。在确定干扰源后再确定干扰的耦合路径是辐射耦合模式还是传导耦合模式,最终决定消除干扰的方法。

1.2规范法

为了满足电磁兼容性的要求,各国政府和工业部门尤其是军方都制订了很多强制执行的标准和规范,例如美国军用标准MIL-STD-461.所谓规范法是指在采购系统的设备和设计建立子系统时必须满足已制订的规范。规范法预期达到的效果就是:如果组成系统的每个部件都满足规范要求,则系统的电磁兼容性就能保证。

1.3系统法

系统法集中了电磁兼容性方面的研究成果,从系统的设计阶段的最初就用分析程序来预测在系统中将要遇到的那些电磁干扰问题,以便在系统设计过程中作为基本问题来解决。目前有下列几种已广泛使用的大规模电磁干扰分析程序:

系统和电磁兼容性分析程序(SEMCAP);系统和电磁兼容性分析程序;

干扰预测程序IPP-1;

系统内部分析程序IAP;

共场地分析模型程序COSAM等。

对于EMC系统设计的3种方法而言,问题解决法即先建立系统,在系统出现EMC问题时,利用EMI抑制技术解决EMC问题,这种方法很冒险,有可能会出现大量的返工。规范法则是要求每个分系统预先符合所要求的EMC规范或标准。如产品需要销售到美国,就要求每个分系统满足美国FCCPart15或Part18相应的标准,利用这些标准进行计算、设计分系统来保证最终产品的EMC性能。规范法比问题解决法更合理,但他的不足之处是他可能引入过储备的设计。系统法集中了EMC方面的成就,他根据EMC 的要求给出最佳的工程设计、试验过程中对EMC进行分析预测,合理分配EMC指标,保证系统EMC的

设计要求。随着电子设备工艺的飞速发展,集成电路的集成度几乎每年都翻一番,EMC问题已由系统级上升至芯片级。因此,对芯片级电磁兼容性的设计研究就显得尤为重要了。

2、芯片级电磁兼容

由于芯片级电磁兼容的描述是一个相对较新的学科,尽管对于电子系统及子系统已经有了说明详细的标准和辐射参考标准,但对于在这些系统中应用到的集成电路来说却是一个空白。尤其是近年来集成电路的制造工艺在不断提高,已从超深亚微米进入到纳米阶段,加工芯片的特征尺寸进一步减小。于是,越来越多的功能,甚至是一个完整的系统都能够被集成到单个芯片之中。这就使得芯片级电磁兼容显得尤为突出。因此,制定一套公认的芯片级电磁兼容测量程序将会填补这一空白。

2.1芯片级电磁兼容的描述

附属于国际电工委员会(IEC)的主要负责集成电路方面研究的机构正致力于研究集成电路电磁兼容性描述的2项标准。在不久的将来,就能根据IEC61967标准来描述集成电路的电磁辐射,根据

IEC62132标准来描述集成电路的抗扰度。尽管这2项标准中所描述的测量方法并不能够完全取代系统级的电磁兼容测量方法,但设计工程师将具备鉴别主要辐射源及在应用程序中哪一部分具有最低敏感度的能力。

目前“IEC61967标准:用于测量集成电路电磁辐射频率150k~1GHz”包括以下6个部分:

通用条件和定义;

辐射测量方法--横向电磁波室法;

辐射测量方法--表面扫描法;

传导辐射测量方法1Ω150Ω直接耦合法;

传导辐射测量方法WFC(WorkenchFaradayCage)方法;

传导辐射测量方法--探磁针法。

而第2项标准“IEC62132标准:用于测量集成电路电磁抗扰度”目前暂时包括以下5部分:

通用条件和定义;

辐射抗扰度测量方法--横向电磁波室法;

传导抗扰度测量方法--大量电流注入法(CI);

传导抗扰度测量方法--直接激励注入法(DPI);

传导抗扰度测量方法--WFC(WorkenchFaradayCage)方法。

以上2项标准中所描述的测量方法可以被用作集成电路辐射和抗扰度规范说明的基础。当然,这些方法既有他们的优势,同时也存在局限性。因此,电子设备的设计者以及半导体生产商应谨慎地选择最符合其自身需求的测量方法。虽然能够用这些测量方法来描述芯片级集成电路的电磁兼容性,但不可能在系统级与芯片级测量方法之间进行直接比较。即使集成电路已经可以满足芯片级电磁兼容的需要,生产商仍需在整个系统中实现电磁兼容的测量。

通常,典型的电磁兼容测量方法,如过滤或屏蔽技术对于实现电子设备的电磁兼容性要求是必不可少的。至于在哪一部分实现电磁兼容性测量法(如在集成电路内或在印刷电路板上),则取决于成本及可行性方面(如可用空间等)的考虑。

