当前位置:文档之家› 基于Terra Solid的机载激光雷达点云数据处理应用

基于Terra Solid的机载激光雷达点云数据处理应用

基于Terra Solid的机载激光雷达点云数据处理应用
基于Terra Solid的机载激光雷达点云数据处理应用

基于Terra Solid的机载激光雷达点云数据处理应用

发表时间:2019-06-20T11:45:12.637Z 来源:《基层建设》2019年第9期作者:姚思贤

[导读] 摘要:机载激光雷达(light detection and ranging,LiDAR)是于20世纪80年代发展起来的一种集全球定位系统、惯性导航系统与激光测距技术于一体的新型主动式空间信息获取技术。

中科遥感科技集团有限公司天津市 300300

摘要:机载激光雷达(light detection and ranging,LiDAR)是于20世纪80年代发展起来的一种集全球定位系统、惯性导航系统与激光测距技术于一体的新型主动式空间信息获取技术。它可直接获取地面目标的三维坐标,不受阴影和太阳高度角影响,并可与数字航摄仪相结合获取地物光谱、纹理信息,具有控制测量依赖性少、受天气影响小、自动化程度高、成图周期短等特点,基于TerraSolid系列软件构建完整的用于机载激光雷达点云数据处理的详细技术流程,通过优化处理流程提高其数据处理的效率和精度。对4组实验数据的处理结果表明,该技术具有较好的可行性和较高的工作效率。

关键词:基于Terra Solid;机载激光雷达;点云数据;处理应用

1、前言

近几年,随着机载激光雷达硬件系统的快速发展,其产生的点云数据也变得更加精确,更加海量。在整个激光雷达的数据处理过程中,占60%~80%的点云数据分类工作已经成为制约LiDAR进一步应用发展的瓶颈问题,设计高效、高精度的海量点云数据处理流程意义十分重大。

2、基于Terra Solid的点云数据处理流程

目前的LiDAR数据处理技术、流程和方法还很不完善,使用TerraSolid软件实现机载LiDAR点云数据的处理,直至生成DEM产品的过程主要可以归为以下五大步骤。

2.1导入原始数据并建立项目流程

导入原始点云数据和建立项目是后面所有操作的阶石,具体操作步骤顺序如下:

1)设置坐标系。

2)导入飞行航线。

3)导入机载LiDAR点云数据,检查覆盖情况,确定点密度及单个作业Block大/]、(2GBRAM:5百万个点,4GBRAM:1.O~1.5千万个点)。

4)定义作业区。

5)裁切飞行航线(值得注意的是,航线不能自相交)。

6)定义项目(新建后要注意保存)。

7)定义作业分区Block(定义后,删除并在指定层重画Block)。

8)导入机载LiDAR点云数据点,生成分区存储的机载LiDAR数据点文件。

9)推测航线号并检查正确性。

2.2数据校正流程

原始数据在使用之前需要进行适当的数据校正处理,任何一个技术环节把握不当都将直接导致项目的失败。TerraSolid主要是用宏命令的方式帮助校正、平差、纠正相关数据项。详细流程如下:

1)创建用于数据校正的项目文件(注意只选择几个有不同坡向或多坡的Block区进行测试)。

2)装载TerraMatch模块。

3)运行“Measurematch”命令,量测相邻航线间的匹配差值。

4)运行“Findmatch”命令,计算3个角度偏转误差及镜向比例误差,保存改正数及误差报告。

5)运行“Applycorrection”命令,用上一步保存的改正数纠正整个项目区数据。

6)检查改正效果。

7)运行“Findmatch”计算Z误差(整个测区),保存改正数及误差报告。

8)选择整个项目,Solvefor:individuallines。

9)如果需要,对误差较大的航线调整其质量属性。

10)运行“Applycorrection”命令,用上一步保存的Z改正数纠正整个项目区数据。

11)检查改正效果。

12)运行“Findfluctuation”量测整个测区重叠部分的波动较差,保存改正数及误差报告。

13)对整个测区进行波动较差改正。

14)检查改正效果。

15)检查整体匹配效果。

2.3机载LiDAR点云数据的自动分类流程

机载LiDAR的点云数据的分类处理概括地分为自动分类处理和手动分类两部分。这项工作在整个机载LiDAR的数据后处理过程中占六到八成的T作量。下面详细介绍自动分类处理的流程:

1)删除重叠点(有的项目不需要删除)。

2)创建宏命令进行单航线地面点分类,由4个命令组成:①“Lowpointclassification”ingroups,即成组的低点分类。主要指明显低于地面的点,如在开着的检修井里的点、反射错误的点等。②“Lowpointclassification”singlepoints,即单个的低点分类。③“Groundclassification”,即地面点分类。④“Belowsurface”,即低于表面的点分类,在非常粗糙的区域稍低于地面的点。

