当前位置:文档之家› 生物工程下游技术实验讲义

生物工程下游技术实验讲义

生物工程下游技术实验讲义
生物工程下游技术实验讲义

生物工程下游技术实验讲义

目录

实验一层析柱装填及柱效测定

实验二溶菌酶粗提取

实验三溶菌酶分离纯化

实验四酶活力及蛋白质浓度的测定

实验五溶菌酶纯度鉴定与分子量测定

实验一层析柱装填及柱效测定

一、实验目的

1. 掌握凝胶过滤层析的原理,掌握凝胶柱柱效测定方法;

2. 熟悉凝胶层析的一般过程;

二、实验原理

凝胶过滤层析也称分子筛层析、排阻层析。是利用具有网状结构的凝胶的分子筛作用,根据被分离物质的分子大小不同来进行分离。相对分子质量大的生物分子由于不能进入或不能完全进入凝胶内部的网孔,沿着凝胶颗粒间的空隙或大的网状孔通过,大分子相对于小分子迁移的路径短,保留值小,所以在层析过程中迁移速度最快,先从柱中流出;反之,分子量小的生物分子保留值大,后从柱中流出。

凝胶层析常用于分离纯化蛋白质(包括酶类)、核酸、多糖、激素、病毒、氨基酸和抗生素等生物大分子, 也可用于样品的浓缩和脱盐及测定生物大分子的分子质量等方面。三、实验试剂与器材

层析柱( 1.6×30 cm ),砝码天平,玻璃棒,烧杯,刻度试管及试管架,滴头吸管,Sephadex G-50,0.02mol/L pH8.0的PBS缓冲液,5%丙酮(PBS缓冲液作为溶剂),水浴锅,蓝色葡聚糖

四、实验内容与步骤

(一)测量层析柱的内径、高度,计算所需凝胶量

干胶用量(g)=柱床体积(ml)/凝胶的溶胀体积(ml/g)

由上式计算出的干胶用量再增加10%-20%

(二)Sephadex G-50凝胶预处理

称取相应质量的干凝胶,加入适量的0.02 mol/L PBS 在100℃水浴中加热溶胀1小时以上,溶胀之后将极细的小颗粒倾泻出去。用真空干燥器抽尽凝胶中空气,并将凝胶上面过多的溶液倾出。

(三)层析柱的装填

1 清洗:每组取一支层析柱,用清水冲洗干净。

2 安装与检查:检查柱下部烧结滤板是否完好干净。安装层析柱,让其垂直固定于滴定台架上。对准出口处,放一只250mL烧杯。

3. 关闭层析柱出水口,向柱管内加入约1/4柱容积的缓冲液

4、边搅拌,边将薄浆状的凝胶液连续倾入柱中,使其自然沉降,等凝胶沉降约2-3cm后,打开柱的出口,调节合适的流速,使凝胶继续沉降,并不断加入凝胶液,最后使柱中基质表面平坦并在表面上留有2-3cm高的缓冲液,关闭出水口。

5、柱子装好后,用缓冲液平衡柱子。用15ml洗脱剂走柱子使柱床稳定(流速0.5~1 mL/min) 始终保护凝胶上端有一段液体。(注意不能干柱、分层、否则需重新装柱)(四)凝胶柱柱效测定

1 肉眼观察,柱子填装是否均匀,无纹路,无气泡

2 用0.5ml 2mg/mL的蓝色葡聚糖-2000上柱,如果色带狭窄、平整、均匀下降,表明柱中的凝胶填装情况较好,可以用来进行样品分离。如果色带分散,歪曲,则需重新装柱。(五)凝胶再生

鉴定完毕,打开出水口,继续用2~3倍床体积洗脱剂洗脱,洗脱后关闭出口,以备下次使用。

五、注意事项

1. 装柱要均匀,既不过松,也不过紧,流速不宜过快,避免因此压紧凝胶。

2. 始终保持柱内液面高于凝胶表面,否则水分蒸发,凝胶变干。也要防止液体流干,使凝胶混入大量气泡,影响液体在柱内的流动。

3. 所用凝胶比较昂贵,需小心操作,实验后回收,尽量避免浪费和损失

六、背景资料

凝胶层析的使用

(一)层析柱

层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管,柱的直径与长度根据经验,组别分离时,大多采用20-30cm 长的层析柱,分级分离时,一般需要100cm 左右长的层析柱,其直径在1-5cm 范围内,小于1cm 产生管壁效应,大于5cm 则稀释现象严重。

由于层析柱的直径大小不影响分离度,所以样品量大时可用大直径的层析柱(一般制备用凝胶柱,直径大于2cm , 但在加样时应将样品均匀分布于凝胶柱床面上) 。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1m。

⑴分组分离时用短柱,一般凝胶柱长20-30cm ,柱高与直径的比较5:1─10:1 ,样品溶液体积应小于凝胶床体积为的20% 。

⑵分级分离时柱高与直径之线为20:1─100:1 (层析柱滤板下的死体积应尽可能的小,如果支撑滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000 ),样品溶液体积应小于凝胶床体积为的 5 % 。

⑶脱盐:高分子(如蛋白质、核酸、多糖等)溶液中的低分子量杂质,可以用凝胶层析法除去,这一操作称为脱盐。适用的凝胶为SephadexG-10、15、25 或Bio-Gel-p-2、4、6 。柱长与直径之比为5-15 ,样品体积可达柱床体积的20-25% ,为了防止蛋白质脱盐后溶解度降低会形成沉淀吸附于柱上,一般用醋酸铵等挥发性盐类缓冲液使层析柱平衡,然后加入样品,再用同样缓冲液洗脱,收集的洗脱液用冷冻干燥法除去挥发性盐类。(二)凝胶的类型

常用凝胶有葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶。具体的种类型号及性能列表如下:

种类及主要用途化学组成部分型号颗粒大小(/目数)分离性能(Da)溶胀时间/h 20-25℃90-100℃

葡聚糖凝胶(Sephadex G-)由葡聚糖和甘油基通过醚桥交联而成

G-10 100-200 <700 3 1

G-15 120-200 <1500 3 1

G-25 50-400 100-5,000 3 1

G-50 50-400 500-30,000 3 1

G-75 120-400 1,000-8,000 24 3

G-100 120-400 1,000-15,000 72 3

G-150 120-400 1,000-30000 72 5

G-200 120-400 1,000-60,000 72 5

聚丙烯酰胺凝胶(Bio-gel p-)由丙烯酰胺和双丙烯酰胺共聚而成

P-2 50-400 200-1,800 4 2

P-4 50-400 800-4,000 4 2

P-6 50-400 1,000-6,000 4 2

P-10 50-400 1,500-20,000 4 2

P-30 50-200 2,500-40,000 12 3

P-60 50-200 3,000-60,000 12 3

P-100 50-200 5,000-100,000 24 5

P-150 50-200 15,000-150,000 24 5

P-200 50-200 50,000-20,000 48 5

P-300 50-200 60,000-400,000 48 5

琼脂糖凝胶(Sepharose gio-gel )由D-半乳糖和3、6脱水的L-半乳糖连接而成,为中性琼脂糖

A 0.5m 50-400 <10,000-500,000

A 1.5m 50-400 <10,000-1,500,000

A 5m 50-400 10,000-5,000,000

A 15m 50-400 10,000-15,000,000

A 50m 50-400 100,000-50,000,000

A 150m 50-200 1,000,000-150,000,000

(三)凝胶的选择

根据所需凝胶体积,估计所需干胶的量。一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-200 的吸水量为20,1克Sephadex G─200 吸水后形成的凝胶体积约40mL 。凝胶的粒度也可影响层析分离效果。粒度细分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用100-200 号筛目的的Sephadex G-200 效果好;脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。

(四)凝胶的制备

商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大加速膨胀,通常1-2小时内即可完成。特别是在使用软胶时,自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。(五)样品溶液的处理

样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不能太大,否则影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。

(六)防止微生物的污染

交联葡聚糖和琼脂糖都是多糖类物质,防止微生物的生长,在凝胶层析中十分重要,常用的抑菌剂有:

(1)叠氨钠(NaN3)在凝胶层析中只要用0.02%叠氮钠已足够防止微生物的生长,叠氮钠易溶于水,在20℃时约为40%。它不与蛋白质或碳水化合物相互作用,因此叠氮钠不影

响抗体活力;不会改变蛋白质和碳水化合物的层析特性,但可干扰荧光标记蛋白质。

(2)可乐酮[Cl 3C-C(OH)(CH3)2 ] 在凝胶层析中使用浓度为0.01-0.02% 。在微酸性溶液中它的杀菌效果最佳,在强碱性溶液中或温度高于60℃时易引起分解而失效。(3)乙基汞代巯基水杨酸钠在凝胶层析中作为抑菌剂使用浓度为0.05-0.01 %。在微酸性溶液中最为有效。重金属离子可使乙基代巯基的物质结合,因而包含疏基的蛋白质可在不同程度上降低它的抑菌效果。

(4)苯基汞代盐在凝胶层析中使用浓度为0.001%-0.01 %。在微碱性溶液中抑效果最佳,长时间放置时可与卤素、硝酸根离子作用而产生沉淀;还原剂可引起此化合物分解;含疏基的物质亦可降低或抑制它的抑菌作用。

(六)凝胶回收

如果不再使用可将其回收,一般方法是将凝胶用水冲洗干净滤干,依次用70%、90%、95%乙醇脱水平衡至乙醇浓度达90%以上,滤干,再用乙醚洗去乙醇、滤干、干燥保存。湿态保存方法是凝胶浆中加入抑菌剂或水冲洗到中性,密封后高压灭菌保存。

实验二溶菌酶的粗提取

一、实验目的

1.掌握等电点沉淀法进行初级分离的操作方法和注意事项;

2.能针对不同的目标产物选择恰当的初级分离方法,锻炼应用生物分离技术知识分析、解决实际问题的能力。

二、实验原理

溶菌酶是一种有效的抗菌剂,全称为1,4-β-N-溶菌酶,又称作粘肽N-乙酰基胞壁酰水解酶或胞壁质酶。是一种糖苷水解酶,能催化水解粘多糖的N-乙酰氨基葡萄糖与N-乙酰胞壁酸间的β-1,4糖苷键,由129氨基酸残基构成,由于其中含有较多碱性氨基酸残基,所以其等电点高达10.8左右,最适温度为50℃,最适PH为6~7左右。

