当前位置:文档之家› 局部阻力计算

局部阻力计算

局部阻力计算
局部阻力计算

4.4.1 局部损失的产生的原因及计算

一、产生局部损失的原因

产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。

()()

图4.9 局部损失的原因

对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,

压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。

二、局部损失的计算

如前所述,单位重量流体的局部能量损失以表示

式中,—局部损失(阻力)系数,是一个无量纲的系数,它的大小与局部障碍物的结构形式有关,由实验确定。

—管中的平均速度(通常指局部损失之后的速度)。

局部压强损失为

式中,—流经局部障碍物前后的压强差(或总压差)。

1.突然扩张管道的局部损失计算

由于产生局部损失的情况多种多样以及其流动情况的复杂性,所以对于大多数情况局部损失只能通过实验来确定。只有极少数情况下的局部损失可以进行理论计算。

对于突然扩大的情况,可以通过理论推导得到局部损失的计算公式。流体在如图 4.9 ()所示的突然扩张的管道内流动,由于流体的碰撞、惯性和附面层的影响,在拐角区形成了旋涡,引起能量损失。由图可见,流体到 2截面充满整个管道。取1-1和2-2截面以及侧表面为控制体,并设截面1处的面

积为,参数为;截面2处的面积为,参数为,则根据柏努力方程,有

于是局部损失为

对 1-1和2-2截面运用连续方程,即

对所取得控制面应用动量方程,考虑到 1-1和2-2截面之间的距离比较短,通常可以不计侧表面上的表面力,于是动量方程可写为

将动量方程和连续方程代入的表达式得

令,,则局部损失可写为

(4.35)

式中,分别表示局部损失(阻力)系数。式(4.35)表明,用公式计算局部损失时,采用的速度可以是损失前的也可以是损失后的,但局部损失系数也不同。由式(4.35)及局部损失系数的表达式可以看出,突然扩大的局部损失系数仅与管道的面积比有关而与雷诺数无关,实际上根据实验结果可知,在雷诺数不很大时,局部损失系数随着雷诺数的增大而减小,只有当雷诺数足够大(流动进入阻力平方区)后,局部损失系数才与雷诺数无关。

下面给出的几种比较常见的局部损失系数的计算,且一般情况下,局部损失系数均指对应发生损失后的速度给出的。

2.渐扩管

流体流过逐渐扩张的管道时,由于管道截面积的逐渐扩大,使得流速沿流向减小,压强增高,且由于粘性的影响,在靠近壁面处,由于流速小,以至于动量不足以克服逆压的倒推作用,因而在靠近壁面处出现倒流现象从而引起旋

涡,产生能量损失。渐扩管的扩散角越大,旋涡产生的能量损失也越大,

越小,要达到一定的面积比所需要的管道也越长,因而产生的摩擦损失也越大。所以存在着一个最佳的扩散角。在工程中,一般取,其能量损失最小。在左右损失最大。渐扩管的局部损失系数为

(4.36)

3.突然缩小管道

图 4.10 突然缩小的管道

流体在突然缩小的管道中流动如图 4.10 所示,当管道的截面积突然收缩时,流体首先在大管的拐角处发生分离,形成分离区,然后在小管内也形成一个分离区。最后才占据管道的整个截面。局部损失系数的确定可以根据实验确定。对于不可压缩流动,实验结果为

(4.37)

在特殊情况下,,即流体从一个大容器进入管道且进口处具有尖锐的边缘时,局部损失系数为。若将进口处的尖锐边缘改成圆角后,则局部损失系数随着进口的圆滑程度而大大降低,对于圆形匀滑的边缘;入口极圆滑时。

4.渐缩管

为了减小突然缩小的流动损失,通常采用渐缩管。在渐缩管中,流线不会脱离壁面,因此流动阻力主要是沿流程的摩擦引起的。对应于缩小后的流速的

局部损失系数为,由此可见,在渐缩管中的流动损失很小。

5.弯管

图 4.11 流体在弯管内的流动

在弯管内的流动由于流体的惯性,流体在流过弯管时内外壁面的压力分布不同而流线发生弯曲,流体受到向心力的作用,这样,弯管外侧的压强就高于内侧的压强如图 4.11 所示。图中区域内,流体压强升高,点以后,