解决电磁兼容性问题的最有效的方法是查明并且减少实际的干扰源。其中一个最重要的解决芯片级电磁兼容的方法就是“表面扫描法(IEC61967-3)”。采用这种方法,能够使集成电路表面电磁场的实际磁场和电场形象化,同时,还能准确、容易地定位集成电路电磁辐射的干扰源。下面就对其进行介绍。

2.1.1表面扫描法

IEC61967标准中的这一部分描述了评估集成电路表面的近电场和近磁场元件的一种方法。这种方法适用的频率范围为10M~3GHz。为了测量这些场的分布状态,可以使电场探针或磁场探针机械地移过集成电路的表面(探针可以平行或垂直于集成电路表面)。测量数据可以通过计算机进行处理,并且,在一定的扫描频率下的场强能够用有色图谱形象地表示出来。运用这种方法所能达到的效果与机械探针配置系统的精度及所用探针的尺寸密切相关。这一方法给我们提供了一个有用的工具,运用他可以准确地定位小片上集成电路封装内电磁辐射量过大的区域。

2.1.2电场和磁场探针

进行电场测量时,IEC61967-6标准中对具有部分屏蔽的微型电场探针的构造设计进行了规定。而对于磁场测量,这一标准则建议使用单向微型磁场探针。这2种探针都可用0.02英寸的半导体同轴电缆来制作。最典型有效的磁场探针的孔径大约是200μm。用同轴电缆制作的电场和磁场探针。

是一个磁场探针的实际外观。除了同轴电缆本身的屏蔽之外,为了改进探针的屏蔽效果,还需运用其他的屏蔽措施。

2.2实际应用

可以由一个微型位置调节器控制探针沿3个垂直方向线性移动进行表面扫描。为了扫描集成电路表面的矩形区域并用计算机处理所得到的测量数据,目前已经开发出了一种应用程序,可以使探针在集成电路表面之上沿正交面方向移动。这一程序能够给出所测电场或磁场的二维曲线。为了进一步处理测量数据,可以将其保存为ASCII文件。

探针也可以分别放置在小片或集成电路封装之上的任何位置。这就使得直接测量小片的特定部位的电磁辐射成为可能,如测量高速运算放大器。

给出了集成电路封装表面磁场扫描的示意图。从图中可以明显地看出具有较高的磁场强度元件的区域。由于高短路电流与高动态转换电流结合,故具有较高磁场辐射的管脚通常是集成电路的电源供应管脚和负载输出管脚。正是由于整个集成电路的电磁辐射主要集中在这些管脚上,所以电磁兼容性测量就应该从这里着手。

用三维图形示出扫描区域磁场强度的测量结果。具有较高磁场强度的区域用红色突出出来,而具有较低磁场强度的区域用蓝色表示。对具有较高磁场强度区域有一定的了解之后,设计者就能够重新设计自己的电路以减少全局的电磁辐射。同时,版图工程师也可得到关键的提示,指导如何布置元件以降低辐射。

结语

对于微电子行业来说,芯片级电磁兼容性的描述已经成为一个非常重要的主题。实际上,如果不对集成电路电磁辐射及抗扰度方面进行深入的研究,就很难满足电子设备电磁兼容性方面的需要。随着工作频率及芯片复杂度的不断增长,具有低电磁辐射和高抗扰度的集成电路设计将越来越演变成具有挑战性的课题。将来,半导体生产商都将使用新标准(IEC61967和IEC62132)中所描述的不同的测量方法,来描述其集成电路的电磁辐射和抗扰度。而其中的“表面扫描法(IEC61967-3)”可以被用来查明造成整个电磁辐射的主要干扰源。

因此,今后的研究重点应致力于芯片级电磁兼容性设计和优化,必须着重研究以下几个问题:一是更好地了解地面反射,进而了解普通模式电流是如何影响电磁辐射的,改进对辐射的控制;二是改进用于仿真的封装模型,改进芯片级电磁兼容的处理工具;三是减少信号完整性问题,提高防射频干扰的模拟模块和输入/输出模块的敏感度;四是减少封装产生的寄生参数,更好地控制输出信号的升降次数(适度的回转率)。