溶菌酶广泛存在于动植物及微生物体内,鸡蛋(含量约为2%~4%)和哺乳动物的乳汁是溶菌酶的主要来源,目前,溶菌酶仍属于紧销的生化物质,鸡蛋的蛋清中含有丰富的上述物质,本实验以鸡蛋蛋清为原料,对溶菌酶进行提取。

溶菌酶常温下在中性盐溶液中具有较高天然活性,在中性条件下溶菌酶带正电荷,因此在分离制备时,先采用等电点法粗分离。

三、实验试剂与器材

721型分光光度计、摇床、高速离心机,200mL烧杯、玻璃棒、漏斗、定性快速滤纸、200mL 量筒、50mL离心管,鸡蛋一个、0.02 mol/L PBS( pH8.0),40%甘油

四、实验步骤

溶菌酶的粗提取(约两个半小时)

1.拿1个鸡蛋破壳取蛋清置于250mL烧杯中,轻轻搅拌5分钟,使其的稠度均匀,去除脐带和蛋壳。记录其体积V1

2.加入1.5倍体积的pH8.0 PBS缓冲液,搅拌均匀

3.用冰醋酸调pH

4.7左右,充分搅拌

4.3500rpm,离心20min,弃沉淀,转移上清至烧杯中

5.加入1倍体积的pH8.0 PBS缓冲液,搅拌均匀,并用5mol/L NaOH调pH8.0

6.滤纸过滤,取清液,测量并记录体积V2

7.取0.5ml蛋清于EP管中,装两管,-20℃冻存备用(样品S1)

8.剩余清液装在烧杯中-20℃冻存备用。

注:保存样品需明确标记名称、班级、组号、日期。

五、实验注意事项

1. 等电点沉淀后利用离心的办法,要尽量除去沉淀;

2. 调节pH时要避免局部过酸;

3. 提取过程中尽量避免泡沫的产生。

实验三溶菌酶分离纯化

一、实验目的

1. 掌握离子层析的原理以及离子交换层析的操作方法

2. 掌握离子交换树脂的再生和保存

二、实验原理

离子交换层析是根据蛋白质所带电荷的差异进行分离纯化的一种方法。蛋白质的带电性是由蛋白质多肽中带电氨基酸决定的。由于蛋白质中氨基酸的电性又取决于介质中的pH,所以蛋白质的带电性也就依赖于介质的pH。当pH较低时,负电基团被中和,而正电基团就很多; 在pH较高时,蛋白质的电性与低pH时相反。当蛋白质所处的pH,使蛋白质的正负电荷相等,此时的pH称为等电点。

离子交换层析所用的交换剂是经酯化、氧化等化学反应引入阳性或阴性离子基团制成的,可与带相反电荷的蛋白质进行交换吸附。带有阳离子基团的交换剂可置换吸附带负电荷的物质,称为阴离子交换剂,如DEAE-纤维素树脂;反之称为阳离子交换剂,如CM-纤维素树脂。不同的蛋白质有不同的等电点,在一定的条件下解离后所带的电荷种类和电荷量都不同,因而可与不同的离子交换剂以不同的亲和力相互交换吸附。当缓冲液中的离子基团与结合在离子交换剂上的蛋白质相竞争时,亲和力小的蛋白质分子首先被解吸附而洗脱,而亲和力大的蛋白质则后被解吸附和洗脱。因此,可通过增加缓冲液的离子强度和/或改变酸碱度,便可改变蛋白质的吸附状况,使不同亲和力的蛋白质得以分离。

三、实验器材

D152大孔弱酸性阳离子交换树脂,层析柱,试管及试管架,高速离心机(可用50mL离心管),冰箱,可见光分光光度计、摇床、烧杯、玻璃棒、漏斗、滤纸;样品S1,0.5mol/L NaCl, 0.02mol/L pH8.0的PBS(离子交换洗脱溶液,含0.5mol/L NaCl),0.02mol/L的磷酸盐缓冲剂(pH6.5),硫酸铵,NaOH,HCl,无水乙醇,聚乙二醇

四、实验内容与步骤

采用离子交换层析对实验二获得的初提液,进行进一步的分离纯化以得到较高纯度的溶菌酶。具体来说包括:

1、D152树脂的处理:将D152树脂先将蒸馏水洗去杂物,滤除,用1mol/L NaOH搅拌浸泡并搅拌4-8h,抽滤干NaOH,用蒸馏水洗近pH7.5左右,抽滤干,再用1mol/L HCl按上述方法处理树脂,知道全部转变为氢型,抽滤干HCl,用2mol/L NaOH处理树脂,是指转变为钠型,pH值不低于6.5。吸干溶液,加0.02mol/L的磷酸盐缓冲剂(pH6.5)平衡树脂。

2. 装柱

装柱方式与第一次课大家装填分子筛层析柱的方法一样。注意不能使树脂露出水面,因为树脂露于空气中,当加入溶液时,树脂间隙中会产生气抱,而使交换不完全。对于重复使用的填料,需要先冲3倍柱床体积蒸馏水,将保存用的乙醇洗脱出来。

取层析柱,自顶部注入经处理过的上述树脂悬浮液,关闭层析柱出口,带树脂沉降后,放过量的溶液,再加上一些树脂,至树脂沉积至15~20cm高度即可。与柱子顶部继续加入0.02mol/L的磷酸盐缓冲剂(pH6.5)平衡树脂。最终是流出液pH为6.5为止,关闭柱子出口,保持页面高出树脂表面1cm。

2. 平衡

用3倍柱床体积的0.02M PBS pH8.0过柱。这一步的作用是使得柱床体系的内外达到平衡与均一,以利后续目的蛋白的结合。

3. 上样

用吸管将0.5ml S1样品加入层析柱,经过一段时间之后,蛋白将通过离子交换的方式,与介质相互作用而挂柱。注意观察并记录280nm下吸收值的变化。

4. 洗脱

用50mL含0.5mol/L NaCl的0.02mol/L pH8.0的PBS和50mL 0.02mol/L pH8.0的PBS 进行梯度洗脱。

收集洗脱峰,记录洗脱时间和洗脱峰体积V4。取0.5mL清液于Ep管中,制备2管,-20℃备用(留样S4)

5. 再生

用2倍柱体积的2mol/L NaCl过柱,然后水洗4倍柱体积。

洗脱完成后,需要进行离子交换填料的再生处理。离子交换基团为一些盐所覆盖,影响下次的重复使用。因此,先用高浓度的盐将与介质结合紧密的杂质洗脱下来,然后再恢复其离子交换功能。对于CM-sepharose 而言,只需要用水过柱即可以使其离子交换功能得到恢复。

6. 保存

用2倍柱体积的20%乙醇过柱。介质回收,用于蛋白质分离纯化的介质多保存于液体中。保存时需加入一些抑菌剂,如叠氮化钠等。对于本介质,只需采用20%乙醇保存即可。

四、注意事项

1.离子交换树脂再使用前需要再生,阴离子交换树脂以“碱酸碱”的顺序进行处理,阳离子交换树脂以“酸碱酸”的顺序进行处理和再生。装柱时要求粒度均匀,比较致密,柱床表面平整,柱中无裂缝,气泡和沟流的现象。

2.加样蛋白浓度低于20 mg/mL,上样体积小于柱体积的1/3。

3. 在整个实验过程中,流速必须得到一定的控制。过大,会使填料压缩紧密,导致流

速过低,层析柱有可能堵塞而实验失败,流速过小,实验时间过长,引起酶的活性变化。在我们的实验中,控制流速为2mL/min。

八、背景资料

(一)离子交换树脂

离子交换树脂是具有网状结构的复杂的有机高分子聚合物。网状结构的骨架部分一段很稳定,不溶于酸、碱和一般溶剂。在网状结构的骨架上有许多可被交换的活性基团。根据活性基团的不同、离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两大类。由于本实验采用的是阳离子交换树脂,所以将其做重点介绍。

阳离子交换树脂具有酸性基团,如葡聚糖凝胶型、琼脂糖凝胶型以及强酸性磺酸型聚苯乙烯树脂等等。这种树脂的化学性质很稳定,具有耐强酸、强碱、氧化剂和还原剂的性质,因此应用非常广泛。各种阳离子交换树脂含有不同的活性基因、常见的有磺酸基(-SO3H)、羧基(-COOH)和酚基(-OH)等。根据活性基团离解出H+能力的大小不同,阳离子交换树脂分为强酸性和弱酸性两种。例如含-SO3的为强酸性阳离子交换树脂,常用R-SO3H表示(R表示树脂的骨架),含-COOH和-OH的弱酸性阳离子交换树脂,分别用R-COOH和R-OH表示。强酸性阳离子交换树脂应用较广泛,弱酸性阳离子交换树脂的H+不易电离,所以在酸性溶液中不能应用,但它的选择性较高而且易于洗脱。本次实验采用的离子交换树脂为CM-Sepharose F.F,其中Sepharose是指琼脂糖凝胶,CM是是弱酸性活性基团—羧甲基(-CH3COOH)。

离子交换反应和其他化学反应一样,完全服从质量作用定律。树脂对离子亲合力的大小,与离子的水合离子半径大小和带电荷的多少有关。经实验证明,在低浓度、常温下,离子交换树脂对不同离子的亲合力顺序有下列规律。对于在弱酸性阳离子交换树脂中具有相同价态离子的亲合力顺序为:Ag+>Cs+>Rb+>K+>NH4+>Na+>H+>Li+

根据这些原理我们利用在此条件下溶菌酶的亲和力大于H+,所以弱酸性阳离子交换树脂的活性基团在离子交换过程中可吸附溶菌酶,再采用亲和力更大的Na+进行洗脱就可得到相对纯化的溶菌酶。

同时,为了监测分离纯化的效果,我们必须对相应的结果进行检测。对于酶而言,主要通过其催化特异的反应进行监测。溶菌酶对革兰氏阳性菌的细胞壁有明显的破坏作用,可利用这一特性进行溶菌酶活性的监测,以便我们区分在纯化过程中,含有溶菌酶的组分。

类似的采用 DEAE- 纤维素对抗体进行精制,特别是经过初步纯化后的 Ig 的纯化,效果尤为显著。 IgG 的等电点为 pI 8.0 , IgM , IgA 的等电点为 pI 7.0 , 7.4 ,在 pH 8.0 时 IgG 带正电荷,不能被 DEAE-纤维素吸附而被洗脱下来,被 DEAE- 纤维素吸附的其它球蛋白,可用逐渐增加洗脱液中 PO4 3-浓度的方法将其逐一洗脱,或降低 pH 使之洗脱出来。

目前常用的离子交换纤维素列于下表:

