当前位置:文档之家› 纤维素及其主要衍生物接枝改性的研究进展

纤维素及其主要衍生物接枝改性的研究进展

纤维素及其主要衍生物接枝改性的研究进展
纤维素及其主要衍生物接枝改性的研究进展

高分子改性材料的应用

天 然 高 分 子 改 性 材 料 的 发 展 以 及 运 用 景 姓名:李毅 学号:5404310016 专业班级:工业工程101

天然高分子改性材料的发展以及运用 姓名:李毅学号:5404310016 班级:工业工程101 摘要:本文介绍了淀粉、木质素、甲壳素、壳聚糖及瓜尔胶等几种天然高分子材料的研究进展以及改性方法,同时通过几种不同的化学反应详细介绍了壳聚糖的应用,同时介绍了其他几种在当代生活不同领域的应用。 关键词:天然高分子,改性,羧甲基化反应,酯化反应,酰化反应,接枝反应,运用,阻燃和耐热。 正文部分: 1.引言 近年来基于石油产品的合成高聚物材料也已广泛应用于包装、日用品、医用、建材、宇航、工业和农业各个领域,。然而,基于石油资源的合成高分子材料大量使用不仅造成环境污染,而且以后将面临石油资源逐渐枯竭的威胁。而天然高分子来源于自然界中动物、植物和微生物,它们是取之不尽,用之不竭的可再生资源。所以在石油资源日益匮乏和价格持续高涨之际,天然高分子的研究和利用出现新的发展机遇。天然高分子中含量最丰富的资源包括纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等,它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或低聚物用作能源以及化工原料。因此,近年在该领域的基础和应用研究的优秀成果以及日益增强的全球环境法则的压力共同作用下已孵化出这一新兴行业。 2.天然高分子材料的研究进展以及运用 2.1 淀粉 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统

计,自然界中含淀粉的天然碳水化合物年产量达5000亿t,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。近年来淀粉的接枝共聚研制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚制得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早巳受到人们的重视,并有不少成果问世。我国尹华等以淀粉为基本原料,加入丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,该药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。 2.2 ,木质素 木质素与纤维素、半纤维素粘结在一起形成植物的主要结构,是植物界中非常丰富的天然高分子。相对于其它天然高分子,木质素具有更为复杂的组成及多级结构,是最难认识和应用的天然高分子之一。但是,木质素分子具有众多不同种类的活性官能基,兼具可再生、可降解、无毒等优点,而且工业木质素来源于造纸黑液,成本低廉,因而被视为优良的绿色化工原料,其综合利用备受关注。在应用和研究较为活跃的木质素高分子材料领域,可通过化学反应和物理共混将木质素与酚醛树脂、聚氨酯、聚烯烃、橡胶、聚酯、聚醚、淀粉、大豆蛋白等复合,提高材料的性能并降低成本。木质素是一种与工程塑料极为相似的,具有高