3)运行于一个区,检查结果。在利用宏进行数据分类时,由于分类宏参数设置的偏差,会导致房屋有些地方分的不到位,有一些不属于房屋的点进入。这样在后期处理时就要多注意一些。所以宏的参数设置很重要,需要多试验几次再确定。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

三维点云处理软件需求说明资料讲解

三维激光扫描仪点云数据处理软件需求说明 点云数据处理软件是专用扫描软件、数据处理软件、CAD软件接口及应用于检测监测、对比分析的软件。 基本描述 点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。 1.可直接操作激光扫描仪进行数据采集、输入及输出。可接受多种数据格式,如AutoCAD dxf、obj、asc、dgn、pds、pdms等,可接受自定义格式的文本文件输入。 2.软件应具高精度和高可靠性,能够进行点云数据拼接、纹理贴图、特征线的提取、具有点云数据渲染、点云数据压缩、三角网模型生成、几何体建模等功能,软件快速、准确、易操作性。 3.可以智能地自动提取出特征线,同时也可提供人工方式进行特征线的提取。 4.能够提供多种断面生成方式,可以方便地生成一系列的断面线。生成的断面可以方便的导出到CAD及其它软件中做进一步加工处理和应用。应能够提供非常精确的量测物体尺寸的方法。 5.需要一体化软件且具备完整功能1). Registration模块:多种点云拼接模式、导线平差、引入地理参考、目标识别2). Office Survey模块:任意点云导入导出;点云的裁剪、取样、过滤;提取线形地物;在办公室任意量测数据;任意纵横断面;点云矢量化;3D等高线及标注;三角格网生成;任意形体建模;隧道及道路;任意体积面积计算;点云着色;纹理贴图;连续正射影像3).Modeling模块:

三维激光扫描分类及工作操作规范

三维激光扫描分类及工作 操作规范 Revised by Hanlin on 10 January 2021

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。(1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件

CARD-1中利用点云数据(激光雷达数据)进行项目设计使用说明

如何在CARD/1中利用点云数据进行项目设计 点云数据是利用激光雷达或其他专业测量仪器对实地进行扫描得到的带有颜色和三维坐标的大量点数据的集合。点云数据是目前国内外使用的最先进的测量数据形式。此数据可以真实的反映地形地貌,让设计者如同置身实地进行工程设计。点云数据,根据测量仪器的不同,点云数据有很多种格式,国外常见的有徕卡、瑞格、天宝等,国内常用的是激光雷达数据,其后缀为LAS。CARD/1能直接读取上述格式的点云数据。下面介绍如何在CARD/1中利用点云数据进行工程设计。 一、导入点云数据 首先,进入【测量】--【管理点云】,弹出边菜单,选择“新建”,弹出建立新点云的窗口, 输入一个名称(由字母和阿拉伯数字组成),可以给一个用于以后辨认的描述,点击确定,弹出读取点云数据的边菜单,这里可以读入多种格式的点云数据,需要根据已有点云数据的格式选择使用,现有点云数据位LAS格式,点击变菜单中的LAS格式进行读入,会弹出选择点云数据文件的对话框,选择窗体菜单中的外部文件,找到需要读入的LAS点云数据,点击打开。

出现导入点云数据的进度条,导入结束会提示导入的总点数,点击确定。 选择边菜单中的“预处理”,弹出对话框, 坐标及高程范围是系统自动获取的,无需修改,块大小是指系统将整个点云数据进行分块管理,每一个分块的面积大小,最小点数/最大点数指的是每一个分块管理的点个数。默认参数可以不用修改,也可以根据点云数据的大小情况来修改。点击确定,系统就会对点云数据进行分块处理。这一步必须做,否则系统无法显示点云数据。 二、显示点云数据 完成上述操作,点云数据就被成果导入到系统中。进入平面视图,设置数据显示,边菜单中勾选“点云数据”,即可看到点云数据平面图。 如果点云数据太大,显示速度慢,可以换一种方式显示,即绘制点云平面图,然后显示绘图对象,这样显示速度会快很多。可以进入【绘制图表】--【平面分页】,建立一个绘图需要的平面分页,可以建一个比较大的分页,包含整个点云区域。然后进入【绘制图表】--【建立点云平面】,在边菜单中点击“点云·选