蛋白质进入离子交换柱后,与离子交换树脂无亲和力的蛋白质被洗脱下来。余下的蛋白质均结合在树脂上,利用其蛋白质表面电荷性质的不同,与树脂的亲和力也各不相同,利用不同强度的离子溶液,将其分别洗脱下来达到分离、纯化蛋白质的目的。

以下对操作过程的要点进行说明。

1. 离子交换剂预处理和装柱

对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带 H + 或 OH - 的交换剂型。阴离子交换剂常用“碱 -酸-碱” 处理,使最终转为-OH -型或盐型交换剂;对于阳离子交换剂则用“酸- 碱-酸” 处理,使最终转为-H -型交换剂。洗涤好的纤维素使用前必须平衡至所需的 pH 和离子强度。已平衡的交换剂在装柱前还要减压除气泡。为了避免颗粒大小不等的交换剂在自然沉降时分层,要适当加压装柱,同时使柱床压紧,减少死体积,有利于分辨率的提高。柱子装好后再用起始缓冲液淋洗,直至达到充分平衡方可使用。

2. 加样与洗脱

加样:层析所用的样品应与起始缓冲液有相同的 pH 和离子强度,所选定的 pH 值应落

在交换剂与被结合物有相反电荷的范围,同时要注意离子强度应低,可用透析、凝胶过滤或稀释法达此目的。样品中的不溶物应在透析后或凝胶过滤前,以离心法除去。为了达到满意的分离效果,上样量要适当,不要超过柱的负荷能力。柱的负荷能力可用交换容量来推算,通常上样量为交换剂交换总量的 1%-5%。加样蛋白浓度低于20 mg/mL,上样体积小于柱体积的1/3 。

洗脱:已结合样品的离子交换前,可通过改变溶液的 pH 或改变离子强度的方法将结合物洗脱,也可同时改变 pH 与离子强度。为了使复杂的组份分离完全,往往需要逐步改变 pH 或离子强度,其中最简单的方法是阶段洗脱法,即分次将不同 pH 与离子强度的溶液加入,使不同成分逐步洗脱。由于这种洗脱 pH 与离子强度的变化大,使许多洗脱体积相近的成分同时洗脱,纯度较差,不适宜精细的分离。最好的洗脱方法是连续梯度洗脱:两个容器放于同一水平上,第一个容器盛有一定 pH 的缓冲液,第二个容器含有高盐浓度或不同 pH 的缓冲液,两容器连通,第一个容器与柱相连,当溶液由第一容器流入柱时,第二容器中的溶液就会自动来补充,经搅拌与第一容器的溶液相混合,这样流入柱中的缓冲液的洗脱能力即成梯度变化。第一容器中某一时间的盐浓度可用下式进行计算: C = C2-(C2-C1)(1-V)A2/A1 式中 A 1、A 2分别代表两容器的截面积: C1、C2分别表示容器中溶液的浓度;V 为流出体积对总体积之比。当 A 1 =A 2 时为线性梯度,当A 1>A 2时为凹形梯度, A1>A2 时为凸形梯度。进行离子交换层析的最佳洗脱溶液 pH 值一般与预分离蛋白质的等电点相差一个单位。这使蛋白质的净电荷量能保证将其结合在离子交换树脂上,又不需在洗脱时采用高强度的离子浓度或 pH 值相差悬殊的苛刻的洗脱条件。

洗脱时应满足以下要求:① 洗脱液体积应足够大,一般要几十倍于床体积,从而使分离的各峰不致太拥挤。② 梯度的上限要足够高,使紧密吸附的物质能被洗脱下来。③ 梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。目的物过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。④ 流速: 1 mL/cm 2 · min ,过快会吸附不完全,分离不清,洗脱峰平坦。

3. 洗脱馏份的分析

按一定体积( 5-10 mL/管)收集的洗脱液可逐管进行测定,得到层析图谱。依实验目的的不同,可采用适宜的检测方法(生物活性测定、免疫学测定等)确定图谱中目的物的位置,并回收目的物。

4. 离子交换剂的再生与保存

离子交换剂可在柱上再生。如离子交换纤维素可用 2 mol/L NaCl 淋洗柱,若有强吸附物则可用 0.1 mol/L NaOH 洗柱;若有脂溶性物质则可用非离子型去污剂洗柱后再生,也可用乙醇洗涤,其顺序为: 0.5 mol/L NaOH- 水 - 乙醇 - 水 -20 % NaOH-水。保存离子交换剂时要加防腐剂。对阴离子交换剂宜用 0.002 % 氯已定(洗必泰),阳离子交换剂可用乙基硫柳汞( 0.005%)。有些产品建议用 0.02%叠氮钠。

离子交换层析法是以具有离子交换性能的物质作固定相,利用它与流动相中的离子能进行可逆的交换性质来分离离子型化合物的一种方法。

实验四酶活力及蛋白质浓度的测定

一、实验目的

1.学习考马斯亮蓝(Coomassie Brilliant Blue)法测定蛋白质浓度的原理和方法

2.掌握比色法测定溶菌酶的酶活

二、实验原理

考马斯亮蓝法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量的测定微量蛋白

度的快速、灵敏的方法。

考马斯亮蓝G―250存在着两种不同的颜色形式,红色和蓝色。它和蛋白质通过范德华力结合,在一定蛋白质浓度范围内,蛋白质和染料结合符合比尔定律(Beer’s law)。此染料与蛋白质结合后颜色有红色形式和蓝色形式,最大光吸收由465nm变成595nm,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。

蛋白质和染料结合是一个很快的过程,约2min即可反应完全,呈现最大光吸收,并可稳定1h,之后,蛋白质―染料复合物发生聚合并沉淀出来。蛋白质―染料复合物具有很高的消光系数,使得在测定蛋白质浓度时灵敏度很高,在测定溶液中含蛋白质5μL/ml时就有0.275光吸收值的变化,比Lowry法灵敏4倍,测定范围为10-100μg蛋白质,微量测定法测定范围是1-10μg蛋白质。此反应重复性好,精确度高,线性关系好。标准曲线在蛋白质浓度较大时稍有弯曲,这是由于染料本身的两种颜色形式光谱有重叠,试剂背景值随更多染料与蛋白质结合而不断降低,但直线弯曲程度很轻,不影响测定。

此方法干扰物少,研究表明:NaCl,KCl,MgCl2,乙醇,(NH4)2SO4无干扰。强碱缓冲液在测定中有一些颜色干扰,这可以用适当的缓冲液对照扣除其影响。Tris,乙酸,2―巯基乙醇,蔗糖,甘油,EDTA及微量的去污剂如Triton X―100,SDS,玻璃去污剂有少量颜色干扰,用适当的缓冲液对照很容易除掉。但是,大量去污剂的存在对颜色影响太大而不易消除。

三、实验试剂与器材

考马斯亮蓝试剂:考马斯亮蓝G―250 100mg溶于50ml95%乙醇中,加入100ml85%磷酸,用蒸馏水稀释至1000ml,滤纸过滤。最终试剂中含0.01%(W/V)考马斯亮蓝G―250,4.7%(W/V)乙醇。

标准蛋白质溶液:结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用0.15mol/LNaCl配制成1mg/ml,0.1mg/ml蛋白溶液。

未知蛋白质溶液,试管及试管架,移液管,UV-2000型分光光度计。

四、实验操作方法

(一) 标准法制定标准曲线

(1)取14支试管,分两组按下表a平行操作。分别加入样品、水和试剂,即用1.0 mg/ml 的标准蛋白质溶液给各试管分别加入:0、0.01、0.02、0.04、0.06、0.08、0.1 ml,然后用无离子水补充到0.1 ml。最后各试管中分别加入5.0 ml考马斯亮兰G-250试剂,每加完一管,立即在旋涡混合器上混合(注意不要太剧烈,以免产生大量气泡而难于消除)。(2)加完试剂2-5分钟后,即可开始用比色皿,在分光光度计上测定各样品在595nm处的光吸收值A595。

(3) 绘制标准曲线:以A595nm为纵坐标,标准蛋白含量为横坐标,绘制标准曲线。由此标准曲线,根据测出的未知样品的A595值,即可查出未知样品的蛋白质含量。

(0.5 mg牛血清蛋白/ml溶液的A595约为0.50)

表a

摇匀,1h内以0号管为空白对照,在595nm处比色

(二) 微量法制定标准曲线

取12支试管,分两组按下表b平行操作。

绘制标准曲线:以A595nm为纵坐标,标准蛋白含量为横坐标,绘制标准曲线。

表b

摇匀,1h内以0号管为空白对照,在595nm处比色

(三) 未知样品蛋白质浓度测定

测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的A595nm值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/ml)。

(四)溶菌酶的活性测定

(1)酶液配制:准确秤取溶菌酶5mg,用0.1mol/L,pH6.2 磷酸缓冲液配成1mg/ml的酶液,再将酶液稀释成50μg/ml。

(2)底物配制:取干菌粉5mg加入上述缓冲液少许,在研钵中研磨2Min,倾出,稀释到15-25ml。

(3)活力测定:先将酶和底物分别放入25℃水浴中预热10min,吸取底物悬浮液4ml放入比色杯中,在450nm出测吸光度,然后吸取酶液0.2ml,测定30s和5min30s的吸光度。以平均每分钟光密度下降0.001作为一个活力单位(由于溶菌酶对小球菌细胞壁的降解做用导致光密度的降低)。计算方法如下:

酶活性(U)=(OD t0-OD t1)*1000*A,

其中OD t0为30s时的光密度,OD t1为5Min30s时的光密度;A为酶的稀释倍数,酶活性为每毫克冻干溶菌酶所具有的活性单位。

注意事项

(1)如果测定要求很严格,可以在试剂加入后的5-20min内测定光吸收,因为在这段时间内颜色是最稳定的。

(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,实验证明此复合物的吸附量是可以忽略的。测定完后可用乙醇将蓝色的比色杯洗干净。

实验五溶菌酶纯度鉴定与分子量测定

一、实验目的

1. 学习SDS-聚丙烯酰胺凝胶(PAGE)测定蛋白质纯度与分子量的原理

2. 掌握SDS-PAGE垂直板电泳分离蛋白质技术

3. 运用SDS-PAGE测定蛋白质分子质量及染色鉴定

二、实验原理

PAGE电泳是根据蛋白质分子(或其它生物大分子)所带电荷的差异及分子大小的不同所产生的不同迁移率而分离成若干条区带。然而有时两个分子量不同的蛋白质,由于其分子大小的差异、被它们所带电荷的差别补偿而以相同的速度向阳极移动,因而不能达到分离的目的。SDS-PAGE就是设法将电荷差异这一因素除去或减小到可以略而不计的程度。