纤维素及其衍生物在食品行业的发展与应用

纤维素衍生物在食品行业的应用 曹国宝 (海南大学材料与化工学院,海南海口570228) 摘要:长期以来,纤维素及其衍生物作为一种丰富的可再生的生物能源广泛地应用于现代工业。而其在食品领域也有重要的发展与应用。本文本文从纤维素的结构、性质谈起,选述纤维素及其衍生物的显著特点和在食品工业目前的研究现状。 关键词:纤维素衍生物,食品,应用 Cellulose derivate’s application in food industry CAO Guo-bao (College of material and chemistry,Hainan university,Haikou 570228) Abstract: As a kind of abundant and reproducible biological resources , celluloses and its derivate are widely used in modern industry for a long time. Especially its application in the food industry. this paper start with cellulose structure and properties, summerise cellulose an its derivate’s properties and ist development in the food industry Key words:cellulose derivate,food,application 一.简介 纤维素(cellulose)在自然界分布很广,是构成植物的主要成分,如棉花中约含90%以上,木材中约含50%。纤维素的纯品无色无味无臭,不溶于水和一般有机溶剂。与淀粉一样,纤维素也具有还原性[1]。纤维素大分子的基环是D-葡萄糖以β-1,4糖苷键组成的大分子多糖,分子量约50000~2500000,相当于300~15000个葡萄糖基脱水葡萄糖,其分子式为:(C6H10O5)n, 其化学组成含碳44.44%、氢6.17%、氧49.39%。纤维素比淀粉难水解一般需要在浓酸中或用稀酸在加压条件下进行,在水解过程中可以得到纤维四糖,纤维三糖和纤维二糖等,但水解的最终产物也是D-(+)-葡萄糖,其结构式可以表示如下[2]: 主要可进行的反应有 1.纤维素中的羟基能与酸生成纤维素酯(cellulose ether) 1.纤维素与碱作用生成纤维素钠盐,然后与卤代烃反应生成纤维素醚(cellulose ester) 本报告中涉及较多的是两种物质:羟丙甲基纤维素(hydroxypropylmethy cellulose,HPMC)和羧甲基纤维素(CMC)。HPMC属于非离子型纤维素混合醚中的一个品种,具有冷水溶性和热水不溶性的特征,但由于含有羟丙基,使它在热水中的凝胶化温度较甲基纤维素大大提高,在有机头溶剂中较甲基纤维素良好,能溶于丙酮、异丙醇和双丙酮等有机溶剂中。它的粘度在温度升高时开始下降,但至一定温度时则粘度突然上升而发生凝胶化。CMC时是最具代表性的离子性纤维素醚,通常使用的是它的钠盐,纯净的CMC系白色或乳白色纤维状粉末或颗粒,无嗅无味,不溶于酸和甲醇、乙醇、乙醚、丙酮、氯仿、及苯等有机溶剂,而溶于水。CMC的粘度通常在25-50Pa.S之间,取代度在0.3左右。CMC 具有吸湿性,其平衡水分随着空气湿度的升高而增加,随温度的升高而减少[2]。 二.在食品业的发展或应用 1.制作可食用膜 纤维素系列食用膜(edible films)有良好的成膜性质,制得的可食性膜能够阻止食品吸水

qb2246-96 食品添加剂-瓜尔胶

中华人民共和国轻工行业标准 食品添加剂 瓜尔胶 QB 2246-96 前言 本标准等效采用FAO/WHO1992年瓜尔胶的标准。其中,鉴别试验、酸不溶物、硼酸盐、蛋白质、淀粉试验、砷、铅、重金属的指标均采用FAO/WHO标准;干燥减量、总灰分指标略优于FAO/WHO标准。此外还增加了粘度和细度指标。 本标准的具体检验方法采用经试验确认可靠的方法和其他标准中的检验方法,采用的标准包括FAO/WHO1992年瓜尔胶的标准和中华人民共和国国家标准。 本标准由中国轻工总会食品造纸部提出。 本标准由全国食品发酵标准化中心、卫生部食品卫生监督检验所技术归口。 本标准由中国石油天然气油田化学公司、中国食品发酵工业研究所负责起草。 本标准主要起草人:郑立凯、单齐梅、方军、吴玉宏。

1 范围 本标准规定了食品添加剂—瓜尔胶的技术要求、试验方法、检验规则以及关于包装、标志、贮存和运输的各项要求。 本标准适用于从热带豆科草本植物—瓜尔豆〖Cyamops tetragonoloba(L·)Taub〗种子经破碎,去其种皮、子叶(胚芽)后取其胚乳加工精制而成的天然植物胶。其主要成分为半乳甘露聚糖,在食品工业生产中用作增稠剂、稳定剂等。 2 引用标准 下列标准所包含的条文,通过在标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 5009.4-85 食品中灰分的测定方法 GB 6284-86 化工产品中水分含量测定的通用方法重量法 GB 8449-87 食品添加剂中铅的测定方法 GB 8450-87 食品添加剂中砷的测定方法 GB 8451-87 食品添加剂中重金属的限量试验法 GB/T 14771-93 食品中蛋白质的测定方法 3 结构式、分子量 结构式: 分子量:22万道尔顿。 4 技术要求 4.1 外观 乳白色可自由流动粉末。 4.2 理化指标 食品添加剂瓜尔胶的质量应符合表1要求。 表1