机载激光雷达数据后处理软件(LiDAR_Suite)简介

机载激光雷达数据后处理软件(LiDAR_Suite)简介 LiDAR_Suite是武汉天擎空间信息技术有限公司在国家高新技术发展计划项目基础上,开发的具有完全自主知识产权的机载LiDAR 数据后处理软件(如图1)。 图1:LiDAR_Suite 系统界面 LiDAR_Suite 综合考虑了当前机载激光雷达数据处理与应用的实际,形成了一套从原始点云数据到高质量行业产品、成熟高效的机载LiDAR数据处理工艺流程。LiDAR_Suite 功能齐全,性能稳定,提供了涵盖机载激光雷达数据预处理、基础共性处理和专业应用处理等三个处理层次的丰富功能。具体包括: 1)机载LiDAR 点云数据、影像、矢量及DEM 等多源空间数据的存取与可视 化,提供了和主流LiDAR 数据处理软件、遥感影像处理软件以及GIS软件的数据接口; 2)机载LiDAR 数据质量控制;机载LiDAR 系统检校、点云数据精度评价 和点云数据的无缝航带拼接; 3)海量点云数据的工程化组织管理及其自动批处理;集群环境下的点云数据快 速处理; 4)多种点云数据的自动滤波、分类算法,基于多模式和多视图的点云编辑精细

分类,多模式和可视化的分类精度评价; 5)基于机载LiDAR 点云的高质量数字高程模型和等高线生产; 6)面向机载LiDAR 同机航空数码相机的整区域快速正射影像生产;机载 LiDAR点云与非同机遥感影像的配准; 7)电力行业应用:电力线提取与建模、电力设施周边地物要素采集、危险点间 距量测等; 8)数字城市应用:独立的子模块Building Modeler,实现城市建筑物三维模型的 自动、半自动建立。 LiDAR_Suite采用了当前机载LiDAR最新数据处理技术,采用了模块化设计思想以及插件集成技术,在可视化、人机交互、易操作性、处理精度与效率等方面与现有商业化的主流机载激光雷达数据处理软件相比均具有一定的技术优势,并提供了灵活方便的、面向行业的二次开发功能。LiDAR_Suite兼顾了先进算法自动化处理和人机交互的作用,使系统更具实用性;面向专业应用提供了测绘生产、数字城市建模、电力行业应用等功能。目前,该软件已应用于实际的高精效测绘生产中,完成从原始点云数据到基础测绘产品生产(含DEM、DOM、等高线、部分DLG)以及产品精度评价的全部流程,效果良好(图2为数据生产工程管理示意图,图3为多模式和多视图的点云精细分类编辑示意图,图4为点云自动分类结果,图5为高精度DEM渲染结果,图6为电力悬链线的提取与建模,图7为建筑物半自动建模)。目前,LiDAR_Suite的生产处理成果已应用于国土、交通、水利等领域,并可望在更多领域如资源、环境、灾害、电力、农林等得到广泛应用。

三维激光扫描仪

利用三维激光扫描仪提取塌陷裂缝 张飞跃 (西安科技大学,陕西西安 710600) 摘要:三维激光扫描技术作为一种新兴的测量技术,是一种先进的、自动化的、非接触式、高精度三维激光技术,是继GPS之后测量技术的又一次革新。由于地面沉降引起的地裂缝是一种日趋普遍且显著的地质问题,对矿区地表作物及生态产生重大影响。利用三维激光扫描仪并结合数字图像技术提取塌陷裂缝是对三维激光技术应用的又一次扩展。论文对三维激光扫描仪进行了详细的介绍说明并通过对矿区实地数据的处理和分析,探索三维激光扫描仪在地表变形监测领域的应用理论和方法。 关键词:三维激光扫描技术,点云数据处理,数字滤波,裂缝信息提取 Using three-dimensional laser scanner to extract Surface crack ZHANG Fei-Yue (xi’an university of science and technology) Abstract:As a new measurement technique,three-dimensional laser scanning technology is an advanced, automated, non-contact, high-precision three-dimensional laser technology, following another GPS measurement technology innovations. Due to cracks caused by ground subsidence is a common and increasingly significant geological problems, there has a significant impact on the mine surface crops and https://www.doczj.com/doc/7a15161652.html,ing three-dimensional laser scanner and digital image technology to extract collapse crack is another expansion of three-dimensional laser technology .This paper has been illustrated and described in detail by mine field data processing and analysis for three-dimensional laser scanner,to explore the three-dimensional laser scanner application theory and methods in the field of surface deformation monitoring. Key words: Three-dimensional laser scanning technology,Point cloud data processing,Digital Filter,Cracks information extraction 0 引言 三维激光扫描系统是一种集高新科技于一身的空间数据获取系统。利用地面三维激光扫描技术,可以进行复杂地形地貌的地区或是管线设施密集的工厂进行扫描作业,并可以直接实现各种大型的、复杂的、不规则、标准或非标准的实体或实景三维数据完整的采集,进而快速重构出实体目标的三维模型及线、面、体、空间等各种制图数据。同时,还可对采集的三维激光点云数据进行各种后处理分析,如测绘、分析、模拟、展示、监测、虚拟现实等操作。 在矿山开采沉陷研究中,传统地表沉陷观测方法在地表变形盆地主断面上步设一定密度的监测点获取地表变形数据。监测点数量有限,并且在较长的观测周期中出现因监测点难以保护而造成点位丢失的现象,给之后的数据处理工作带来