SDS是一种阴离子表面活性剂,能使蛋白质的氢键、疏水键打开,并结合蛋白质疏水部分,形成SDS-蛋白质复合物。在一定条件下,SDS与大多数蛋白质的结合比为1.4g SDS/1g 蛋白质。由于SDS带有负电荷,使各种SDS-蛋白质复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原有的电荷量,因而掩盖了不同蛋白质分子原有的电荷差别。这样的SDS-蛋白质复合物在凝胶电泳中的迁移率不再受蛋白质原有的电荷和形状的影响,而只与蛋白质的分子量有关。

当蛋白质的分子量在15000~200000之间时,电泳迁移率与分子量的对数值呈直线关系,符合下列方程: 1gMr =K―bmR

式中:Mr为蛋白质的分子量;K为常数;b为斜率;mR为相对迁移率。在条件一定时,b和K均为常数。

若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可获得一条标准曲线。未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。

三、实验试剂与器材

垂直板型电泳槽,直流稳压电源,电炉,脱色摇床, 50或100μl微量注射器、玻璃板、水浴锅,染色槽,烧杯,吸量管,常头滴管等

蛋清(S1)、粗分离样品(S2)、离子交换层析中穿透峰下降段样品(S3)、离子交换层析洗脱峰样品(S4),橡胶手套;2×上样缓冲液、10%SDS、30%丙烯酰胺贮存液、分离胶缓冲液(1.5 mol/L pH8.8 Tris-HCl 缓冲液)、浓缩胶缓冲液(0.5 mol/L pH6.8 Tris-HCl 缓冲液)、10%过硫酸铵(AP)、TEMED、pH8.3 Tris-Gly电泳缓冲液、1%琼脂糖溶液、染色液、脱色液

四、实验内容与步骤

(一)蛋白样品的处理

取200μL上述备用蛋白样品于带塞的小离心管中,加入200μL的2×上样缓冲液,混

匀,轻轻盖上盖子,封口膜封紧瓶口以免加热时迸出,在100℃沸水浴中加热3~5min,取出后10000r/min 离心10min,取上清待用。

(二)SDS-PADE实验步骤

1.电泳玻璃板洗净,并把玻璃板在灌胶支架上固定好。( 试样格(梳子)临用前用无水乙醇擦拭,让其挥发至干。)

2.用电泳缓冲液配制1%的琼脂糖凝胶,煮沸溶解后冷却至55℃左右,加入制板槽槽内封板。(固定玻璃板时,两边用力一定要均匀,防止夹坏玻璃板.)

3.按比例配好分离胶,用移液管快速加入,大约5cm左右,之后加少许蒸馏水,静置30分钟。(凝胶配制过程要迅速, 催化剂TEMED要在注胶前再加入,否则凝结无法注胶.注胶过程最好一次性完成,避免产生气泡。水封的目的是为了使分离胶上延平直,并排除气泡。凝胶聚合好的标志是胶与水层之间形成清晰的界面。)

4.倒出水并用滤纸把剩余的水分吸干,按比例配好浓缩胶,连续平稳加入浓缩胶至离边缘5mm处,迅速插入样梳,静置25分钟。(样梳需一次平稳插入,梳口处不得有气泡,梳底需水平。)

5.拔出样梳后,在上槽内加入缓冲液,没过锯齿时可拆去底端的琼脂糖。(要使锯齿孔内的气泡全部排出,否则会影响加样效果.)

6.加样5个,空出第一个孔,从第二个开始按已编排好的顺序依次加入相应体积的样品和蛋白Marker。其中蛋清(S1)和Marker加样量为2μL,S1、S2、S3、和S4加样量为10μL。为了练习和比较上样量的影响,可以加20μL的S1~S4作为对照(注射器不可过低,以防刺破胶体,也不可过高,在样下沉时会发生扩散。为避免边缘效应,最好选用中部的孔注样。)7.电泳槽中加入缓冲液,接通电源,进行电泳,开始电压恒定在160V,当进入分离胶后改为240V,溴酚蓝距凝胶边缘约5mm时,停止电泳。

8.凝胶板剥离与染色:电泳结束后,用专用工具撬开短玻璃板,从凝胶板上切下一角作为加样标记,然后放在大培养皿内,加入染色液,42℃染色40min左右。(剥胶时要小心,保持胶完好无损,染色要充分。)

9.脱色:染色后的凝胶板用蒸馏水漂洗数次,再用脱色液脱色,直到蛋白质区带清晰。

即用直尺分别量取各条带与凝胶顶端的距离。

附表1

附表2

汇总所有实验结果,完成下表:

其中:总活力=比活力×体积

回收率=回收的样品活力占总活力的百分数

提纯倍数=提纯的比活力与初始比活力的比值

六、问题和思考

1.在不连续体系SDS-PAGE中,当分离胶加完后,需在其上加一层水,为什么?

2.电极缓冲液中甘氨酸的作用?

3.在不连续体系SDS-PAGE中,分离胶与浓缩胶中均含有TEMED和AP,试述其作用?

4.样品液为何在上样前需在沸水中加热几分钟?

七、注意事项

1.N,N’-亚甲双丙烯酰胺为神经毒性物质,可经皮肤直接吸收,使用时应避免其直接接触皮肤,必要时应戴手套。但其凝固后就变成无毒物质。

2.安装电泳槽时要注意均匀用力旋紧固定螺丝,避免缓冲液渗漏。

3.用琼脂(糖)封底及灌胶时不能有气泡,以免电泳时影响电流的通过。

4.加样时样品不能超出凹形样品槽。加样槽中不能有气泡,如有气泡,可用注射器针头

挑除。

2015高级生物化学及实验技术试题答案

高级动物生化试题 问答题: 1. 简述非编码RNA(non-coding RNA)的种类、结构特点及其主要功能。 非编码RNA的种类结构和功能 1tRNA转运RNA(transfer RNA,tRNA) 结构特征之一是含有较多的修饰成分,核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。5’末端具有G(大部分)或C。3’末端都以ACC的顺序终结。有一个富有鸟嘌呤的环。有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。有一个胸腺嘧啶环。tRNA具有三叶草型二级结构以及“L”型三级结构,tRNA 的不同种类及数量可对蛋白质合成效率进行调节。tRNA负责特异性读取mRNA中包含的遗传信息,并将信息转化成相应氨基酸后连接到多肽链中。 tRNA为每个密码子翻译成氨基酸提供了结合体,同时还准确地将所需氨基酸运送到核糖体上。鉴于tRNA在蛋白质合成中的关键作用,又把tRNA称作第二遗传密码。tRNA还具有其他一些特异功能,例如,在没有核糖体或其他核酸分子参与下,携带氨基酸转移至专一的受体分子,以合成细胞膜或细胞壁组分;作为反转录酶引物参与DNA合成;作为某些酶的抑制剂等。有的氨酰-tRNA还能调节氨基酸的生物合成。 2rRNA核糖体RNA(ribosomal RNA, rRNA) 核糖体RNA是细胞中最为丰富的RNA,在活跃分裂的细菌细胞中占80%以上。

他们是核糖体的组分,并直接参与核糖体中蛋白质的合成。核糖体是rRNA 提供了一个核糖体内部的“脚手架”,蛋白质可附着在上面。这种解释很直接很形象,但是低估了rRNA在蛋白质合成中的主动作用。较后续的研究表明,rRNA并非仅仅起到物理支架作用,多种多样的rRNA可起到识别、选择tRNA以及催化肽键形成等多种主动作用。例如:核糖体的功能就是,按照mRNA的指令将氨基酸合成多肽链。而这主要依靠核糖体识别tRNA 并催化肽键形成而实现。可以说核糖体是一个大的核酶( ribozyme)。而核糖体的催化功能主要是由rRNA来完成的,蛋白质并没有直接参与。 3 tmRNA tmRNA主要包括12个螺旋结构和4个“假结”结构,同时还包括一 个可译框架序列的单链RNA结构。tmRNA中H1由5’端和3’端两个末端形成,与tRNA的氨基酸受体臂相似。H1和H2的5’部分之间有一个由10-13nt 形成的环,类似tRNA中的二氢尿嘧啶环,称为“D”环。H3和H4,H6和H7,H8和H9,H10和H11之间分别形成Pk1,pK2,pK3,pK4。H4和H5之间则由一段包含编码标记肽ORF的单链RNA连接。H12由5个碱基对和7nt 形成的环组成,类似tRNA中的TΨC臂和TΨC环,称为“T”环。tmRNA 结构按照功能进行划分可分为tRNA类似域(TLD)和mRNA类似域(MLD),TLD主要包括H1,H2,H12,“D”环和“T”环,MDL则包括ORF和H5,这两部分分别具有类似tRNA和mRNA的功能。tmRNA是一类普遍存在于各种细菌及细胞器(如叶绿体,线粒体)中的稳定小分子RNA。它具有mRNA分子和tRNA分子的双重功能,它在一种特殊的翻译模式——反式翻译模式中发挥重要作用。同时,它与基因的表达调控以及细胞周期的调控等生命过程密切相关,是细菌体内蛋白质合成中起“质量控制”的重要分子之一。识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问

生物技术综合大实验

2013-2014学年生命科学综合大实验GFP分离与纯化

1.文献综述 绿色荧光蛋白(green fluorescent protein,GFP)是由238个氨基酸组成,分子量是26.9kDa,最初是从维多利亚多管发光水母(Aequorea victoria )中分离出来的,在蓝光照射下会发出绿色荧光。来源于水母的野生型GFP在395nm和475nm分别有主要和次要的激发峰,它的发射峰在509nm,处于可见光谱的绿色区域,来源于海肾的GFP只在498nm有单个激发峰。 GFP是典型的β桶形结构,包含β折叠α和螺旋,将荧光基团包含在其中。严密的桶形结构保护着荧光基团,防止它被周围环境淬灭,内部面向桶形的侧链诱Ser65-Tyr66-Gly67三肽环化,导致荧光基团形成。 北京时间10月8日下午5点45分,2008年诺贝尔化学奖揭晓,三位美国科学家,美国Woods Hole海洋生物学实验室的Osamu Shimomura(下村修)、哥伦比亚大学的Martin Chalfie和加州大学圣地