芯片的制造工艺流程

芯片的制造 半导体产业最上游是IC设计公司与硅晶圆制造公司,IC 设公司计依客户的需求设计出电路图,硅晶圆制造公司则以多晶硅为原料制造出硅晶圆。中游的IC制造公司主要的任务就是把IC设计公司设计好的电路图移植到硅晶圆制造公司制造好的晶圆上。完成后的晶圆再送往下游的IC封测厂实施封装与测试,即大功告成! (1)硅晶圆制造 半导体产业的最上游是硅晶圆制造。事实上,上游的硅晶圆产业又是由三个子产业形成的,依序为硅的初步纯化→多晶硅的制造→硅晶圆制造。 a硅的初步纯化 将石英砂(SiO2)转化成冶金级硅(硅纯度98%以上)。 b多晶硅的制造 将冶金级硅制成多晶硅。这里的多晶硅可分成两种:高纯度(99.999999999%,11N)与低纯度(99.99999%,7N)两种。高纯度是用来制做IC等精密电路IC,俗称半导体等级多晶硅;低纯度则是用来制做太阳能电池的,俗称太阳能等级多晶硅。 c硅晶圆制造 将多晶硅制成硅晶圆。硅晶圆又可分成单晶硅晶圆与多晶硅晶圆两种。一般来说,IC制造用的硅晶圆都是单晶硅晶

圆,而太阳能电池制造用的硅晶圆则是单晶硅晶圆与多晶硅晶圆皆有。一般来说,单晶硅的效率会较多晶硅高,当然成本也较高。 (2)IC设计 前面提到硅晶圆制造,投入的是石英砂,产出的是硅晶圆。IC设计完成后,产出则是电路图,最后制成光罩送往IC 制造公司,设计就告一段落了! 不过,要让理工科以外的人了解IC设计并不是件容易的事(就像要让念理工的人了解复杂的衍生性金融商品一样),作者必需要经过多次外出取材才有办法办到。这里先大概是一下观念,请大家发挥一下你们强大的想像力! 简单来讲,IC设计可分成几个步骤,依序为:规格制定→逻辑设计→电路布局→布局后模拟→光罩制作。 a规格制定 品牌厂或白牌厂(没有品牌的品牌厂)的工程师和IC设计工程师接触,并开出他们需要的IC的规格给IC设计工程师。讨论好规格后,工程师们就开始工作了! b逻辑设计 所谓的“逻辑”设计图,就是指它是由简单的逻辑元件构成,而不是由半导体种类电路元件(如二极体、电晶体等)所构成。什么是逻辑元件呢?像是AND Gate(故名思意,两个输入都是1的话,输出才是1,否则输出就是0),OR Gate(两

元器件封装及基本管脚定义说明(精)知识讲解

元器件封装及基本管脚定义说明 以下收录说明的元件为常规元件 A: 零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。包括了实际元件的外型尺寸,所占空间位置,各管脚之间的间距等,是纯粹的空间概念。因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装. 普通的元件封装有针脚式封装(DIP与表面贴片式封装(SMD两大类. (像电阻,有传统的针脚式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD )这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD 元件放上,即可焊接在电路板上了。 元件按电气性能分类为:电阻, 电容(有极性, 无极性, 电感, 晶体管(二极管, 三极管, 集成电路IC, 端口(输入输出端口, 连接器, 插槽, 开关系列, 晶振,OTHER(显示器件, 蜂鸣器, 传感器, 扬声器, 受话器 1. 电阻: I.直插式 [1/20W 1/16W 1/10W 1/8W 1/4W] AXIAL0.3 0.4 II. 贴片式 [0201 0402 0603 0805 1206] 贴片电阻 0603表示的是封装尺寸与具体阻值没有关系 但封装尺寸与功率有关通常来说 0201 1/20W 0402 1/16W 0603 1/10W

0805 1/8W 1206 1/4W 电容电阻外形尺寸与封装的对应关系是: 0402=1.0x0.5 0603=1.6x0.8 0805=2.0x1.2 1206=3.2x1.6 1210=3.2x2.5 1812=4.5x3.2 2225=5.6x6.5 III. 整合式 [0402 0603 4合一或8合一排阻] IIII. 可调式[VR1~VR5] 2. 电容: I.无极性电容[0402 0603 0805 1206 1210 1812 2225] II. 有极性电容分两种: 电解电容 [一般为铝电解电容, 分为DIP 与SMD 两种] 钽电容 [为SMD 型: A TYPE (3216 10V B TYPE (3528 16V C TYPE (6032 25V D TYP E (7343 35V] 3. 电感: I.DIP型电感 II.SMD 型电感

芯片设计和生产流程

芯片设计和生产流程 大家都是电子行业的人,对芯片,对各种封装都了解不少,但是你 知道一个芯片是怎样设计出来的么?你又知道设计出来的芯片是 怎么生产出来的么?看完这篇文章你就有大概的了解。 复杂繁琐的芯片设计流程 芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的IC芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是IC设计中的建筑师究竟是谁呢?本文接下来要针对IC设计做介绍。 在IC生产流程中,IC多由专业IC设计公司进行规划、设计,像是联发科、高通、Intel等知名大厂,都自行设计各自的IC芯片,提供不同规格、效能的芯片给下游厂商选择。因为IC是由各厂自行设计,所以IC设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗IC芯片时,究竟有那些步骤?设计流程可以简单分成如下。