三维激光扫描仪的原理与其应用

三维激光扫描仪 2.1三维激光扫描仪研究背景 自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20世纪获得巨大发展。实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云”,具有快速、简便、准确的特点。基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。 其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。 2.2 三维激光扫描技术研究现状 2.2.1 主要的三维激光扫描仪介绍 随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。主要的有瑞士Leica公司,美国的FARO公司和3D DIGITAL公司、奥地利的RIGEL公司、加拿大的OpTech公司、法国MENSI公司、中国的北京荣创兴业科技发展公司等。这些扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同[2]。主要的分类见图1-1和表1-1。

三维激光扫描技术

三维激光扫描技术 三维激光扫描技术 三维激光扫描技术又被称为实景复制技术,作为20 世纪90 年代中期开始出现的一项高新技术,是测绘领域继GPS技术之后的又一次技术革命,通过高速激光扫描测量的方法,大面积、高分辨率地快速获取物体表面各个点的(x.y.z)坐标、反射率、(R.G.B)颜色等信息,由这些大量、密集的点信息可快速复建出1:1的真彩色三维点云模型,为后续的业处理、数据分析等工作提供准确依据。具有快速性,效益高、不接触性、穿透性、动态、主动性,高密度、高精度,数字化、自动化、实时性强等特点,很好的解决了目前空间信息技术发展实时性与准确性的颈瓶。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型,主要通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据,大量的空间点位信息。是快速建立物体的三维影像模型的一种全新的技术手段。三维激光扫描技术使工程大数据的应用在众多行业成为可能。如工业测量的逆向工程、对比检测;建筑工程中的竣工验收、改扩建设计;测量工程中的位移监测、地形测绘;考古项目中的数据存档与修复工程等等。 三维激光扫描原理 三维激光扫描仪利用激光测距的原理,通过高速测量记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。 三维激光扫描技术引入建筑工程的意义 随着三维扫描技术的发展与成熟,它很快成为空间数据获取的一种重要技术手段,并在很多行业引起技术性变革的热潮。目前,国建筑行业处于变革的阶段,BIM在我们从事的行业中引爆,但是都处于一种建模,碰撞分析,检测等方面,但都没有深入衔接现实,忽略施工工地数据流与建筑信息模型间的流通转化,何谈运维,所以bim模型去哪了?并没有贯穿到bim 的全生命周期中去。三维激光扫描技术在BIM中的应用是最基础的一个重要环节,对现场实际数据的采

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

机载激光雷达数据处理流程

机载激光雷达数据处理 编制:深圳飞马机器人科技有限公司版本号:V0.1 日期:2019-3-22

版权声明 本文档版权由深圳飞马机器人科技有限公司所有。任何形式的拷贝或部分拷贝都是不允许的,除非是出于有保护的评价目的。 本文档由深圳飞马机器人科技有限公司提供。此信息只用于软件业务项目管理的成员或咨询专家。特别指出的是,本文档的内容在没有得到深圳飞马机器人科技有限公书面允许的情况下不能把全部或部分泄露给任何其它单位。

目录 机载激光雷达数据处理 (1) 1.概述 (5) 2.软件准备 (5) 3.数据整理 (6) 3.1.GPS数据 (6) 3.2.LIDAR原始数据 (7) 3.3.影像数据...........................................错误!未定义书签。 3.4.数据整理与存放..............................错误!未定义书签。 4.差分解算 (7) 4.1.GPS数据格式转换 (7) 4.2.影像POS数据处理..........................错误!未定义书签。 4.3.点云轨迹解算 (10) 5.影像数据处理..............................................错误!未定义书签。 6.点云数据预处理 (26) 6.1.新建项目 (26) 6.2.点云解算 (30) 6.3.数据检核 (31) 6.4.特征提取 (33) 6.5.航带平差 (34) 6.6.点云赋色 (35)

6.7.坐标转换 (36) 6.8.点云标准格式(LAS)导出 (38) 7.点云数据后处理 (39) 7.1.数据分块 (39) 7.2.噪声点滤除 (40) 7.3.分类编辑 (41) 7.4.DEM输出 (44) 7.5.EPS采集DLG (45) 7.6.基于点云采集DLG (51) 8.成果精度检查与汇交 (57) 8.1.点云精度检查 (58) 8.2.成果提交(只列出点云成果,不含影像) (58)