亚哥分校的Roger Y.Tsien(钱永健)因发现并发展了绿色荧光蛋白(GFP)而获得该奖项。 下修村首次从Aequorea victoria中分离出GFP。他发现该蛋白在紫外线下会发出明亮的绿光。Martin Chalfie证明了GFP作为多种生物学现象的发光遗传标记的价值。在最初的一项实验中,他用GFP使秀丽隐杆线虫的6个单独细胞有了颜色。钱永健的主要成就在于让人们理解了GFP发出荧光的机制。同时,他拓展出绿色之外的可用于标记的其他颜色,从而使科学家能够对各种蛋白质和细胞施以不同的色彩。这一切,令在同一时间跟踪多个不同的生物学过程成为了现实。

《生物化学》实验讲义

实验一 蛋白质及氨基酸的颜色反应 一、目的意义 1、学习几种鉴定氨基酸与蛋白质的一般方法及其原理。 2、学习和了解一些鉴定蛋白质的特殊颜色反应及其原理。 二、实验原理 1、双缩脲反应 当尿素加热到180℃左右时,2分子尿素发生缩合放出1分子氨而形成双缩脲。双缩脲在碱性溶液中与铜离子结合生成复杂的紫红色化合物,这一呈色反应称为双缩脲反应。 蛋白质分子中含有多个与双缩脲相似的键,因此也具有双缩脲的颜色反应。借此可以鉴定蛋白质的存在或测定其含量。应当指出,双缩脲反应并非蛋白质的特异颜色反应,因为凡含有肽键的物质并不都是蛋白质。 2、茚三酮反应 蛋白质与茚三酮共热,产生蓝紫色化合物,此反应为一切蛋白质及α-氨基酸(除脯氨酸 和羟脯氨酸)所共有。含有氨基酸的其他化合物也呈此反应。 该反应十分灵敏,1:浓度的氨基酸水溶液就能呈现反应。因此,此反应广泛用于氨基酸的定量测定。 3、黄色反应 含有苯环侧链的(特别是含酪氨酸)蛋白质溶液与硝酸共热时,呈黄色(硝基化合物),再加碱则变为橙黄色,此反应也称为黄蛋白反应。 OH + HNO 3 HO NO 2 + H 2O HO NO 2 + O N OH OH

三、仪器与试剂 1、试剂 (1) 蛋白质溶液:取10mL鸡蛋清,用蒸馏水稀释至100mL,搅拌均匀后用纱布过滤得上清液。 (2) 0.3%色氨酸溶液、0.3%酪氨酸溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液、0.5%苯酚溶液。 (3) 0.1%茚三酮-乙醇溶液:称取0.1g茚三酮,溶于100mL 95%乙醇。 (4) 10%NaOH溶液、1%硫酸铜溶液、尿素、浓硝酸。 2、仪器:试管及试管夹、酒精灯。 四、操作方法 1、双缩脲反应 (1) 取一支干燥试管,加入少量尿素,用微火加热使之熔化,待熔化的尿素开始变硬时停止加 热。此时,尿素已缩合为双缩脲并放出氨气(可由气味辨别)。待试管冷却,加入约1mL10%NaOH溶液,振荡使其溶解,再加入1滴1%硫酸铜溶液。混匀后观察出现的粉红色。(2) 另取1支试管,加入1mL蛋白质溶液,再加入2mL 10%NaOH溶液摇匀,然后再加入2 滴1%的硫酸铜溶液。摇匀观察其颜色变化。 (3) 注意事项 加入的硫酸铜不可过量,否则会产生蓝色的氢氧化铜,从而掩盖了双缩脲反应的粉红色。 (4) 记载上述实验过程和结果,并解释现象。 2、茚三酮反应 (1) 取3支试管,分别加入蛋白质溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液各1mL,再加0.5mL 0.1%茚三酮-乙醇溶液,混匀后在小火上加热煮沸1-2min,放置冷却,观察颜色变化。 (2) 在滤纸的不同部位分别滴上一滴0.3%脯氨酸溶液、0.5%甘氨酸溶液,风干后再在原处滴 一滴0.1%茚三酮-乙醇溶液,在微火旁烘干显色,观察斑点出现及其颜色。 (3) 记载上述实验过程和结果,并解释现象。 3、黄色反应 向6个试管中按下表加试剂,观察现象并记录。

生物工程下游技术

生物工程下游技术生物工程下游技术的定义 指从动植物与微生物的有机体或器官、生物工程产物(发酵液、培养液)及其生物化学产品中提取、分离、纯化有用物质的技术过程。 实质:是研究如何从混合物中把一种或几种物质分离出来的科学技术。 1.生化工程分离技术 预处理 结晶干燥 离心法:离心过滤、离心沉降、超离心 萃取法:有机溶剂、双水相、液膜、反胶团、超临界 层析法:凝胶过滤层析、反相层析、亲和、疏水相互作用、聚焦、离子交换 膜分离:微滤、超滤、 反渗透、透析、电渗透 2.生物物质常用的分离技术 氨基酸:结晶和离子交换法 蛋白质和多肽:离子交换层析、电泳 糖类:吸附层析 脂质:有机溶剂萃取、超临界流体萃取和层析 抗生素:有机溶剂萃取、离子交换、结晶和吸附层析 3. 生物分离方法的选择与评价 原则: 步聚少,次序合理,产品规格(注射,非注射),生产规模,物料组成,产品形式,产品稳定性,危害性,物性:溶解度、电荷、分子大小、功能团、稳定性、挥发性,废水处理 4.浓缩率:浓缩程度一般用浓缩率(concentration factor)表达,是一个以浓缩为目的的分离过程的最重要指标。浓缩率为m,mt=mx则目标产物未得到任何程度的分离纯化。 5.分离因子:分离因子又称分离系数。产品中目标产物浓度越高,杂质浓度越低,则分离因子越大,分离效率越高。 6. 回收率:无论是以浓缩还是以分离为目的操作过程,目标产物均应以较大的比例回收, 回收率R:

生物分离操作多为间歇过程(分批操作),若原料液和产品溶液的体积分别为VC和VP。 1 生物产品与普通化工产品分离过程有何不同? 2 设计生物产品的分离工艺应考虑哪些因素? 3 分离纯化的回收率与浓缩率如何计算? 4 现代生物分离工程研究方向有哪些特点? 5 分离纯化指标有哪些? 简述pH对发酵液过滤特性的影响,并举例说明。 答:(1) pH直接影响发酵液中某些物质的电离程度和电荷性质,因此适当调节pH值可以改善发酵液的过滤特性。(2)氨基酸和蛋白质在酸性条件下带正电,碱性条件下带负电,等电点时净电荷为零,两性物质在等电点下的溶解度最小,等电点沉淀法在生物工业分离中广泛使用。(3)如味精生产,利用等电点沉淀法提取谷氨酸,一般蛋白质也在酸性范围达到等电点;膜分离中可通过调整pH 值改变易吸附分子的电荷性质,减少膜堵塞和膜污染;此外,细胞、细胞碎片及某些胶体物质等在特定pH下也可能趋于絮凝而成为较大颗粒,有利于过滤进行。 第二章 1.预处理的目的:促进从悬浮液中分离固形物的速度,提高固液分离的效率: ⑴改变发酵液的物理性质,包括增大悬浮液中固体粒子的尺寸,降低液体黏度。 ⑵相对纯化,去除发酵液中的部分杂质(高价无机离子和杂蛋白质),以利于后续各步操作。 ⑶尽可能使产物转入便于后处理的一相中(多数是液相); 2.预处理的方法 凝聚和絮凝 加热法 调节悬浮液的pH值 杂蛋白的去处 高价无机离子的去处 助滤剂 反应剂 3凝聚与絮凝:.凝聚与絮凝处理过程就是将化学药剂预先投加到悬浮液中,改变细胞、菌体和蛋白质等胶体粒子的分散状态,破坏其稳定性,使其聚集起来,增大体积以便固液分离。 凝聚和絮凝技术常用于菌体细小而且黏度大的发酵液的预处理中。 凝聚和絮凝是两种方法,两个概念。

1生物学实验常用技术

生物学实验常用技术一、分子方面 1、基因工程 1)PCR (Polymerase Chain Reaction) (二楼PCR仪器全部会用) 2)RT-PCR;Q-PCR 3)琼脂糖凝胶电泳;胶回收 4)酶切/链接 5)转化 6)固体/液体LB培养基配制 (高压蒸汽灭菌锅使用方法) 7)质粒大/小抽原理及步骤 (手提、溶液I、II、III作用) 8)基因组DNA抽提 9)RNA提取; 2、蛋白质工程 1)蛋白收集 (蛋白裂解液+PMSF; 1×Loading 裂解(推荐)) 2)SDS-PAGE(电泳胶的配制) 2)考马斯亮蓝染色,银染 3)Western blot 4)蛋白定量常用的方法及原理, 以及熟练操作Bradford法蛋 白定量 (TRIZOL法原理、注意事项及步骤) 二、细胞方面 1)细胞培养、传代 2)细胞冻存与复苏 冻存液配制: (1)DMSO:血清=1:9(推荐)

(2)DMSO:培养基:血清=1:3:6 均可 DMSO为细胞专用型;现用现配,效果最好;冻存时细胞在-80℃中不要超过一周,最好在24-48h内放入液氮罐中保存。 3)细胞培养基配制(过滤除菌)、胰酶配制(过滤除菌),PBS配制(灭菌);(不同培养基的区别;谷氨酰胺(提供氮源),2周补充一次) 4)转染 5)MTT原理及操作(检测细胞存活率或死亡率) 6)碱性磷酸酶实验(ALP,检测细胞分化) (5、6 需学会SPSS软件及graphpad prism5软件使用) 7)Hoechst染色 8)结晶紫染色(不推荐) 9)苏木精/伊红染色 (9可以替代8,以后实验推荐使用9,图片漂亮) 10)荧光显微镜的使用 11)激光共聚焦显微镜样品制备(细胞固定,染色,洗脱) (7、8、9、10、11需学会Photoshop常用工具处理数据) 12)流式细胞仪样品制备(包括:转染效率与细胞凋亡染色标记)以及仪器操作(需学会FlowJo软件分析流式结果) 三、动物实验 1)小鼠的定制: 常见的小鼠: ICR小鼠(正常),9元/只

生化实验讲义2010(10个)