设计第一步,订定目标 在IC设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。 规格制定的第一步便是确定IC的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合IEEE802.11等规範, 不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是

确立这颗IC的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。 设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在IC芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的HDL有Verilog、VHDL等,藉由程式码便可轻易地将一颗IC地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。 ▲32bits加法器的Verilog范例。 有了电脑,事情都变得容易 有了完整规画后,接下来便是画出平面的设计蓝图。在IC设计中,逻辑合成这个步骤便是将确定无误的HDL code,放入电子设计自动化工具(EDA tool),让电脑将HDL code转换成逻辑电路,产生如下的电路图。之后,反

最新最全的IC手册,包括绝大部分芯片的引脚定义及功能介

全新IC手 册 珍藏版 汇佳技术咨询部

目录 AN5071……………………………………AN51 95B…………………………………AN5199……………………………………AN52 65………………………………AN5274………………………………AN5277………………………………AN5521………………………………AN5534………………………………AN5539………………………………AN5891………………………………AT24C04……………………………AT24C08……………………………CCFZ3005……………………………CTV222S……………………………DBL2044……………………………DDP3310B……………………………DPTV-3D……………………………DPTV-DX……………………………DPTV-IX……………………………GAL16V8C……………………………HEF4052……………………………HL4066………………………………

IS42G32256-8PQ……………………KA2107………………………………KA2500………………………………KA5Q1265RF…………………………KA5Q1565RF…………………………KA7631………………………………KS88C8424/32/P84 32………………L78MR05……………………………LA4285………………………………LA75665……………………………LA76810……………………………LA76832……………………………LA7830………………………………LA7838………………………………LA7840………………………………LA7846………………………………LA7910………………………………LA7954…………………………………LA86C3348A……………………………LM1269…………………………………LM324…………………………………LV1116……………………………………M3 400N4………………………………M37225ECSP……………………………

(整理)集成电路IC知识

集成电路IC常识 中国半导体器件型号命名方法 第一部分:用数字表示半导体器件有效电极数目。 第二部分:用汉语拼音字母表示半导体器件的材料和极性 第三部分:用汉语拼音字母表示半导体器件的内型。 第四部分:用数字表示序号 第五部分:用汉语拼音字母表示规格号 日本半导体分立器件型号命名方法 第一部分:用数字表示器件有效电极数目或类型。 第二部分:日本电子工业协会JEIA注册标志。 第三部分:用字母表示器件使用材料极性和类型。 第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。 第五部分:用字母表示同一型号的改进型产品标志。 集成电路(IC)型号命名方法/规则/标准 原部标规定的命名方法X XXXXX 电路类型电路系列和电路规格符号电路封装T:TTL;品种序号码(拼音字母)A:陶瓷扁平; H:HTTL;(三位数字) B :塑料扁平; E:ECL; C:陶瓷双列直插; I:I-L; D:塑料双列直插; P:PMOS; Y:金属圆壳; N:NMOS; F:金属菱形; F:线性放大器; W:集成稳压器; J:接口电路。 原国标规定的命名方法CXXXXX中国制造器件类型器件系列和工作温度范围器件封装符号 T:TTL;品种代号C:(0-70)℃;W:陶瓷扁平; H:HTTL;(器件序号)E :(-40~85)℃;B:塑料扁平; E:ECL; R:(-55~85)℃;F:全密封扁平; C:CMOS; M:(-55~125)℃;D:陶瓷双列直插; F:线性放大器; P:塑料双列直插; D:音响、电视电路; J:黑瓷双理直插; W:稳压器; K:金属菱形; J:接口电路; T:金属圆壳; B:非线性电路; M:存储器; U:微机电路;其中,TTL中标准系列为CT1000系列;H 系列为CT2000系列;S系列为CT3000系列;LS系列为CT4000系列; 原部标规定的命名方法CX XXXX中国国标产品器件类型用阿拉伯数字和工作温度范围封装 T:TTL电路;字母表示器件系C:(0~70)℃F:多层陶瓷扁平; H:HTTL电路;列品种G:(-25~70)℃B:塑料扁平; E:ECL电路;其中TTL分为:L:(-25~85)℃H:黑瓷扁平; C:CMOS电路;54/74XXX;E:(-40~85)℃D:多层陶瓷双列直插; M:存储器;54/74HXXX;R:(-55~85)℃J:黑瓷双列直插; U:微型机电路;54/74LXXX;M:(-55~125)℃P:塑料双列直插; F:线性放大器;54/74SXXX; S:塑料单列直插; W:稳压器;54/74LSXXX; T:金属圆壳; D:音响、电视电路;54/74ASXXX; K:金属菱形; B:非线性电路;54/74ALSXXX; C:陶瓷芯片载体; J:接口电路;54/FXXX。 E:塑料芯