流体的压强渐渐降低。与此同时,在弯管内侧的区域内,流体作增速降压的流动,区域内是增压减速流动。在和这两个区域内,由于流

动是减速增压的,会引起流体脱离壁面,形成漩涡区,造成损失。此外,由于粘性的作用,管壁附近的流体速度小,在内外压力差的作用下,会沿管壁从外侧向内侧流动。

同时,由于连续性,管中心流体会向外侧壁面流去。从而形成一个双旋涡形状的横向流动,整个流动呈螺旋状。横向流动的出现,也会引起流体能量的损失。弯管的局部损失系数可按下列经验公式计算:

(4.38a)

系数的计算式为

(4.38b)式中,是弯管中线的曲率半径,为管径。

4.4.2减小和利用局部损失

在各种管道的设计中,应尽量减小局部损失。为了减小局部损失,应尽量避免流通截面积发生突然的变化,在截面积有较大变化的地方常采用锥形过渡,在要求比较高的管道中应采用光滑的流线型壁面。以下举几个例子来说明减小局部损失的方法。

1、弯曲管道

由弯管的局部损失计算公式可知,弯管的局部损失取决于管道的直径、曲率半径和管道的弯曲角。因此在设计管道时,为了减小局部损失,应尽量避免

采用弯转角过大的死弯。对于直径较小的热力设备管道,通常采用。

对于直径较大的排烟风道来说,横向的二次流动比较突出。为了减小二次流动损失,一方面可以适当的加大管道的曲率半径,以减小流体转弯时的离心力,另一方面通常在弯管内安装导流叶片如图 4.12 所示。这样既可减小弯道两侧的压强差,又可以减小二次流影响的范围。根据实验,在没有安装导流叶片的情况下,

直角弯管的;安装簿板弯成的导流叶片后,;当导流叶片呈流线月牙形时,。可见当安装导流叶片后,并适当选择导流叶片的形状,对减小局部损失有明显的效果。

实验三 管路局部阻力系数测定实验

实验三 管路局部阻力系数测定实验 一、实验目的要求: 1.掌握三点法,四点法测量局部阻力系数的技能。 2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。 3.加深对局部阻力损失机理的理解。 二、实验成果及要求 1.记录计算有关常数。 实验装置台号No d 1=D 1= 1.4 cm , d 2=d 3= d 4= D 2=1.9 cm , d 5=d 6=D 3= 1.4 cm , l 1—2=12cm , l 2—3=24cm , l 3—4=12cm , l 4—B =6cm , l B —5=6cm , l 5—6=6cm , 2 2 1) 1(A A e - ='ξ= 0.21 ,) 3 1(5.05A A s - ='ξ= 0.23 。 2.整理记录、计算表。 表1 记录表

表2 计算表 3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。 三、实验分析与讨论 1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同? 2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 答:由式 g v h j 22 ζ = 及 ()21d d f =ζ 表明影响局部阻力损失的因素是v 和21d d 。由于有 突扩:2 211???? ? ?-=A A e ζ

突缩:???? ? ?-=2115.0A A s ζ 则有 () () 2 12 212115.0115.0A A A A A A K e s -= - -= = ζζ 当 5.021?A A 或 707.021?d d 时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。 21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动, 因而阻力损失显著减小。 2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与 突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下: 从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。 从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。 从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~101。突然收缩实验管道使

管道内的局部阻力及损失计算

管道内的局部阻力及损失计算 第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 , , , , 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 , ,所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间

的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9,,给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示 式中,—局部损失,阻力,系数,是一个无量纲的系数,它的大小与局部障碍物的结构形式有关,由实验确定。—管中的平均速度,通常指局部损失之后的速度,。 局部压强损失为 式中, —流经局部障碍物前后的压强差,或总压差,。 突然扩张管道的局部损失计算