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

纤维素衍生物在环保和医药方面的应用

纤维素衍生物在环保和医药方面的应用 【摘要】:以天然纤维素为基体进行改性可以得到活性更强的改性纤维素。且纤维素是是符合可持续发展要求的可再生资源。本文从纤维素的结构对其作出简介,并对纤维素和其衍生物在环境保护和医学药用方面的应用。【关键词】:纤维素衍生物环境保护医学药用应用 Cellulose derivatives in terms of environmental protection and medicine 【Abstract】:Natural cellulose for matrix modified can get active stronger modified cellulose. And cellulose is accord with the sustainable develop ment requirements of the renewable resources. This article from the cellu lose structure is made to its profile, and the cellulose and its derivatives in environmental protection and medical medicinal applications. 【Key words】:cellulose derivative environmental protection Medicine medicinal application 【引言】:纤维素是世界上最丰富的天然有机物,占植物界碳含量的 50% 以上,每年通过光合作用可合成约1.5×1012t 。纤维素及其衍生物在纺织、轻工、化工、国防、石油、医药、能源、生物技术和环境保护等部门应用十分广泛。近年来随着石油、煤炭储量的下降以及石油价格的飞速增长和各国对环境污染问题的

纤维素

木质素lignin 木质素是由聚合的芳香醇构成的一类物质,存在于木质组织中,主要作用是通过形成交织网来硬化细胞壁。因单体不同,可将木质素分为3种类型: 从植物学观点出发,木质素就是包围于管胞、导管及木纤维等纤维束细胞及厚壁细胞外的物质,并使这些细胞具有特定显色反应(加间苯三酚溶液一滴,待片刻,再加盐酸一滴,即显红色)的物质。 在亚硫酸盐法生产纸浆的工艺中,正是由于亚硫酸盐溶液与木粉中的原本木质素发生了磺化反应,引进了磺酸基,增加了亲水性,而后这种木质素磺酸盐在酸性蒸煮液中进一步发生水解反应,使与木质素结合着的半纤维素发生解聚,从而使木质素磺酸盐溶出,实现了木质素、纤维素与半纤维素的分离,得到了纸浆。 半纤维素hemicellulose 植物细胞壁中与纤维素紧密结合的几种不同类型多糖混合物。包括木聚糖、木葡聚糖和半乳葡萄甘露聚糖等。 半纤维素:是由几种不同类型的单糖构成的异质多聚体,这些糖是五碳糖和六碳糖,包括木糖、阿伯糖、甘露糖和半乳糖等。半纤维素木聚糖在木质组织中占总量的50%,它结合在纤维素微纤维的表面,并且相互连接,这些纤维构成了坚硬的细胞相互连接的网络。

半纤维素与纤维素共生、可溶于碱溶液,遇酸后远较纤维素易于水解的那部分植物多糖。一种植物往往含有几种由两或三种糖基构成的半纤维素。半纤维素主要分为三类,即聚木糖类、聚葡萄甘露糖类和聚半乳糖葡萄甘露糖类。任何植物原料的化学制浆工业处理中,在脱木素的同时半纤维素也会发生酸性水解或碱性水解、剥皮反应和氧化反应等,蒸煮溶出的半纤维素又可再沉积吸附于纸浆上,在制纤维素衍生物用浆时则须尽量除去半纤维素。 半纤维素与纤维素间无化学键合,相互间有氢键和范德瓦耳斯力存在。半纤维素与木素之间可能以苯甲基醚的形式连接起来,形成木素-碳水化合物的复合体。