汽车电子接口CAN的电磁兼容设计方案

汽车电子接口CAN的电磁兼容设计方案 Controller Area Network简称为CAN,多用于汽车以及工业控制,用于数据的传输控制。在应用的过程中通讯电缆容易耦合外部的干扰对信号传输造成一定的影响,单板内部的干扰也可能通过电缆形成对外辐射。 本方案从EMC原理上,通过接口的原理图、PCB、结构及电缆方面进行相关的抑制干扰和抗敏感度设计,从设计层次解决EMC问题。 一、原理图设计方案 二、PCB设计方案 1. CAN接口分地设计

方案特点: (1)为了抑制内部单板高频噪声通过接口向外传导辐射,也为了增强单板对外部干扰的抗扰能力。在CAN接口处增加防护和滤波隔离器件,并以隔离器件位置大小为界,划分出接口地; (2)隔离带中可以选择性的增加电容作为两者地之间的连接,电容取值建议为1000pF;信号线串联共模电感滤波,且共模电感要求置于隔离带内;为了防止外部强干扰通过端口耦合进内部PCB,引起内部器件性能下降,在靠近端口处信号线上增加防护器件TVS管,具体布局如图示。 方案分析: (1)当接口与单板存在相容性较差或不相容的电路时,需要在接口与单板之间进行“分地”处理,即根据不同的端口电压、电平信号和传输速率来分别设置地线。“分地”,可以防止不相容电路的回流信号的叠加,防止公共地线阻抗耦合; (2) CAN接口信号传输速率较高,内部PCB板高频噪声很容易由公共地线通过接口向外传导辐射,因此将公共地分割且通过电容相接,可以阻断共模干扰的传播路径。 2 CAN接口电路布局

方案特点: (1)防护器件及滤波器件要靠近接口位置处摆放且要求摆放紧凑整齐,信号线上的防护器件TVS管与滤波电容要下接至接口地;按照信号流向摆放器件,走线时要尽量避免走线曲折的情况; (2)共模电感及跨接电容要置于隔离带中。 方案分析: (1)接口及接口滤波防护电路周边不能走线且不能放置高速或敏感的器件; (2)隔离带下面投影层要做掏空处理,禁止走线。 三、结构和线缆设计方案 EDP软件介绍 电磁兼容设计平台(EDP),依据最专业的EMC专家方案知识库,快速输出符合产品设计要求的指导性的EMC解决方案。 主要功能模块:

常用IC芯片管脚的定义中引文翻译

常用IC芯片管脚的定义中引文翻译 1、VOL—Voltage Output Low 低电平输出电压;VIH(V oltage Input High)高电平输入电压。 2、CLKO(Clock Output) 时钟输出;Vss 数字地。DP:USB端D+信号。 3、VDD—数字电源;Vssp:I/O驱动缓冲数字地。DM:USB端D-信号。 4、CE:Chip enable input 片使能输出;OE:Output enable input 输出使能输入。 5、WP:Write protect 写入保护;FWR:Flash write enable input闪存写入使能信号。 6、V A: analog power 模拟电源输入;LVDS:Low voltage differential signal低电平微分信号。 7、FB:Output voltage feedback 输出电压返回输入;SW:Power switch input 电源开关输入。 8、SHON:Shutdown control input 关闭信号输入;COMP:comp voltage. 9、TS:Temperature-sense input温度感应信号输入RC:Timer-program input定时程序信号输入 10. SNS:Current-sense input 电流感应信号输入;CE:使能信号(enable signal). 11 .WE:写入启动信号;RST: reset 复位信号;CLK:时钟控制信号;CKE:时钟控制信号。 12. Vcc:电源信号;CS:片选信号;SCLK:串行时钟输入;RF: 信号输出;FCOM:公共信号端。 13.XTALO:晶振信号输出;XTALI:晶振信号输入。OPOLS:VCOM 信号输出。 14.TXD:ASCO 时钟、数据输出;RXD:ASCO 数据输入或输出。 15.SYNC:同步脉冲输入; RCT: 振荡器时间常数电路;DC: 占空比控制。 16.VREF:5V基准电压;VFB: 误差放大器倒相输入;COMP:误差放大器输出。 17.SS:软启动控制外接电容;Vc:功放电路电源(驱动电路电源);OUT:驱动输出。 18.PGND:功放电路地线;SGND: 小信号电路地线。ISEN:电流检测。 19.DIS:关闭控制。不使用时此脚接小信号地线端,不能悬空。 20.DC-LIM: 占空比限制。接基准电源脚时,驱动脉冲占空比被限制在50%。如果此脚悬空 或是接地时,驱动脉冲占空比不被限制。 21.ST-BY:待机控制,通过电阻接第二脚。如不使用待机控制,将此脚接基准电压脚或悬空。