(完整word版)三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 三维信息获取技术,也称为三维数字化技术。它研究如何获取物体表面空间坐标,得到物体三维数字化模型的方法。这一技术广泛应用于国民经济和社会生活的许多领域,如在自动化测控系统中,可以测微小、巨大、不规则等常规方法难以测量物体。 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

三维激光扫描数据处理操作说明

三维激光扫描数据处理操作说明 中国地质大学三峡中心 钟成 2015年12月

1. 配置要求 扫描要求:密度高,扫描全面,站间重叠度高。 系统配置:XP系统,32位,有D盘盘符。 软件安装: ILIRS-3D软件包(绿色) polyworks_10_0_3_32bit.exe, chanzhuang.exe和配套库, Geomagic Studio10, TexCapture1.1。 Matlab 10.0 2. 数据预处理 2.1. 数据转换 2.1.1. 数据导入 打开ILIRS-3D软件包中Parser 5.0.1.4中Parser.exe,界面如图2.1.1: 图2.1.1 点击Add找到笔记本中存储扫描数据的文件夹:

出现以下界面: 图2.1.3 工具栏中放大缩小按钮可用于观察扫描范围。 2.1.2. 基本设置 然后点击setting对解压过程进行设置,出现如2.1.4界面。

图2.1.4 其中,Outputfile界面,主要设置输出路径和格式。默认路径在保存点云文件夹下,不用改。默认选择PIF格式,24-bit texture,也就是有颜色信息的点云,如果是8-bit scaled 则是点云强度信息。PIF格式是polyworks支持的格式。如果选择XYZ格式,则以ASCII码形式输出,也可以定义是否需要输出颜色信息。该格式可直接被Geomagic打开。 图2.1.5 2.1. 3. 颜色设置 然后,在最左边列表里选择Color Channel,出现如下界面:

选中, 默认的在会出现相应的照片信息,如果没有,则检查存储扫描数据的文件夹里是否有照片文件。 在里,默认是没有文件内容的,点击,到“ILIRS-3D”软件包,找到文件“10384 CameraCalParam.txt”即可。 2.1.4. 平移参数设置 然后在最左边列表里选择Pan tilt Transform,出现如下界面:

三维激光扫描

9.3三维激光扫描仪及其在地形测量中的应用 三维激光扫描仪是无合作目标激光测距仪与角度测量系统组合的自动化快速测量系统,在复杂的现场和空间对被测物体进行快速扫描测量,直接获得激光点所接触的物体表面的水平方向、天顶距、斜距、和反射强度,自动存储并计算,或得点云数据。最远测量距离可达数千米,最高扫描频率可达每秒几十万,纵向扫描角θ接近90o,横向可绕仪器竖轴进行360o全圆扫描,扫描数据可通过TCP/IP协议自动传输到计算机,外置数码相机拍摄的场景图像可通过USB数据线同时传输到电脑中。点云数据经过计算机处理后,结合CAD可快速重构出被测物体的三维模型及线、面、体、空间等各种制图数据。 目前,生产三维激光扫描仪的公司很多,典型的有瑞典的Leica公司、美国的3DDIGITAL公司和Polhemus公司、奥地利的RIGEL公司、加拿大的OpTech 公司等。它们各自产品的测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描扫描仪产品。图12-21是几种不同型号的地面三维激光扫描仪。 一、地面三维激光扫描仪测量原理 无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜组成。激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。如果测站的空间坐标是已知的,则可以求得每一个扫描点的三维坐标。地面三维激光扫描仪测量原理图如图12-22所示。 地面三维激光扫描仪测量原理主要分为测距、扫描、测角和定向等4个方面。 1.测距原理 激光测距作为激光扫描技术的关键组成部分,对于激光扫描的定位、获取空间三维信息具有十分重要的作用。目前,测距方法主要有脉冲法和相位法。 脉冲测距法是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。激光发射器向目标发射一束脉冲信号,经目标反射后到达接收系统,