生物化学实验讲义 赵 国 芬 2010年9月

实验之前说明 1.各班学习委员将成员分成10个大组,每个大组中2人一小组,大组采用循环实 验的方法,同时开出不同的10个实验. 2.共开出10个不同的实验 实验一温度、pH及酶的激活剂、抑制剂对酶活性的影响 实验二牛奶中蛋白质的提取与鉴定 实验三血液葡萄糖的测定-福林(Folin)-吴宪氏法 实验四双缩脲测定蛋白质的含量 实验五血清蛋白质醋酸纤维薄膜电泳 实验六植物组织中还原糖和总糖的含量测定 实验七应用纸层析法鉴定动物组织中转氨基作用 实验八植物组织中维生素C的定量测定 实验九琥珀酸脱氢酶的作用及其竞争性抑制的观察 实验十植物组织中DNA的提取和鉴定 3.穿着要利索,做好实验记录 4.注意实验室卫生和安全. 一. 实验室规则:按照实验室的规则给学生讲解. 二. 生物化学所用的实验技术 1.样品: :血液、血浆、血清、组织 植物样品:果实、花蕾、茎等 无论用什么做材料,为了提取物质,需匀浆 2.移液管的使用: 移液管吸管 移液管 奥氏吸管 读数时视线与凹面相平,取液时要用吸管嘴吸,放出液体时注意嘴部液体的残留问题。 3.离心机的使用: 平衡(管平衡、机器平衡)缓起和慢停 4.分光光度计 机器原理和测定原理(比尔定律) 5.水浴锅的使用 三、实验报告的书写(用教务处统一印刷的报告纸写) 目的、原理、仪器、药品、步骤、结果及结论、讨论

实验一、温度、pH及酶的激活剂、抑制剂对酶活性的影响 一、实验目的 通过本实验了解酶催化的特异性以及pH、温度、抑制剂和激活剂对酶活力的影响,对于进一步掌握代谢反应及其调控机理具有十分重要的意义。 二、实验原理 酶的化学本质是蛋白质。凡是能够引起蛋白质变性的因素,都可以使酶丧失活性。此外,温度、pH和抑制剂、激活剂对酶的活性都有显著的影响。酶的活性通常是用测定酶作用底物在酶作用前后的变化来进行观察的。 本实验用唾液淀粉酶作用的底物—淀粉,被唾液淀粉酶分解成各种糊精、麦芽糖等水解产物的变化来观察该酶在各种环境条件下的活性。 淀粉被酶水解的变化,可以用遇碘呈不同颜色来观察。淀粉遇碘呈蓝色;糊精按分子从大到小的顺序,遇碘可呈蓝色、紫色、暗褐色和红色;最小的糊精和麦芽糖遇碘不呈现颜色反应。 三、试剂 1.0.5%淀粉溶液 2.碘化钾-碘溶液 3.1%尿素溶液。 4.1%CuSO4溶液 5.磷酸氢二钠-柠檬酸缓冲液pH5.0-8.0: 6.0.5%NaCl溶液。 7.唾液淀粉酶制备每人用自来水漱口3次,然后取20m1蒸馏水含于口中,半分钟后吐入烧杯中,纱布过滤,取滤液lOml,稀释至2Oml为稀释唾液,供实验用。 四、操作步骤 一、温度对酶活性的影响 (一)淀粉酶的观察 1、取3支大试管,编号后按表操作 2、在白色比色板上,置碘液2滴于各孔中,每隔1分钟,从第二管中取出反应

6705生物工程下游技术

省高等教育自学考试大纲 课程名称:生物工程下游技术课程代码:6705 第一部分课程性质与目标 一、课程性质与特点 生物工程下游技术这门课程适合于理工科专业生物工程专业进行学习。本课程的容更多的涉及到工业应用。下游技术是对于由生物界自然产生的生物体或由微生物菌体发酵的、动植物细胞组织培养的、酶反应、微生物转化等各种生物工业生产过程获得的生物原料,经提取分离、加工并精制目的成分,最终使其成为产品的技术,也称为下游工程或下游加工过程,是生物技术产品产业化的必经之路。目前所指的下游技术大多数属于“物质分离”畴。主要研究的是物质分离的方法原理及相关的仪器设备。生物工程下游技术这门课程涉及到物理,化学,生物化学,发酵工程,生物工程与设备等多门学科。 二、课程目标与基本要求 通过学习生物工程下游技术这门课程应掌握以下基本知识点: 1.生物工程下游技术的研究对象和发展历程 2.下游技术的理论基础 3.发酵液预处理,微生物细胞破碎方法和设备 4.溶剂萃取和浸取,超临界流体萃取,双水相萃取,反胶团萃取,膜分离过程,液膜分离,离子交换法,色谱法等主要分离单元操作技术及分离过程的特点,工艺设计与设备选型通过学习了解各种分离方法的原理,适用围,熟悉常用分离设备的操作,在实际应用中可以选择合适的分离方法对仪器进行操作达到分离的目的。通过学习,具备对生物产品的分离、纯化技术的应用能力,及对生物物质提纯最佳方案的设计能力。 三、与本专业其他课程的关系 本课程的容更多的涉及到工业应用。下游技术对各种生物工业生产过程获得的生物原料,经提取分离、加工并精制目的成分,最终使其成为产品的技术。在生物工程专业课程的学习中,是一门将生物工程上游技术应用到实际生产中所需要借助的手段。 《物理学》,《无机化学》,《有机化学》,《物理化学》等基础课是这门课程的基础,《微

生物技术专业介绍

生物技术专业介绍 生物技术专业是于2000年设立并正式开始招生,经过多年的建设,现已成为学校的优势专业,是山东省特色专业,又是山东省应用型特色名校工程重点建设专业。 一、人才培养目标 培养德、智、体、美全面发展,系统掌握农业生物技术的基本理论、基本知识、基本技能,具有较强的自主学习能力、实践能力、创新能力,能够支撑现代农业生物技术产业体系,服务于山东区域经济社会发展的高素质应用型人才。 二、特色和优势 1. 构建了一支高学历、教学经验丰富、科研能力强的一支师资队伍。本专业现有专职教师70人,其中正高职称22人、副高职称28人,讲师20人,高级职称教师占71.4%;具有博士学位的教师57人,占专职教师的81.4%;具有国外学习和研修经历的19人;泰山学者海外特聘专家3人、山东省教学名师2人、国务院特殊津贴获得者1人、“留学回国人员成就奖” 获得者1人、博士生导师4人。 2. 具有生物学科特色。本专业具有植物学、动物学、微生物学、生理学、遗传学等多学科支撑,以及生物化学与分子生物学省级重点学科支撑,生物学科特色鲜明。我们在生物技术专业的建设中,以厚基础,宽口径为前提,在课程体系与教学内容上力求突出自身的学科优势,形成专业特色,培养高素质应用型生物技术专业人才。 3. 以科研促教学,提高人才培养质量。(1)通过科研,提高教师自身素质,为提高教学质量提供了重要保证;(2)科研促进了教学条件的建设。在投资1000多万购置实验仪器的基础上,目前又新组建了科研用组培室与炼苗室各1间及教学用组培室与炼苗室各1间,极大充实了教学条件;(3)科研充实了教学内容。通过科研,提高教师学术水平,把新知识、新观点及时充实到教学中,激发学生对学科的兴趣,切实提高教学质量;(4)科研培养学生动手能力、创新思维。本专业于2003年率先在全校实施了“本科生导师制”制度,使学生从大二开始进入实验室,参与教师的科研活动,独立设计试验并完成科研任务,切实提高学生独立操作能力及创新能力。 三、学科建设 本专业为山东省特色专业,先后获得生物化学与分子生物学、遗传学、植物

生物化学实验讲义

生物化学实验报告 姓名: 专业: 院系: 学号:

实验一蛋白质分子量测定------凝胶层析法 一、实验原理 凝胶层析法是利用凝胶把分子大小不同的物质分开的一种方法,又叫做分子筛层析法,排阻层析法。凝胶本身是一种分子筛,它可以把分子按大小不同进行分离,如同过筛可以把大颗粒与小颗粒分开一样。但这种“过筛”与普通的过筛不一样。将凝胶颗粒放在适宜溶剂中浸泡,使其充分戏液膨胀,然后装入层析柱中,加入欲分离的混合物后,再以同一溶剂洗脱,在洗脱过程中,大分子不能进入凝胶内部而沿凝胶颗粒间的缝隙最先流出柱外,而小分子可以进入凝胶内部,流速缓慢,以致最后流出柱外,从而使样品中分子大小不同的物质得到分离。 凝胶是由胶体溶液凝结而成的固体物质,无论是天然凝胶还是人工凝胶,它们的内部都具有很微细的多孔网状结构。凝胶层析法常用的天然凝胶是琼脂糖凝胶,人工合成的凝胶是聚丙烯酰胺凝胶和葡聚糖凝胶,后者的商品名为Sephadex型的各种交联葡聚糖凝胶,它具有不同孔隙度的立体网状结构的凝胶,不溶于水。 这种聚合物的立体网状结构,其孔隙大小与被分离物质分子的大小有相应的数量级。在凝胶充分溶胀后,交联度高的,孔隙小,只有相应的小分子可以通过,适于分离小分子物质。相反,交联度低得孔隙大,适于分离大分子物质。利用这种性质可分离不同分子量的物质。 以下进一步来说明凝胶层析的原理。将凝胶装载柱后,柱床总体

积称为“总体积”,以Vt表示。实质上Vt是由Vo,Vi与Vg三部分组成,即Vt=Vi+Vg+Vo。Vo称为“孔隙体积”或“外体积”又称“外水体积”,即存在于柱床内凝胶颗粒外面孔隙之间的水相体积,相应于一般层析柱法中内流动相体积;Vi为内体积,即凝胶颗粒内部所含水相的体积,Vg为凝胶本身的体积,因此Vt-Vo等于Vi+Vg。 洗脱体积与Vo及Vi之间的关系可用下式表示: Ve=Vo+KdVi 式中Ve为洗脱体积,自加入样品时算起,到组分最大浓度(峰)出现时所流出的体积;Kd为样品组分在二相间的分配系数,也可以说Kd是分子量不同的溶质在凝胶内部和外部的分配系数。它只与被分离物质分子的大小和凝胶颗粒孔隙的大小分布有关,而与柱的长短粗细无光,也就是说它对每一物质为常数,与柱的物理条件无关。Kd 可通过实验求得,上式可改写成: Kd=(Ve-Vo)/Vi 上式中Ve为实际测得的洗脱体积;Vo可用不被凝胶滞留的大分子物质的溶液通过实际测量求出;Vi可由g.Wr求得。因此,对一层析柱凝胶床来说,只要通过实际实验得知某一物质的洗脱体积Ve就可算出它的Kd值。 Vo表示外体积;Vi内体积;Ve II、Ve III分别代表组分II和III的洗脱体积。Kd可以有下列几种情况: 1、当Kd=0时,则Ve=Vo。即对于根本不能进入凝胶内部的大分子物质,洗脱体积等于空隙体积。