IC 芯片设计制造到封装全流程

一、复杂繁琐的芯片设计流程 芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的 IC 芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是IC 设计中的建筑师究竟是谁呢?本文接下来要针对IC 设计做介绍。 在IC 生产流程中,IC 多由专业 IC 设计公司进行规划、设计,像是联发科、高通、Intel 等知名大厂,都自行设计各自的 IC 芯片,提供不同规格、效能的芯片给下游厂商选择。因为IC 是由各厂自行设计,所以 IC 设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗 IC 芯片时,究竟有那些步骤?设计流程可以简单分成如下。 设计第一步,订定目标 在IC 设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC 设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。

规格制定的第一步便是确定 IC 的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合IEEE 802.11 等规范,不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是确立这颗IC 的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。 设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在IC 芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的 HDL 有Verilog、VHDL 等,藉由程式码便可轻易地将一颗IC 地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。 ▲ 32 bits 加法器的Verilog 范例 有了电脑,事情都变得容易 有了完整规画后,接下来便是画出平面的设计蓝图。在IC 设计中,逻辑合成这个步骤便是将确定无误的HDL code,放入电子设计自动化工具(EDA tool),让电脑将 HDL code 转换成逻辑电路,产生如下的电路图。之后,反覆的确定此逻辑闸设计图是否符合规格并修改,直到功能正确为止。

车载设备的电磁兼容设计方案

车载设备的电磁兼容设计方案 随着科学技术的不断发展,电子设备的数量及应用逐渐增多,结果必将造成电磁干扰越来越严重。 在日趋恶劣的电磁环境中,如若不采取恰当的电磁屏蔽措施,会导致设备之间的电磁干扰日益严重,电子设备的性能下降,甚者会危及到信息的安全。为了保证电子设备在复杂的电磁环境中既不干扰其他设备,而又不受其他设备干扰的影响而能正常工作,这就要求在设备研制的初期阶段必须从结构、技术等方面进行严格的电磁兼容设计。 1 电磁兼容设计的基本要求 电磁兼容性是电子设备的主要性能之一,在进行设备功能设计的同时,还应进行电磁兼容设计。 电磁兼容设计的目的是使所设计的设备在复杂电磁环境中实现电磁兼容,因此在进行电磁兼容设计时应满足以下要求: 首先明确设备所满足的电磁兼容指标,然后确定设备的敏感器件、干扰源及干扰途径,有针对性地采取措施,最后通过试验了解设备是否达到了电磁兼容指标要求。 2 电磁兼容设计所采取的方法 对于通信车而言,通常其所装载的设备量很多,包括配电设备、通信设备及终端设备等,各设备间很容易形成电磁干扰,进而影响通信质量,因此设备在进行电磁兼容设计时要从3 要素( 干扰源、耦合途径和敏感设备) 出发,采取各种有效手段,抑制干扰源,消除或减弱干

扰耦合,增加敏感设备的抗干扰能力。 以某车载电子设备为例,由数字电流表、数字电压表、转换开关、断路器、控制保护单元、互感器、接触器等单元及元器件组成,其中数字电流表、数字电压表、转换开关、断路器布置于前面板上,控制保护单元、互感器、接触器等单元及元器件放在机箱内部。此设备要满足GJB151A- 97 有关的电磁兼容指标要求,在结构设计等方面采取的主要措施有: 仪表窗口的屏蔽; 机箱缝隙的屏蔽; 各单元合理布局及其屏蔽; 电缆敷设以及电源线滤波等。 2.1 仪表窗口的屏蔽 仪表窗口对设备来说是比较大的泄漏口,必须采取有效的措施将其屏蔽,为此采用加装丝网屏蔽玻璃的方法对数字电流表、数字电压表进行外部屏蔽。丝网屏蔽玻璃是由一种低阻抗的金属丝网通过特殊工艺夹在两层玻璃之间制成,丝网筛孔的密度决定其主要的屏蔽效能。如图1 所示,由于玻璃周边预留了10~ 20 mm 金属丝网毛边,通过螺装金属外框将它紧紧压在机箱上,从而获得连续的导电表面,以达到减少电磁泄露的目的。

LED显示屏各芯片管脚定义汇总

一、1.2 LED板的芯片功能 74HC245的作用:信号功率放大。 第1脚DIR,为输入输出转换端口,当DIR=“1”高电平(接VCC)时信号由“A” 端输入“B”端输出,DIR=“0”低电平(接GND)时信号由“B”端输入“A”端输出。 第19脚G,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B 端才被启用,该脚也就是起到开关的作用. 第2~9脚“A”信号输入\输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”G=“0”则A1输入B1输出,其它类同。如果DIR=“0”G=“0”则B1输入A1输出,其它类同。 第11~18脚“B”信号输入\输出端,功能与“A”端一样。 第10脚GND,电源地。 第20脚VCC,电源正极。 74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。 第16脚VCC,电源正极 第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 QA~QH的输出由输入的数据控制。