风管阻力计算总结

通风管道阻力计算 对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。否则别的就更不用考虑了。管道内风量主要是由风管内阻力影响的。 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。 一:摩擦阻力(沿程阻力)计算 摩擦阻力(沿程阻力)计算一:(公式推导法) 根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D 以上各式中: ΔPm———摩擦阻力(沿程阻力),Pa。 λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式: 其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】 莫台曲线图

表1-1 一般通风管道中K、Re、λ的经验取值 ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s) ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】 L ———风管长度,m 【横断面形状不变的管道长度】 D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】

阻力损失的计算方法

1.5阻力损失 1.5.1两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管,另一种是弯头、三通、阀门等各种管件。 直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失) 管件造成的机械能损失称为局部阻力 注意 将直管阻力损失与固体表面间的摩擦损失相区别 阻力损失表现为流体势能的降低 由机械能衡算式(1-42)可知: ρρρ212211P P g z p g z p h f -=??? ? ??+-???? ??+= (1-71) 层流时直管阻力损失 流体在直管中作层流流动时,因阻力损失造成的势能差可直接由式(1-68)求出: 232d lu μ?= ? (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 232d lu h f ρμ= (1-73) 1.5.2湍流时直管阻力损失的实验研究方法 实验研究的基本步骤如下: (1)析因实验-寻找影响过程的主要因素

对所研究的过程作初步的实验和经验的归纳,尽可能的列出影响过程的主要因素。对湍流时直管阻力损失f h ,经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε(管内壁表面高低不平): 流动条件:流速u 。 于是待求的关系式为: ) ,,,,,(ερμu l d f h f = (1-74) (2)规划实验-减少实验工作量 因次分析法的基础是:任何物理方程的等式两边或方程中的每一项均具有相同的因次,此称为因次和谐或因次的一致性。 以层流时的阻力损失计算式为例,式(1-73)可写成如下形式 ???? ????? ??=??? ? ??dup d l u h f μ322 (1-75) 式中每一项都为无因次项,称为无因次数群。 换言之,未作无因次处理前,层流时阻力的函数形式为: ) ,,,,(u l d f h f ρμ= (1-76) 作无因次处理后,可写成

局部阻力系数

阻力分为多种阻力,其中空气阻力Fw它的计算公式是:Fw=1/16·A·Cw·v2(kg),v为行车速度,单位:m/s;A为汽车横截面面积,单位:m2:Cw为风阻系数。 局部阻力系数(coefficient of local resistance) 与流体方向和速度变化有关的系数 具体指:流体流经设备及管道附件所产生的局部阻力与相应动压的比值,其值为无量纲数。 功能:用于计算流体受局部阻力作用时的能量损失。 公式:动压= 局部阻力系数*ρ*V*V*1/2 其中λ为摩擦系数,量纲为一;1为管长;d为管径;ρ为流体密度;u为流速。 本式表明流体流动阻力△pf与流动管道长度呈正比;与管道直径呈反比,与流体动能pu2/2呈正比。 其中le为当量长度,即将局部阻力折合成相当长度的直管来计算;ζ成为局部阻力系数。le和ζ都是由实验来确定的。 空气阻力跟速度成平方正比关系,也就是说:速度增加1倍,汽车受到的阻力就会增加3倍。因此高速行驶汽车对空气阻力的影响非常明显,车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。换句话讲,空气阻力小不仅可以节约燃油,在发动机功率相同的条件下,还能达到更高的车速。 风阻是车辆行驶时来自空气的阻力,一般空气阻力有三种形式: 第一是气流撞击车辆正面所产生的阻力,就像拿一块木板

顶风而行,所受到的阻力几乎都是气流撞击所产生的阻力。 ◆第二是摩擦阻力,空气与划过车身一样会产生摩擦力,然 而以一般车辆能行驶的最快速度来说,摩擦阻力小到几乎可以忽略。 ◆第三则是外型阻力(下图可说明何谓外型阻力),一般来说, 车辆高速行驶时,外型阻力是最主要的空气阻力来源