纤维素的分类介绍

主要分为甲基纤维素(MC),羟丙基甲基纤维素(HPMC),羟乙基纤维素(HEC),羧甲基纤维素(CMC) 附:HPMC与MC、HEC、CMC的应用区别 HPMC和MC是两种不同的产品。 1、甲基纤维素(MC)分子式 将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。一般取代度为 1.6~2.0,取代度不同溶解性也有不同。属于非离子型纤维素醚。 (1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常稳定。与淀粉、胍尔胶等以及许多表面活性剂相容性较好。当温度达到凝胶化温度时,会出现凝胶现象。 (2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。一般添加量大,细度小,粘度大,则保水率高。其中添加量对保水率影响最大,粘度的高 低与保水率的高低不成正比关系。溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。在以上几种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。 (3)温度的变化会严重影响甲基纤维素的保水率。一般温度越高,保水性越差。如果砂浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。 (4)甲基纤维素对砂浆的施工性和粘着性有明显影响。这里的“粘着性”是指工人涂抹工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。粘着性大,砂浆的剪切阻力大,工人在使用过程中所需要的力量也大,砂浆的施工性就差。在纤维素醚产品中甲基纤维素粘着力处于中等水平。 2、羟丙基甲基纤维素(HPMC)分子式为 羟丙基甲基纤维素是近年来产量、用量都在迅速增加的纤维素品种。是由精制棉经碱化处理后,用环氧丙烷和氯甲烷作为醚化剂,通过一系列反应而制成的非离子型纤维素混合醚。取代度一般为 1.2~2.0。其性质受甲氧基含量和羟丙基含量的比例不同,而有差别。 (1)羟丙基甲基纤维素易溶于冷水,热水溶解会遇到困难。但它在热水中的凝胶化温度要明显高于甲基纤维素。在冷水中的溶解情况,较甲基纤维素也有大的改善。 (2)羟丙基甲基纤维素的粘度与其分子量的大小有关,分子量大则粘度高。温度同样会影响其粘度,温度升高,粘度下降。但其粘度高温度的影响比甲基纤维素低。其溶液在室温下储存是稳定的。 (3)羟丙基甲基纤维素的保水性取决于其添加量、粘度等,其相同添量下的保水率高于甲基纤维素。 (4)羟丙基甲基纤维素对酸、碱具有稳定性,其水溶液在pH=2~12范围内非常稳定。苛性钠和石灰水,对其性能也没有太大影响,但碱能加快其溶解速度,并对粘度销有提高。羟丙基甲基纤维素对一般盐类具有稳定性,但盐溶液浓度高时,羟丙基甲基纤维素溶液粘度有增高的倾向。

纤维素的改性及应用研究进展_罗成成

2015年第34卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS?767? 化工进 展 纤维素的改性及应用研究进展 罗成成,王晖,陈勇 (中南大学化学化工学院,湖南长沙410083) 摘要:植物纤维素是天然的可再生资源,对纤维素的改性利用一直是研究的热点。本文简要介绍了纤维素的结构与性质,综述了纤维素的改性方法,包括物理改性、化学改性和生物改性等,其中化学改性是最主要的方法,包括酯化、磺化、醚化、醚酯化、交联和接枝共聚等,通常涉及其结构中羟基的一系列反应。通过改性,引进了一系列离子型基团,有利于增强纤维素的亲水性。经改性后的纤维素与之前相比,结晶度和聚合度明显降低,可及度明显提高,无论物理性质还是化学性质都表现出更大的优越性。其后回顾了纤维素衍生物在食品、造纸以及建筑行业中的一些研究应用成果,阐述了其在医药及废水处理等方面的研究进展,并展望了纤维素衍生物的发展前景。 关键词:纤维素;纤维素衍生物;化学改性 中图分类号:TQ072文献标志码:A文章编号:1000–6613(2015)03–0767–07 DOI:10.16085/j.issn.1000-6613.2015.03.028 Progress in modification of cellulose and application LUO Chengcheng,WANG Hui,CHEN Yong (School of Chemistry and Chemical Engineering,Central South University,Changsha410083,Hunan,China)Abstract:Plant cellulose is a natural renewable resource,and application of the modified cellulose has been a research focus.The structure and properties of cellulose are described,and cellulose modification methods are reviewed,including physical,chemical and biological methods.The main method is chemical modification,including esterification,sulfonation,etherification,ether esterification,crosslinking and graft copolymerization,which involve the reactions of hydroxyl groups in the cellulose.Hydrophilcity of cellulose could be enhanced by introduction of ionic groups. Compared with non-modified cellulose,crystallinity and degree of polymerization of modified cellulose decrease significantly,whereas accessibility is improved remarkably,with superior physical and chemical properties.Finally,the research achievements of cellulose derivatives in food,paper and construction industries are reviewed.Research progresses in pharmaceuticals,wastewater treatment and other areas are presented.Future applications of cellulose derivatives are prospected. Key words:cellulose;cellulose derivatives;chemical modification 纤维素是植物细胞壁的主要成分,在自然界中分布甚广,是取之不尽、用之不竭的天然高分子化合物。由于纤维素具有无毒无害、可生物降解、相容性好、价格低廉且可再生等优点,人类对纤维素的利用一直在不断推陈致新,广泛用于食品、医药、建筑、造纸、废水处理、印刷、电子、日化等各个方面,纤维素的消耗一直呈递增趋势。随着人类环保意识的不断加深,纤维素及其衍生物的推广应用还将继续成为热点。 1纤维素的结构与性质 纤维素环状结构是由D-吡喃葡萄糖环以β-1,4 收稿日期:2014-08-20;修改稿日期:2014-10-15。 第一作者:罗成成(1990—),女,硕士研究生。联系人:王晖,教授,博士生导师。E-mail huiwang1968@https://www.doczj.com/doc/799849750.html,。