第12脚STB,锁存端,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。 第11脚CLK,时钟端,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR,复位端,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。 第9脚DOUT,串行数据输出端,将数据传到下一个。 第15、1~7脚,并行输出端也就是驱动输出端,驱动LED。 HC16126\TB62726的作用:LED驱动芯片,16位移位锁存器。 备注:HC16126驱动芯片定义和5020,5024,2016等芯片一样 第1脚GND,电源地。 第24脚VCC,电源正极 第2脚DATA,串行数据输入 第3脚CLK,时钟输入 第4脚STB,锁存输入 第23脚输出电流调整端,接电阻调整 第22脚DOUT,串行数据输出 第21脚EN,使能输入 其它功能与74HC595相似,只是TB62726是16位移位锁存器,并带输出电流调整功能,但在并行输出口上不会出现高电平,只有高阻状态和低电平状态。74HC595并行输出口有高电平和低电平输出。TB62726与5026的引脚功能一样,结构相似。

芯片制作工艺流程

芯片制作工艺流程 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反

RJ45以太网接口EMC设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计以太网口的EMC设计方案。 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC 问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明:

(1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。 图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值μF~μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2)

LED显示屏常用IC管脚说明

LED显示屏常用器件的介绍 1.IC的管脚功能 IC芯片分别:74HC245、74HC595、74HC138、74HC04、4953。各IC管脚功能如下: A: 74HC245功能是放大及缓冲。各引脚如图 20 和1接电源(+5V) 19脚和10脚接电源地(GND) 当电源是以上接时:输入脚分别为2、3、4、5、6、7、8、9。 输出脚分别为11、12、13、14、15、16、 17、18 注:2脚输入时,18脚输出。其它脚以此类推。 B:74HC138功能是8选1译码器,输出为8行。控制行数据。 各引脚如图

第8脚GND,电源地。第15脚VCC,电源正极第1-3脚A、B、C,输入脚。第4-6脚选通输入端,(一般第5脚为EN ) 9-15脚和第7脚输出端。 C:74HC595功能是8位串入串、并出移位寄存器。控制列数据。各引脚如图 16脚和10脚接电源(+5V),13脚和8脚接电 源地(GND)。 列信号输出脚:1、2、3、4、5、6、7、15。 第一列输出脚为7脚,以此类 推。另第八列输出脚为15脚。 数据信号输入脚(Din)为14,数据信号输出 脚(Din)为9。 锁存信号脚(L)为12脚,移位信号脚为11 脚。 D:74HC04功能是六带缓冲反相器,控制使零信号(EN)。 各引脚如下图

15脚接电源(+5V),7脚电源地(GND)。 信号输入脚为:1、3、5、9、11、13。 信号输出脚为:2、4、6、8、10、12。 E:4953行管功能是开关作用,每个行管控制2 行。 1脚和3脚接电源(+5V)。 信号输入脚:2、4。 信号输出脚:5、6、7、8。 5脚和6脚为一 组输入, 7脚和8脚、5脚和6脚为一组输出。 TB62726与5026 5024 16126的作用:LED驱动芯片,16位移 位锁存器。 第1脚GND,电源地。第24脚VCC,电源正极第2脚DATA, 串行数据输入 第3脚CLK,时钟输入.第4脚STB,锁存输入 .第23脚输出电 流调整端,接电阻调整

芯片制作工艺流程

工艺流程 1)表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2)初次氧化 有热氧化法生成SiO2缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化Si(固)+O2àSiO2(固) 湿法氧化Si(固)+2H2OàSiO2(固)+2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2)/(d ox)=(n ox)/(n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10--10E+11/cm–2.e V-1数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3)CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1常压CVD(Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反应气体至反应炉的载气体精密装置;(2)使反应气体原料气化的反应气体气化室;(3)反应炉;(4)反应后的气体回收装置等所构成。其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出,且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