生物工程下游技术习题题目练习

生物工程下游技术复习题 第一章绪论 生物下游加工过程的几个阶段 预处理和固液分离, 提取(初步分离), 精制(高度纯化), 成品制作. 评价分离效果的重要参数:纯度,回收率,浓缩率。

第二章发酵液预处理和固液分离 主要名词:凝聚、絮凝 凝聚:指在电解质作用下,由于胶粒之间双电层电排斥作用降低,电位下降,而使胶体体系不稳定的现象; 絮凝:指在某些高分子絮凝剂存在下,基于桥架作用,使胶粒形成较大絮凝团的过程。1.改变发酵液过滤特性的方法 调酸(等电点),热处理,电解质处理,添加凝聚剂,添加表面活性物质,添加反应剂冷冻-解冻,添加助滤剂 2.发酵液的相对纯化 (1)高价无机离子的去除方法 (2)杂蛋白的去除方法 沉淀法,变性法,吸附法。 3常用的固液分离方法: 重力沉降,浮选,旋液分离,介质过滤,离心。 (1)离心 离心机种类:碟片式。管式。倾析式。 (2)过滤(澄清过滤,滤饼过滤) 过滤机种类:按推动力分为4种重力过滤,加压过滤,真空过滤,离心过滤。 板框压滤机,真空转鼓过滤机 第三章细胞破碎和包涵体复性 细胞破碎的主要方法和适用对象,了解基本机理

方法:珠磨法原理:进入珠磨机的细胞悬浮液与极细的玻璃小珠、石英砂、氧化铝等研磨剂(直径小于1mm)一起快速搅拌或研磨,研磨剂、珠子与细胞之间的互相剪切、碰撞,使细胞破碎,释放出内含物。在珠液分离器的协助下,珠子被滞留在破碎室内,浆液流出从而实现连续操作。 高压匀浆法原理:利用高压使细胞悬浮液通过针形阀,由于突然减压和高速冲击撞击环使细胞破碎,细胞悬浮液自高压室针形阀喷出时,每秒速度高达几百米,高速喷出的浆液又射到静止的撞击环上,被迫改变方向从出口管流出。不适用范围:易造成堵塞的团状或丝状真菌,较小的革兰氏阳性菌,含有包含体的基因工程菌(因包含体坚硬,易损伤匀浆阀) 珠磨法固体剪切作用可达较高破碎率,可较大规模操作,大分子目的产物易失活,浆液分离困难 高压匀浆法液体剪切作用可达较高破碎率,可大规模操作,不适合丝状菌和革兰氏阳性菌 超声破碎法液体剪切作用对酵母菌效果较差,破碎过程升温剧烈,不适合大规模操作X-press法固体剪切作用破碎率高,活性保留率高,对冷冻敏感目的产物不适合 酶溶法酶分解作用具有高度专一性,条件温和,浆液易分离,溶酶价格高,通用性差化学渗透法改变细胞膜的渗透性具一定选择性,浆液易分离,但释放率较低,通用性差渗透压法渗透压剧烈改变破碎率较低,常与其他方法结合使用 冻结融化法反复冻结-融化破碎率较低,不适合对冷冻敏感目的产物 干燥法改变细胞膜渗透性条件变化剧烈,易引起大分子物质失活 第四章沉淀法 1.蛋白质的表面特征 蛋白质组成 20种氨基酸构成的两性高分子电解质,包括疏水性氨基酸和亲水性氨基酸 蛋白质折叠趋势 疏水性氨基酸:向内部折叠的趋势 亲水性氨基酸:分布于蛋白质外表面的趋势 结果 在蛋白质三维结构中仍会有部分疏水性氨基酸残基暴露于表面,在蛋白质表面形成一定的疏水区

分子生物学实验技术考试题库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

生物化学实验

生物化学实验讲义 化学工程与技术学院 基础部

实验一酪蛋白的制备 一、目的 学习从牛乳中制备酪蛋白的原理和方法。 二、原理. 牛乳中主要的蛋白质是酪蛋白,含量约为35g/L。酪蛋白是一些含磷蛋白质的混合物,等电点为4.7。利用等电点时溶解度最低的原理,将牛乳的pH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯的酪蛋白。 三、器材 1 、离心机2、.抽滤装置 3、精密pH试纸或酸度计 4、电炉 5、烧杯 6、温度计. 四、试剂与材料 1、牛奶2500mL 2、95%乙醇1200mL 3、无水乙醚1200mL

4、0.2mol/L pH 4.7醋酸—醋酸钠缓冲液3000mL 5、.乙醇—乙醚混合液2000mL 五、操作 1、将100mL牛奶加热至40℃。在搅拌下慢慢加入 预热至40℃、pH 4.7的醋酸缓冲液100 mL。用精密pH试纸或酸度计调pH至4.7。将上述悬浮液冷却至室温。离心15分钟(3 000r/min)。弃去清液,得酪蛋白粗制品。 2、用水洗沉淀3次,离心10分钟(3000r/min), 弃去上清液。 3、在沉淀中加入30mL乙醇,搅拌片刻,将全部悬 浊液转移至布氏漏斗中抽滤。用乙醇—乙醚混合液洗沉淀2次。最后用乙醚洗沉淀2次,抽干。 4、将沉淀摊开在表面皿上,风干;得酪蛋白纯晶。 5、准确称重,计算含量和得率。 含量:酪蛋白g/100mL牛乳(g%)

得率: 测得含量 100 % 理论含量 思考题 1、制备高产率纯酪蛋白的关键是什么? 实验二小麦萌发前 后淀粉酶活力的比较 一、目的 1.学习分光光度计的原理和使用方法。 2.学习测定淀粉酶活力的方法。 3.了解小麦萌发前后淀粉酶活力的变化。 二、原理 种子中贮藏的糖类主要以淀粉的形式存在。淀粉酶能使淀粉分解为麦芽糖。 2(C6H10O5)n +nH2O nC12H22O11 麦芽糖有还原性,能使3,5---二硝基水杨酸还原成棕色的3-氨基-5-硝基水扬酸。后者可用分光光度计测定。

本科生六个基本生物学实验

实验一:感受态细胞的制备 1.原理: 当实验室获得了一个新的质粒时,而这个质粒并未转化到宿主菌体内,则需要该技术进行细菌的转化,以大量获得这一质粒。转化细菌的方式有很多种,如电转化法、脂质体转染法、显微注射法、CaCl2处理法制备感受态细胞等。一般的实验室都应用CaCl2处理细菌,改变细胞膜的结构,使质粒DNA能穿过细菌细胞膜进入细胞。然后在选择培养基中培养转化处理过的细菌,转化成功的细菌可在抗菌素培养基上生长形成菌落。这一方法是分子生物学常用实验方法。 2.实验材料 2.1LB液体培养基 2.20.1mol/L CaCl2溶液:称取1.1g无水CaCl2,溶于90ml双蒸去离子水中, 定容至100ml,用0.22μm滤器过滤并装入灭菌试剂瓶中,4℃保存。 2.3 DH5α菌株,冰,牙签,无菌滤纸,50ml离心管,枪头(以上需灭菌); 移液器,摇床,冷冻离心机,涡旋震荡器,恒温摇床,恒温培养箱,超净工作台,普通冰箱,-70℃冰箱 3.操作方法 3.1从37℃培养12—16h的平板上,用无菌牙签挑取一个单菌落,转移到含有3ml LB培养基的试管内,37℃振摇过夜。次日取菌液1ml,接种到含有100ml LB培养基的500 ml烧瓶中,37℃剧烈振摇培养约2—3h(振摇速度为200—300r/min),待OD600值达到0.3—0.4时,将烧瓶取出立即置冰浴10—15min。 3.2自该步骤起皆需无菌操作。在无菌条件下将细菌转移到一个灭菌处理过的、冰预冷的50 ml离心管中。 3.34℃离心,4000g×5min回收细胞。 3.4弃去培养液,将离心管倒置于滤纸上1min,以使最后残留的培养液流尽。 3.5加入冰预冷的0.1mol/L CaCl2溶液10ml重悬菌体,置冰浴30min。 3.64℃离心,4000g×5min,弃去上清液,倒置于滤纸1min。 3.7再加4ml用冰预冷的0.1mol CaCl2重悬菌体(重悬时操作要轻)。 3.8置4℃冰箱置12—24h,即可应用于转化。 思考题: 制备感受态细胞时加入CaCl2的作用是什么? 钙离子结合于细胞膜上,使细胞膜呈现一种液晶态。在冷热变化刺激下液晶态的细胞膜表面会产生裂隙,细胞膜的通透性发生变化,使外源DNA进入。

【生物工程】下游技术实验报告

华南师范大学实验报告 学生姓名:黎嘉俊学号:008 专业:生物工程年级、班级:10工程一班课程名称:生物工程下游技术实验实验项目:黑曲霉β-D甘露聚糖 酶的纯化 实验类型:□验证□设计□综合实验时间:2013年9月17日 实验指导老师:江学文实验评分: 一.实验目的 < 1、粗酶的制备 2、硫酸铵分级沉淀 3、透析袋的处理方法和使用 二.原理 1、盐析原理:中性盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化层逐渐被破坏,最终引起蛋白质分子间相互聚集并从溶液中析出。 2、透析袋脱盐:酸性β-甘露聚糖相对分子质量为39000和40000,选择MWCO(切割分子量或截留分子量)14000的透析袋,透过掉分子量小于1000的蛋白质;并借助分子扩散脱盐。 三.实验试剂和器材 纱布1卷、脱脂棉1包、琼脂条1包、透析袋MWCO(分子量)7000 [ 四.实验步骤

1、将黑曲霉菌株斜面接种三角瓶固体发酵培养基,℃恒温培养 72 h。 2、称取10克发酵麸曲,加100毫升的醋酸缓冲液,温度℃,转速135rpm,摇 床摇60 min后,用¢15㎝滤纸过滤。 3、取滤液40毫升,在不断搅拌下分步加入(NH4)2SO4 克(待加入部分溶解 后再加入剩余部分)。 4、置冰箱中5℃下静止沉淀过夜。 5、标准曲线的绘制:分别吸取%标准甘露糖溶液、、、、,分别定容至50ml。 再分别吸取上述溶液各于试管中各加,5-二硝基水杨酸显色液(DNS试剂), 煮沸5min(另作1管对照,取蒸馏水,加试剂,同样煮沸5min)。冷却后, 用721型分光光度计在530nm波长下比色,记录各管的光密度值,以光密 度作纵坐标,对应标准葡萄糖溶液含糖的毫克数为横坐标,绘制标准曲线。五.实验结果 ( 0.1%标准甘露糖溶液体积/ml0246810 OD100.0970.4150.873 1.254 1.674 OD200.0970.4160.873 1.256 1.674 OD300.0970.4150.874 1.256 1.674 OD平均值00.0970.4153330.873333 1.255333 1.674 OD标准差000.0005770.0005770.0011550