基于Terra Solid的机载激光雷达点云数据处理应用

基于Terra Solid的机载激光雷达点云数据处理应用 发表时间:2019-06-20T11:45:12.637Z 来源:《基层建设》2019年第9期作者:姚思贤 [导读] 摘要:机载激光雷达(light detection and ranging,LiDAR)是于20世纪80年代发展起来的一种集全球定位系统、惯性导航系统与激光测距技术于一体的新型主动式空间信息获取技术。 中科遥感科技集团有限公司天津市 300300 摘要:机载激光雷达(light detection and ranging,LiDAR)是于20世纪80年代发展起来的一种集全球定位系统、惯性导航系统与激光测距技术于一体的新型主动式空间信息获取技术。它可直接获取地面目标的三维坐标,不受阴影和太阳高度角影响,并可与数字航摄仪相结合获取地物光谱、纹理信息,具有控制测量依赖性少、受天气影响小、自动化程度高、成图周期短等特点,基于TerraSolid系列软件构建完整的用于机载激光雷达点云数据处理的详细技术流程,通过优化处理流程提高其数据处理的效率和精度。对4组实验数据的处理结果表明,该技术具有较好的可行性和较高的工作效率。 关键词:基于Terra Solid;机载激光雷达;点云数据;处理应用 1、前言 近几年,随着机载激光雷达硬件系统的快速发展,其产生的点云数据也变得更加精确,更加海量。在整个激光雷达的数据处理过程中,占60%~80%的点云数据分类工作已经成为制约LiDAR进一步应用发展的瓶颈问题,设计高效、高精度的海量点云数据处理流程意义十分重大。 2、基于Terra Solid的点云数据处理流程 目前的LiDAR数据处理技术、流程和方法还很不完善,使用TerraSolid软件实现机载LiDAR点云数据的处理,直至生成DEM产品的过程主要可以归为以下五大步骤。 2.1导入原始数据并建立项目流程 导入原始点云数据和建立项目是后面所有操作的阶石,具体操作步骤顺序如下: 1)设置坐标系。 2)导入飞行航线。 3)导入机载LiDAR点云数据,检查覆盖情况,确定点密度及单个作业Block大/]、(2GBRAM:5百万个点,4GBRAM:1.O~1.5千万个点)。 4)定义作业区。 5)裁切飞行航线(值得注意的是,航线不能自相交)。 6)定义项目(新建后要注意保存)。 7)定义作业分区Block(定义后,删除并在指定层重画Block)。 8)导入机载LiDAR点云数据点,生成分区存储的机载LiDAR数据点文件。 9)推测航线号并检查正确性。 2.2数据校正流程 原始数据在使用之前需要进行适当的数据校正处理,任何一个技术环节把握不当都将直接导致项目的失败。TerraSolid主要是用宏命令的方式帮助校正、平差、纠正相关数据项。详细流程如下: 1)创建用于数据校正的项目文件(注意只选择几个有不同坡向或多坡的Block区进行测试)。 2)装载TerraMatch模块。 3)运行“Measurematch”命令,量测相邻航线间的匹配差值。 4)运行“Findmatch”命令,计算3个角度偏转误差及镜向比例误差,保存改正数及误差报告。 5)运行“Applycorrection”命令,用上一步保存的改正数纠正整个项目区数据。 6)检查改正效果。 7)运行“Findmatch”计算Z误差(整个测区),保存改正数及误差报告。 8)选择整个项目,Solvefor:individuallines。 9)如果需要,对误差较大的航线调整其质量属性。 10)运行“Applycorrection”命令,用上一步保存的Z改正数纠正整个项目区数据。 11)检查改正效果。 12)运行“Findfluctuation”量测整个测区重叠部分的波动较差,保存改正数及误差报告。 13)对整个测区进行波动较差改正。 14)检查改正效果。 15)检查整体匹配效果。 2.3机载LiDAR点云数据的自动分类流程 机载LiDAR的点云数据的分类处理概括地分为自动分类处理和手动分类两部分。这项工作在整个机载LiDAR的数据后处理过程中占六到八成的T作量。下面详细介绍自动分类处理的流程: 1)删除重叠点(有的项目不需要删除)。 2)创建宏命令进行单航线地面点分类,由4个命令组成:①“Lowpointclassification”ingroups,即成组的低点分类。主要指明显低于地面的点,如在开着的检修井里的点、反射错误的点等。②“Lowpointclassification”singlepoints,即单个的低点分类。③“Groundclassification”,即地面点分类。④“Belowsurface”,即低于表面的点分类,在非常粗糙的区域稍低于地面的点。 3)运行于一个区,检查结果。在利用宏进行数据分类时,由于分类宏参数设置的偏差,会导致房屋有些地方分的不到位,有一些不属于房屋的点进入。这样在后期处理时就要多注意一些。所以宏的参数设置很重要,需要多试验几次再确定。