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计 算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。 在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: H f =λ×L/d×ρν2/2pa λ——摩擦阻力系数。 L——风道长度,m

d——圆形风管直径,非圆形管用当量直径; ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H f =α×LU/S3×Q2 =R f×Q2pa R f=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s R f——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→h f→R f 生产矿井:已测定的h f→R f→α,再由α→h f→R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

阀门局部阻力系数的测定指导书

阀门局部阻力系数的测定 一、 实验目的 (1)掌握管道沿程阻力系数和局部阻力系数的测定方法。 (2)了解阻力系数在不同流态,不同雷诺数下的变化情况。 (3)测定阀门不同开启度时(全开、约30°、约45°三种)的阻力系数。 (4)掌握三点法、四点法量测局部阻力系数的技能。 二、实验仪器 图1实验仪器简图 1. 水箱2.供水管3. 水泵开关4. 进水阀门5.细管沿程阻力测试段6.突扩7.粗管沿程阻力测试段8. 突缩9.测压管10.实验阀门 11.出水调节阀门 12.计量箱 13.量筒14.回水管15.实验桌 三、阀门阻力实验原理 图2 阀门的局部水头损失测压管段 对1、4两断面列能量方程式,可求得阀门的局部水头损失及2(L 1+ L 2)长 度上的沿程水头损失,以h w1表之,则 14 11h p p h w ?=-= γ 对2、3两断面列能量方程式,可求得阀门的局部水头损失及(L 1+ L 2)长 度上的沿程水头损失,以h w2表之,则

23 22h p p h w ?=-= γ ∴阀门的局部水头损失h 1应为: 1212h h h ?-?= 亦即 122 22h h g v ?-?=ζ ∴阀门的局部水头损失系数为: 2122) 2(v g h h ?-?=ζ 式中v 为管道的平均流速 四、实验步骤及要求 (1)本实验共进行三组实验:阀门全开、开启30°、开启45°,每组实验做三个实验点。 (2)开启进水阀门,使压差达到测压计可量测的最大高度。 (3)测读压差,同时用体积法量测流量 (4)每组三个实验点的压差植不要太接近 (5)绘制d=f (ζ)曲线。 (五)问题讨论: (1)同一开启度,不同流量下,ζ值应为定值抑或变值,何故? (2)不同开启度时,如把流量调至相等,ζ值是否相等? (六)绘图:

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法 胡宝林 在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件与重杂物分离器、供料器、卸料器、除尘器等设备上产生。由于管件形状与设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300a P 左右,离心式籽棉卸料器压损为400a P 左右,这些都就是实测数据,由于规格结构不同差异也会很大,所以仅供参考。只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。局部阻力就是管道阻力的重要组成部分,一个4R D = 90°弯头的阻力相当于2、5~6、5m 的直管沿程阻力。由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下与带料运行时的局部阻力系数的变化及局部阻力计算方法。 一、纯空气输送时局部阻力与系数 1、局部阻力 当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。在产生局部损失的地方,由于主流与边界分离与漩涡的存在,质点间的摩擦与撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式: 2 2 j d H H ρυξξ=?=? 式中:j H —局部阻力,a P ; ξ—局部阻力系数,实验取得或公式计算; d H —动压,a P ; ρ—空气密度,1、2053/kg m (20°℃); υ—空气流速,/m s

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例)同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: 2 H = λ×L/d ×ρν/2 Pa λ——摩擦阻力系数。 L ---- 风道长度,m d――圆形风管直径,非圆形管用当量直径;