生物工程下游技术课后题

第一章 1.生物产品的哪些特性制约了下游技术的可选范围? 1生物物料2产品稳定性、产品性质、产品共存物性质的要求。 2.生物工程下游技术分哪几个阶段? 四个阶段:预处理;提取(初步分离);精制(纯化);成品制作。 3.生物工程下游技术的特点有哪些? 快速分离、保证纯度、高选择性、分离步骤多、需要高度浓缩。 4.生物工程纯化过程选择依据有哪些? 生产成本要低、工艺步骤要少、操作程序合理、适应产品的技术规格、生产要有规模、产品具有稳定性、环保和安全要求、生产方式。 第二章下游技术的理论基础 1下游技术中都存在哪些过程? 物理学过程;化学过程;生物学过程。 2下游技术中物理过程按物理化学原理有哪些分类? @根据相性质分为:机械分离(非均相):过滤、重大沉降、离心;传质分离(均相):均相。 @物理化学原理:平衡分离:1.气体传质:吸收2.气液传质:精馏3.液液传质:萃取4.液固传质:浸取、结晶、吸附、离子交换、色谱分析 5.气固传质:干燥、吸附、升华;速率分离(差速分离):1.膜分离:超滤、反渗透、电渗析2.均分离:电泳、磁泳、离心沉降。 3什么是对流传递扩散传递及扩散传递的重要性? 对流传递是由流体的宏观运动引起;扩散传递分为分子传递(由分子的随机热运动引起)和涡流传递(由微团的脉动引起)尽管对流传质速度要扩散传质速度大很多,但在很多情况下,扩散传递都是非常重要的,特别是存在异相界面物质传递的情况下,物质在异相界面间境界膜中的扩散速率往往成为物质传递速率的限制性因素。 4生物反应器的放大原则? 几何相似、恒定等体积功率放大、恒定传氧系数放大、恒定剪切力恒定叶端速度放大、恒定的混合时间放大。 第三章发酵液的预处理1发酵液预处理的目的? 固液分离(分离菌体及其它悬浮颗粒)、除去一些可溶性杂质、改变滤液的性质以利于后续的提取与精制。 2发酵液预处理的方法有哪些?并简述各种方法的原理特点和应用36 降低液体黏度(加水稀释法、加热法)、凝聚和絮凝法、调节PH法、加入助滤剂法、加吸附剂法或加盐法(加入反应剂)。 3发酵液进行过滤的目的是什么?影响发酵液过滤速度的因素有哪些? 目的:以压力差为推动力,依靠过滤介质将固体和液体分离 影响因素:1.从进料侧至过滤介质另一侧的压力降2.过滤面积3.滤饼阻力(厚度、颗粒大小)4.滤液黏度5.过滤介质和初始滤饼层的阻力。4发酵液过滤的方法有哪些? 并简述各种方法的类型特点和应用39 方法:常压过滤、加压过滤、真空过滤、离心过滤。 5如何进行过滤介质的选择和条件的优化? 过滤介质除具有过滤作用外,还是滤饼的支撑物,它应具有足够的机械强度和尽可能小的流动阻力。合理选择过滤介质取决于许多因素,其中过滤介质所能截留的固体粒子大小以及对滤液的透过性是过滤介质最主要的技术特性过滤介质种类1.织物介质:绵、丝、毛、麻等2.粒状介质:硅藻胶、活性炭、白土 3.多孔固体介质:多孔陶瓷、玻璃、塑料4.微孔纤维素和金属薄膜介质:醋酸纤维素 过滤条件的优化:1.改善发酵液物理性质:降低滤饼比阻、降低发酵液黏度、降低固体浓度、热处理 2.改善设备结构:扩大设备尺寸、增加过滤面积。 6发酵液的构成? 微生物(菌体)、残存的固体培养基、未被微生物完全利用的糖无机盐蛋白质以及微生物的各种代谢产物。 7发酵液特性有哪些? 1目标产物浓度普遍较低,悬浮液中大部分是水2菌体细胞等固体粒子的性质差异较大,且具有一定的可压缩性3菌体细胞等悬浮颗粒小,其相对密度和液相相近4液相黏度大,多为非牛顿型流体5性质不稳定易随时间变化,如易受空气氧化微生物污染蛋白质酶水解等作用的影响。

生物工程下游技术

1.请描述生物工程下游技术的一般工艺流程,并分析各步可采用方 法及其原理 按生产过程分,下游技术工艺过程大致可分为4个阶段,即预处理、提取(初步分离)、精制(纯化)、成品制作。 发酵液→预处理→细胞分离→细胞破壁→碎片分离→提取→精制→成品制作加热过滤匀浆法离心沉淀(重)结晶浓缩 调PH 离心研磨法双水相吸附离子交换干燥 絮凝膜分离酶解法膜分离萃取色谱分离无菌加工 超滤膜分离成型 结晶 (1)预处理和固液分离 加热法:加热可降低液体黏度,只适用于产物对热较稳定的发酵液。在适当的温度和受热时间下可使菌体或蛋白质凝聚形成较大颗粒的凝聚物,改善发酵液固液分离特性。加热是蛋白质变性凝固的有效方法。 调节PH法:PH直接影响发酵液中某些物质的电离度和电荷性质,调节PH可以改变菌体和蛋白质的带电性质,从而改变其过滤特性。蛋白质属于两性电解质,两性电解质在溶液中的PH处于等电点时分子表面净电荷为零,导致赖以稳定的双电层及水化膜的削弱或破坏,分子间引力增加溶解度最小。因此,调节溶液的PH,可使蛋白质溶解度下降而析出,这是除去蛋白质的有效方法。改变PH,还能使蛋白质变性凝固。 絮凝:在某些高分子絮凝剂的存在下。基于桥架的作用,使胶粒形成絮凝团的过程。 (2)提取(初步分离)

沉淀:在溶液中加入沉淀剂使溶质溶解度降低,生成无定形固体从溶液中析出的过程。原理:沉淀分离就是通过沉淀,在固-液分相后,除去留在液相或沉积在固相中的非必要成分。 吸附:吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程。吸附的原理:固体内部分子所受分子间的作用力是对称的,而固体表面分子所受力是不对称的。向内的一面受内部分子的作用力较大,而表面向外一面所受的作用力较小,因而当气体分子或溶液中溶质分子在运动过程中碰到固体表面时就会被吸引而停留在固体表面上。 萃取:利用溶质在互不相溶的两相之间分配系数的不同而使溶质得到纯化或浓缩的技术。原理:利用各物质在不同溶剂中具有不同的溶解度的原理来达到将目标产物分离纯化的目的。 超滤:超滤是利用膜的透过性能,在静压差的推动力作用下,达到分离离子、分子及其某种微粒目的的膜分离技术。原理:超滤是一种筛分过程,在一定的压力作用下,含有大小分子溶质的溶液流过超滤膜表面时,溶剂和小分子物质(如无机盐类)透过膜,作为透过液被收集起来;而大分子溶质(如有机胶体)则被膜截留而作为浓缩液被回收。 结晶:将形成晶型物质的过程称为“结晶”。原理:通过结晶溶液中的大部分杂质会留在母液中,再通过过滤、洗涤即可得到纯度高的晶体。 (3)精制(纯化)

生化实验五大技术

生化实验五大技术 一.分光光度技术 1.定义:根据物质对不同孩长的光线具有选择性吸收,每种物质都具有其特异的吸收光语。而建立起来的一种定t 、定性分析的技术。 2.基本原理:(图1-1光吸收示意) 透光度T=It/lo 吸光度A=lg(lo/ I1) 朗伯-比尔(lambert-Beeri)定律:A=KLc K 为吸光率,L 为溶液厚度(em), c 为溶液浓度 (mol/L)] 摩尔吸光系数日ε:1摩尔浓度的溶液在厚度为 I.cm 的吸光度。 c=A/ε 3. 定量分析: (1)标准曲线(工作曲线)法 (2) 对比法元-KCLCx (3)计算法: e=A/ε (4)差示分析法(适用于浓度过浓成过稀) (5) 多组分湖合物测定 4.技术分类 分子吸收法&原子吸收法:

可见光(400-760 nm) &紫外光(200~ 40m) &红外光(大于760 nm)分光光度法; 5.应用方向 有机物成分分析&结构分析红外分光光度法测定人体内的微量元囊原子吸收分光光度法 二电脉技术 1.定义:带电荷的供试品在情性支持介质中,在电场的作用下,向其对应的电 极方向按各自的速度进行脉动。使组分分离成族窄的区带,用透宜的检洲方法记录其电泳区带图请或计算其百分含量的方法。 2.基本原理: 球形质点的迁移率与所带电成正比,与其半径及介质粘度成反比。v=Q/6xrη 3.影响电泳迁移率的因素: 电场强度电场强度大,带电质点的迁移率加速 溶液的PH值: 溶液的pH离pl越远,质点所带净电荷越多,电泳迁移幸越大 溶液的离子强度:电泳液中的高子浓度增加时会引起质点迁移率的降低 电渗:在电场作用下液体对于固体支持物的相对移动称为电渗 4:技术分类: 自由电泳(无支持体) 区带电泳(有支持体):法纸电泳(常压及高压),博层电泳(薄膜及薄板).凝波电泳(琼脂,琼脂糖、淀粉胶、柔丙烁配胶凝胶)等 5. 电泳分析常用方法及其特点: 小分子物质滤纸、纤维素、硅胶薄膜电泳复杂大分子物质凝胶电泳 ⑴醋酸纤维素薄膜电泳 ①这种薄顺对蛋白质样品吸阴性小,消除纸电沫中出现的“拖尾”现象 ②分离理应快,电泳时间短 ③样品用最少: ④经过冰最酸乙醉溶液或其它看明液处理后可使膜透明化有利丁对电泳图潜的光吸收措测店和爱的长期保 ------别适合于病理情况下微量异常蛋白的检测(胰岛素、游菌酶、胎儿甲种球

相关主题
文本预览
相关文档 最新文档