三维激光扫描仪点云数据处理与建模

三维激光扫描仪点云数据处理与建模点云的预处理由于三维激光扫描仪在扫描过程中,外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。 点云配准使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。后两种方法均为两两配准,为了将所有点云转换到统一的控制网坐标系下与控制点配准法得到点云配在一起,两两配准时要求其中一站必须为已经配到控制网坐标系下的点云。 点云拼接外业采集的数据导入至软件时会根据坐标点自动拼接,但由于人为操作和角架的误差,一些点云接合处不太理想,这时需要进行手动拼接,对一些无坐标补扫面的拼接也需手动处理。手动拼接时对点云应适当压缩,选择突出、尖角、不同平面的特征点,以降低操作误差。如采用1cm激光间隔扫描时拼接后的误差在3mm以下较为理想。 建立三维模型当建筑物数字化为大量离散的空间点云数据后,在此基础上来构造建筑物的三维模型。

点云的漏洞修复由于点云本身的离散性,会导致模型存在一定缺陷,需要在多边形阶段对其进行修补、调整等操作后,才能得到准确的实物数字模型。由于建筑物形状复杂多样,所以目前网格的修补难以实现全自动化。三维激光扫描仪点云数据的漏洞修复主要采用两种方法:当空洞出现在平面区域内,比如窗户或者墙面上的洞,可采用线性插值的方法填补空洞数据;当空洞出现在非平面区域,如圆柱上出现的漏洞,可采取二次曲面插值方法。

浅论三维激光扫描技术的应用及前景

浅论三维激光扫描技术的应用及前景 【摘要】三维激光扫描技术是一种先进的全自动高精度立体扫描技术。作为一项新的数据获取手段,地面三维激光扫描仪可以快速、精确和高效地测量目标的三维影像数据,突破了传统的测量和数据处理方法,赢得了全新的研究和应用领域。本文简单介绍了三维激光扫描技术的工作原理、技术特点、工程应用和发展方向等几方面的状况。 【关键词】三维激光扫描;特点;应用 0 引言 随着科学技术的不断发展,出现了集成多种高新技术的新型测绘仪器—地面三维激光扫描仪,它采用非接触式高速激光测量方式,在复杂的现场和空间对被测物体进行快速扫描测量,直接获得激光点所接触的物体表面的三维坐标、色彩信息和反射强度—点云数据。点云数据经过计算机处理后,结合CAD可快速重构出被测物体的三维模型及线面、体、空间等各种制图数据。这项技术可用于变形监测、工程测量、地形测量、断面和体积测量等领域,具有不需要合作目标、高精度、高密度、高效率、全数字特征等优点。 1 地面三维激光扫描仪测量原理 地面三维激光扫描系统主要有三部分组成,扫描仪、控制器(计算机)和电源供应系统。激光扫描仪本身主要包括激光测距系统和激光扫描系统,同时也集成CCD和仪器内部控制和校正等系统。在仪器内,通过一个测量水平角的反射镜和一个测量天顶距的反射镜同步、快速而有序地旋转,将激光脉冲发射体发出的窄束激光脉冲依次扫过被测区域,测距模块测量每个激光脉冲的空间距离,同时扫描控制模块控制和测量每个脉冲激光的水平角和天顶距,最后按空间极坐标原理计算出扫描的激光点在被测物体上的三维坐标。扫描仪的内部有一个固定的空间直角坐标系统。当在一个扫描站上不能测量物体全部而需要在不同位置进行测量时;或者需要将扫描数据转换到特定的工程坐标系中时,都要涉及到坐标转换问题。为此,就需要测量一定数量的公共点,来计算坐标变换参数。为了保证转换精度,公共点一般采用特制的球面标志和平面标志。点云数据以某种内部格式存储,因此用户需要厂家专门的软件来读取和处理,OPTEC的ILRIS-3D软件,Cyrax2500的Cyclone软件、LMS-Z420的3D-RiSCAN软件、MENSI的Realworks 等都是功能强大的点云数据处理软件,他们都具有三维影像点云数据编辑、扫描数据拼接与合并、影像数据点三维空间量测、点云影像可视化、空间数据三维建模、纹理分析处理和数据转换等功能。三维激光扫描流程图如图1所示。