空气密度,kg/m3 断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H = α ×LU∕S3×Q2 =R f ×Q2 Pa 3 R f=α× LU∕S3 α --- 摩擦阻力系数,单位kgf ?s2∕m4或N ? s7m4, kgf ?s7m4=9.8N ? s7m4 L、U――巷道长度、周长,单位m S—巷道断面积,m Q ---- 风量,单位m/s R ——摩擦风阻,对于已给定的井巷,L,U S都为已知数,故可把上式中的α, L, U, S归结为一个参数R,其单位为:kg∕m7或N ?s7m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→ h f → R f 生产矿井:已测定的h f → R f → α, 再由α→ h f → R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因, 使均匀流动在局部地区受到影响而破坏, 从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。 (2)、渐变 主要是由于沿流动方向出现减速增压现象, 在边壁附近产生涡漩。因为压差

局部阻力损失实验报告

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=- 2.突然缩小 采用四点法计算,下式中B 点为突缩点,4f B h -由 34 f h -换算得出, 5 fB h -由 56 f h -换算 得出。 实测 2 2 5 54 44455[()][()]22js f B fB p p h Z h Z h g g αυαυγ γ --=+ + --+ + +

通风阻力计算公式汇总

通风阻力计算公式汇总

————————————————————————————————作者:————————————————————————————————日期:

1、 巷道几何参数的测算 (1)梯形: 断面积 SL=H L *B L 周长 U L =4.16*L S (2) 半圆拱: 断面积 S L =(H L -0.1073B L )*B L 周长 U L =3.84*L S (3)三心拱: 断面积 S L =(HL-0.0867B L )*B L 周长 U L =4.10*L S (4)圆形: 断面积 S L =π*R 2 周长 U L =2*π*R (5)矩形: 断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2 U L —巷道断面周长,m ; H L —巷道断面全高,m ; B L —巷道断面宽度或腰线宽度,m ; R —巷道断面圆半径,m ; π—圆周率,取3.14159。 以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。 2、 巷道内风量的计算 (1)两测点之间巷道通过的风量按如下原则确定: Q=(Q i +Q i+1)/2 , m 3/min (2)井巷内风量、风速按以下公式计算: Q L =S L *V L , m 3/min V L =((S-0.4)/S )*(a X+ b ) , m 3/min 式中: Q L --井巷内通过的风量,m 3/min ; S L (S )--井巷断面面积,m 2 V L --井巷内平均风速,m/min X —表风速,m/min a 、 b —风表校正系数 3 井巷内空气密度的计算 湿空气密度用下列公式计算: i b i=d 0.0348(Pi 0.379P )273.15+t ?-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ?≠0), kg/ m 3 Pi --测点i 处空气的绝对静压(大气压力),Pa ; d t --测点i 处空气的干温度,℃;

通风阻力 计算公式汇总

1、 巷道几何参数的测算 (1)梯形: 断面积 SL=H L *B L 周长 U L (2) 半圆拱: 断面积 S L =(H L -0.1073B L )*B L 周长 U L =3.84* (3)三心拱: 断面积 S L =(HL-0.0867B L )*B L 周长 U L (4)圆形: 断面积 S L =π*R 2 周长 U L =2*π*R (5)矩形: 断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2 U L —巷道断面周长,m ; H L —巷道断面全高,m ; B L —巷道断面宽度或腰线宽度,m ; R —巷道断面圆半径,m ; π—圆周率,取3.14159。 以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。 2、 巷道内风量的计算 (1)两测点之间巷道通过的风量按如下原则确定: Q=(Q i +Q i+1)/2 , m 3/min (2)井巷内风量、风速按以下公式计算: Q L =S L *V L , m 3/min V L =((S-0.4)/S )*(a X+ b ) , m 3/min 式中: Q L --井巷内通过的风量,m 3/min ; S L (S )--井巷断面面积,m 2 V L --井巷内平均风速,m/min X —表风速,m/min a 、 b —风表校正系数 3 井巷内空气密度的计算 湿空气密度用下列公式计算: i b i=d 0.0348(Pi 0.379P )273.15+t ?-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ?≠0), kg/ m 3 Pi --测点i 处空气的绝对静压(大气压力),Pa ; d t --测点i 处空气的干温度,℃; i ?--测点i 处空气的相对湿度,%; P b —测点i 处d t 空气温度下的饱和水蒸气压力,Pa 。