芯片设计流程详解

芯片设计流程详解 芯片,指的是内含集成电路的硅片,所以芯片又被称集成电路,可能只有2.5厘米见方大小,但是却包含几千万个晶体管,而较简单的处理器可能在几毫米见方的芯片上刻有几千个晶体管。芯片是电子设备中最重要的部分,承担着运算和存储的功能。 高大上的芯片设计流程 一颗芯片的诞生,可以分为设计与制造两个环节。芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出想要的IC 芯片,然而,没有设计图,拥有再强大的制造能力也无济于事。 在IC 生产流程中,IC 多由专业IC 设计公司进行规划、设计,像是联发科、高通、Intel 等知名大厂,都自行设计各自的IC 芯片,提供不同规格、效能的芯片给下游厂商选择。所以,IC设计是整个芯片成型最重要的一环。 先看看复杂繁琐的芯片设计流程: 芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的IC 芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。 但是IC 设计中的建筑师究竟是谁呢?接下来要针对IC 设计做介绍: 在IC 生产流程中,IC 多由专业IC 设计公司进行规划、设计,像是联发科、高通、Intel 等知名大厂,都自行设计各自的IC 芯片,提供不同规格、效能的芯片给下游厂商选择。因为IC 是由各厂自行设计,所以IC 设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗IC 芯片时,究竟有那些步骤?设计流程可以简单分成如下。 设计第一步,定目标 在IC 设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才

最新最全的IC手册,包括绝大部分芯片的引脚定义与功能介

全新IC手册 珍藏版 汇佳技术咨询部

目录 AN5071……………………………………AN5195B ………………………………… AN5199……………………………………AN5265……………………………… AN5274……………………………… AN5277……………………………… AN5521……………………………… AN5534……………………………… AN5539……………………………… AN5891……………………………… AT24C04…………………………… AT24C08…………………………… CCFZ3005…………………………… CTV222S …………………………… DBL2044…………………………… DDP3310B …………………………… DPTV-3D …………………………… DPTV-DX …………………………… DPTV-IX …………………………… GAL16V8C …………………………… HEF4052…………………………… HL4066……………………………… IS42G32256-8PQ …………………… KA2107……………………………… KA2500……………………………… KA5Q1265RF ………………………… KA5Q1565RF ………………………… KA7631……………………………… KS88C8424/32/P8432…………… … L78MR05…………………………… LA4285……………………………… LA75665…………………………… LA76810…………………………… LA76832…………………………… LA7830……………………………… LA7838……………………………… LA7840……………………………… LA7846……………………………… LA7910……………………………… LA7954………………………………… LA86C3348A ………………………… … LM1269………………………………… LM324………………………………… LV1116……………………………………M3400N4…………………………… … M37225ECSP ………………………… … M37274………………………………… M37280………………………………… M37281………………………………… M54797………………………………… MCU(3S28) …………………………… MCU(Z233) …………………………… MN152810…………………………… … MN181768…………………………… … MN18P73284DP ……………………… … MN3102……………………………… … MN3207……………………………… … MN3868……………………………… … MSM518222………………………… … MSM541222………………………… … MSP3310……………………………… MTV880……………………………… … NJM2192……………………………… NJM2700……………………………… NN5199………………………………… NV320P ………………………………… OM8361……………………………… … OM8838……………………………… … OM8839……………………………… … P87C766……………………………… PCA84C440…………………………… PCF8594……………………………… PT2213………………………………… Q83652………………………………… SAA4951………………………………

LED显示屏IC脚位功能

74HC245的作用:信号功率放大。 第1脚DIR,为输入输出端口转换用,DIR=“1”高电平时信号由“A”端输入“B”端输出,DIR=“0”低电平时信号由“B”端输入“A”端输出。 第2~9脚“A”信号输入输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”G=“0”则A1输入B1输出,其它类同。如果DIR=“0”G=“0”则B1输入A1输出,其它类同。第11~18脚“B”信号输入输出端,功能与“A”端一样,不在描述。 第19脚G,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B端才被启用,该脚也就是起到开关的作用。 第10脚GND,电源地。 第20脚VCC,电源正极。 74HC04的作用:6位反相器。 第7脚GND,电源地。 第14脚VCC,电源正极。 信号由A端输入Y端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 74HC138的作用:八位二进制译十进制译码器。 第8脚GND,电源地。 第15脚VCC,电源正极 第1~3脚A、B、C,二进制输入脚。 第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A、B、C信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。 通过控制选通脚来级联,使之扩展到十六位。 例:G2A=0,G2B=0,G1=1,A=1,B=0,C=0,则Y0为“0”Y1~Y7为“1”,详情见真值表。 74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。 第16脚VCC,电源正极 第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 第13脚EN,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。 第12脚STB,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。 第11脚CLK,时钟口,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR,复位口,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。 第9脚DOUT,串行数据输出端,将数据传到下一个。 第15、1~7脚,并行输出口也就是驱动输出口,驱动LED。 4953的作用:行驱动管,功率管。 其内部是两个CMOS管,1、3脚VCC,2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 TB62726的作用:LED驱动芯片,16位移位锁存器。 第1脚GND,电源地。 第24脚VCC,电源正极

相关主题
文本预览
相关文档 最新文档