基于三维激光雷达技术的大比例尺地形图解决方案

基于三维激光雷达技术的大比例尺地形图解决方案 一激光雷达技术 1.1 综述 激光雷达测量技术(LiDAR)是当今测绘业界先进的遥感测量手段,是继GPS空间定位系统之后又一项测绘技术新突破。自20世纪60年代末世界第一部激光雷达诞生以来,激光雷达技术作为一种重要的航空遥感技术,与成像光谱、成像雷达共同被誉为对地观测三大核心技术。迄今为止,激光雷达的研究与应用均取得了相当大的进展,已成为航空遥感领域主流之一,其应用已超出传统测量、遥感以及近景测量所覆盖的范围,成为一种独特的数据获取方式。LIDAR技术具有高精度、高分辨率、高自动化且高效率的优势,集激光扫描、全球定位系统和惯性导航系统技术于一身,同时配备高分辨率数码相机,可实现对目标的同步测量,生成高密度激光点云数据,已成为世界各国进行大面积地表数据采集的重要主流与趋势。与传统摄影测量技术相比,激光雷达技术生成三维信息更快、更准确,特别能穿透地表覆盖的森林植被快速获取地形信息的能力,具有其他技术无可比拟的优势。采用激光雷达技术获取地面及其覆盖物(植被、电力线等)的精确三维坐标,生成高精度地形信息,可作为土地利用、工程建设规划、城市管理、河海地形、水库大坝、山坡检测、防灾、矿业、农业、林业、公共管理等方面数字化、自动化等应用基础。 1.2 激光雷达技术基本原理 激光雷达是一种有效的主动遥感技术,通过发射激光脉冲及精准的量测回波所经过的时间计算传感器与目标物之间的距离,再结合飞行器姿态信息、位置信息进行相关解算和坐

标转换可以得到高精度的三维数据。机载激光雷达系统主要由飞行平台、激光测距系统、全球定位系统(GPS)、惯性导航系统(INS)以及相关的控制存储单元组成。 激光测距系统是激光雷达的核心组成部分,通过发射、接收激光信号可以精确测量发射器和目标物的距离。激光测距一般采用方式:脉冲测距和连续波的相位差测距。连续波激光器市场上较为少见,因此现有的激光雷达系统多采用脉冲测距的方式。通过激光器发射一束窄脉冲,与目标物接触后产生反射,并通过接收器接收回波信号。由于脉冲的速度已知(光速),接收器可以精确测量脉冲发射到接收到反射信号的时间,从而获得目标物与激光器的距离,其测量精度常常可以达到毫米级。 随着激光雷达技术的发展,激光雷达的飞行平台可以根据需要和实际作业条件进行多种选择,目前常见的搭载平台有小型飞机、固定翼飞机、直升飞机、无人机、动力三角翼、无人飞艇等。 激光雷达系统工作原

机载激光雷达系统在测绘领域的应用

机载激光雷达系统在测绘领域的应用 摘要:本文通过对国内外机载激光雷达的发展现状进行了分析,结合本单位激光雷达的实际应用和其特点,介绍了其在测绘等行业的应用,阐述了其对测绘领域带来的巨大变革和广阔前景。 关键词:4D测绘产品机载激光雷达激光点云 机载激光雷达系统(Light Detection And Ranging,简称LIDAR)是集全球定位系统(GPS)、惯性导航系统(IMU)、激光扫描系统、航空摄影系统的快速测量系统。它能够大面积、高分辨率、快速准确地获取地表各类地理信息,可实时快速获取高精度点云数据、数字地面模型(DTM)、数字表面模型(DSM)以及测区高程等数据成果。被测绘界认为是继全球定位系统(GPS)之后的重大技术革命,是当前测绘科技发展的国际前沿。 本文结合作者单位拥有的徕卡公司最新的ALS60机载激光雷达系统系统在测绘生产领域多个项目的实际应用情况,介绍了其对测绘领域带来的巨大变革和广阔前景。 国内外机载激光雷达的发展现状 机载激光雷达测量技术发展已经有二十余年的历史,从早期的美国宇宙航天激光测距到德国诞生的世界上第一个商用样机激光断面测量系统,发展到近些年来随着当今科技技术日新月异的进步,激光雷达系统更是得到了迅猛的发展,其在测绘市场的市场份额逐年快速增长。目前,全球已经有众多的商用系统在使用,如TopScan、Optech、Top Eye、Saab、Fli-map 、TopoSys、Hawk2Eye 等多种实用系统。具有代表性的系统主要有:德国IGI和奥地利RIGEL公司联合制的Lite Maper6800,美国alpha的SHOLAS和加拿大OPTECH的ALTM3100T,德国TopoSys的Falcon,以及美国Leica公司的Leica ALS50/60等。 上世纪90年代中后期至今,美国、德国、加拿大等国家,先后成功应用这项技术进行了地形测量、森林资源调查与评估、三维城市建模等试验与工程实践。特别是在芬兰和德国的应用更为广泛。 国内在地面三维激光扫描系统、车载激光雷达系统方面已有相关产品投入实际生产应用。但在机载激光雷达技术的硬件研究制造上国内外差距较大,现有技术基础比较薄弱。虽有原理样机的研制,但距实用化尤其是形成产品尚有一段距离。所以至今国内还没有成熟的机载激光雷达系统出现。 机载激光雷达在测绘等领域的应用 1. 机载激光雷达测量技术主要特点和性能

相关主题
文本预览
相关文档 最新文档