(八)局部阻力损失实验

局部阻力损失实验 实验人:王琦PB10030015 苏拓 一、实验目的要求 1、掌握三点法、四点法量测局部阻力系数的技能; 2、通过对园管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径: 3、加深对局部阻力损失机理的理解。 二、实验装置 本实验装置如图8.1所示 4567891011 12 321 1 2 3 4 5 6 图 8.1 局部阻力系数实验装置图 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.恒压水箱; 5.溢流板; 6.稳水孔板; 7.突然扩大实验管段; 8.测压计; 9.滑动测量尺; 10.测压管; 11.突然收缩实验管段; 12.实验流量调节阀. 实 验管道由小—大—小三种已知管径的管道组成,共设有六个测压孔,测孔1—3和3—6分别测量突扩和突缩的局部阻力系数。其中测孔1位于突扩界面处,用以测量小管出口端压强值。 三、实验原理 写出局部阻力前后两断面能量方程,根据推导条件,扣除沿程水头损失可得: 1、突然扩大 采用三点法计算,下式中21-f h 由32-f h 按流长比例换算得出。 实测 ]2)[(]2)[(212 2 2 22 11 1-++ + -+ + =f je h g p z g p z h αυγ αυγ g h je e 2/ 2 1αυζ= 理论 2 2 1)1(A A e - =' ζ

g a h e je 22 1υζ'=' 2、突然缩小 采用四点法计算,下式中B 点为突缩点,B f h -4由43-f h 换算得出,5-fB h 由65-f h 换算得出。 实测 ]2)[(]2)[(52 55 5424 4 4--++ + --+ + =fB B f js h g p Z h g p Z h αυγ αυγ g h js s 2/ 2 5αυζ= 经验 )1(5.03 5 A A s - =' ζ g h s js 22 5αυζ'=' 实验结果及要求 1.记录,计算有关常数: d1=D1=1.03cm, d2=d3=d4=D2=1.95cm, d5=d6=D3=1.01cm, 122334455612,24,12,6,6,6B B l cm l cm l cm l cm l cm l cm ------======5198.0)1(2 21'=- =A A e ζ 3659.0)1(5.03 5'=-=A A s ζ 2.整理、记录并计算: 表1 局部阻力损失实验记录表 次数 流量,cm^3/s 测压管读数/cm 体积 时间 流量 1 2 3 4 5 6 1 915 7.15 127.972 14.3 18.5 18.1 18 0 0 2 1120 9.07 123.484 15.6 19.7 19.3 19.2 2.8 0 3 1420 13.04 108.8957 19.3 22.6 22.3 22.2 8.8 7.5 4 1150 15.06 76.36122 27.9 29.5 29.4 29.4 22.6 21.8 表2 局部阻力损失实验记录表 次数 阻力 流量cm^3/s 前断面cm 后断面 cm hj,cm § hj',cm αv^2/2g E αv^2/2g E 1 突扩 127.97 2 12.04719 26.6390 3 0.93777 19.81532 6.619626 0.549475 6.2621 2 123.484 11.21701 27.13538 0.873148 20.97519 5.956109 0.530989 5.8306 3 108.8957 8.723228 28.41711 0.679028 23.74025 4.523792 0.518591 4.5343

风管计算局部阻力系数

知识就绘力量 风管计算局部阻力系数 1.3.2局部組力廉散 竇杵彳进凤口的AM1力嬴故 A 1安装庄堵上的风曾 吗风管为短形时?门対臓逮芳H直住◎ 出这种管件的入口外装有网幡时.应进行修疋「边醴较弾时.BP S/D?h05时fo = I十氐边壁较阜时.即J/P>0.05时* 式中A—管件的局部阻力累裁*见上樂——福的 局诽阻力慕数.见管杵G-乩^-2不安在惓埴上的 權足甑妁則叭口 4 -.. 丄 ■ 02B聞4已fid100140IBD U. 026 1.00.96IKM0亠肺w0.69 4.590.30 o. os 1.0c,as IL帥0,?5 C.fl7乩站0.53仇的fe * 0,1& 1.0L*U *1) 4. so Ik 57此厲九血I.D■“ 1 1,0 ' C.UE乩50IK3i4L&2 -$50.72V.73 X06(L500-50O.So0.5D o.sa0,50心揃

577 知识就姥力量 当断简①处有期格时,按式<8.3-2)进行修正。 /?3安装在端堪上的锥形渐缩剤叭口 当断面①处有网格时,应按式(8.3 2)修正。 *4罩形进风门 若斷面①处有剧祜时.应按式<8<3-2)进行修正。 4-5带或不带凸边的渐缩型罩子。 矶?) 0 20 40 w ?0 ]00 120 1W 1W 180 L0 O.ll 0N6 0.W 044 0.18 0.27 - O.A3 <1. W 20 40 8C- 100 120 uo 160 l?J : 1.0 0.L9 0.13 0U6 0<2l 0.27 0.33 0.33 0.52 : 对于矩形罩子,&系招大角。 管件B 岀风口的局部81力系数 B-1直管出风口 瓷o = 1?0 当岀口断面处有网格时,应按式(8.3?2) 进行修正? B-2健形出风口.園风管 1 D C 10 20 M 40 60 100 13 180 O.OZL o.so 0.U 仇45 C.43 0.41 0.40 0.42 0.45 O.M 0.05 0.W 0.45 0.1( 0.W 0.33 0.30 0>35 0.42 O.ati 0.OT5 OeSO 0.42 0.36 O.2C 0.28 0.23 0.30 0.40 0.50 0.10 0.50 0.W 0.S2 0.2S 几22 0.18 0.27 C.M 0.50 0.1$ 0.60 0.37 0.Z7 9.20 ).16 0.15 0.25 0-37 0.50 ? 0?3 0.50 0.27 0.18 _ !>.13 3.11 0.12 0.23 0.36 C.50 0.1 0.2 0.3 0.4 0.5 0?b 0.7 0.8 ?.9 ■ 0 2?$ 1.8 i?5 1.1 1.3 1.2 l.Z 1.1 l.l 15 1.3 o.$o o.a 0.41 0.30 0.29 0.2S 0-25

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生得原因 当空气沿井巷运动时,由于风流得粘滞性与惯性以及井巷壁面等对风流得阻滞、扰动作用而形成通风阻力,它就是造成风流能量损失得原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)与局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同得流速,会形成不同得流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行得方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点得运动速度在大小与方向上都随时发生变化,成为互相混杂得紊乱流动,称为紊流(或湍流)。(降低风速得原因) (二)、巷道风速分布 由于空气得粘性与井巷壁面摩擦影响,井巷断面上风速分布就是不均匀得。 在同一巷道断面上存在层流区与紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力得计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间得摩擦与流体与井巷壁面之间得摩擦所形成得阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还就是紊流,以风流压能损失(能量损失)来反映得摩擦阻力可用下式来计算: H f=λ×L/d×ρν2/2 pa λ——摩擦阻力系数。 L——风道长度,m d——圆形风管直径,非圆形管用当量直径;

ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中得平均流速得一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷得摩擦阻力计算式为: Hf =α×LU/S3×Q2 =R f×Q2pa Rf=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9、8N·s 2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s Rf——摩擦风阻,对于已给定得井巷,L,U,S都为已知数,故可把上式中得α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或 N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→hf→R f 生产矿井:已测定得hf→R f→α, 再由α→h f→Rf 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化与产生涡流等,造成风流得能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布得变化比较复杂性,对局部阻力得计算一般采用经验公式。 1、几种常见得局部阻力产生得类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离得现象,在主流与边壁之间形成涡漩区,从而增加能量损失。 (2)、渐变

相关主题
文本预览
相关文档 最新文档