瓜尔胶

天然增稠剂之————瓜尔胶 1958年8月25日,日清食品公司的创始人安藤百福(已故,原名吴百福,日籍台湾人)销售了全球第一袋方便面——袋装“鸡汤拉面”以后,方便面得到了极大的发展,2007年方便面的全球销售量大约为979亿包,全世界平均每人消费15包。公司预测,如果消费量继续保持增长,10年后方便面的全球销量有望翻一番,达到2000亿包。目前消费方便面最多的国家是中国,其后依次为印度尼西亚、日本和美国。速食方便面给我们的生活带来了极大的方便,其中的配料也是数不胜数,本篇文章主要介绍其中的食品添加剂之一,公认的天然增稠剂之一——瓜尔胶 瓜尔胶:瓜尔胶从产于印度、巴基斯坦等地的瓜尔豆(瓜尔豆在民间,其果实作为缓泻剂,并使用于因胆汁而引起的疾病。叶子可治夜盲症;煮熟的种子作成膏药用于治疗头胀痛、肝大以及骨折而引起的肿胀。瓜尔豆全草烧成灰,与油混合,调匀涂敷治疗烫伤。)种子的胚乳中提取得到,主要成分为半乳甘露聚糖,我们通常所说的瓜尔胶指的是瓜尔糖,其结构是由D甘露糖通过β-1,4甙键连接形成主链,在某些甘露糖上D-半乳糖通过α-1,6甙键形成侧链而构成多分枝的聚糖,从整个分子来看,半乳糖在主链上呈无规分布,但以两个或三个一组居多。这种基本呈线形而具有分支的结构决定了瓜尔胶的特性与那些无分支、不溶于水的葡甘露聚糖有明显的不同。因来源不同,瓜尔胶的分子量及单糖比例不同于其它的半乳甘露聚糖。瓜尔胶的分子量约为100万~200万,甘露糖与半乳糖之比约为1.5一2/1。 瓜尔胶的主要成分: 瓜尔胶的性质 瓜尔胶为白色或浅黄色,可自由流动的粉末,略微带有豆腥味,易吸潮。瓜尔胶在水溶液中表现出典型的缠绕生物聚合物的性质,一般而言,0.5%以上的瓜尔胶溶液已呈非牛顿流体的假塑性流体特性,没有屈服应力。瓜尔胶在冷水中就能充分水化(一般需要2h),能分散在热水或冷水中形成粘稠液,具体粘度取决于粒度、制备条件及温度,瓜尔胶为天然胶中粘度最高者。 瓜尔胶是一种溶胀高聚物,水是它的通用溶剂,不过也能以有限的溶解度溶解于与水混溶的溶剂中,如乙醇溶液中。此外由于瓜尔胶的无机盐类兼容性能,其水溶液能够对大多数一价盐离子(Na+、K+、Cl-等)表现出较强的耐受性,如食盐的浓度可高达60%;但高价金属离子的存在可使溶解度下降。 瓜尔胶分子主链上每个糖残基都有两个顺式羟基,在控制溶液pH值的条件下,将会通过极性键和配位键与游离的硼酸盐、金属离子进行交联,生成具有一定弹性的水凝胶,此外还能形成一定强度的水溶性薄膜。瓜尔胶与大多数合成的或天然的多糖具有很好的配伍和协同增效作用,如瓜尔胶与黄原胶、海藻酸钠、魔芋

改性瓜尔胶的研究进展

收稿日期:2005-03-15 基金项目:/十五0国家科技攻关课题(2004BA 502B03); 国家科技成果重点推广计划(2005EC000150)。 改性瓜尔胶的研究进展 朱昌玲,薛华茂,孙达峰,张卫明,史劲松,顾龚平 (南京野生植物研究院,江苏南京210042) 摘 要 瓜尔胶是一种天然的半乳甘露聚糖,广泛用于食品、日化、医药等行业。改性瓜尔胶的性能具有较大改善,近年来瓜尔胶的改性研究成为热点。论述了瓜尔胶结构和性质以及改性瓜尔胶的研究进展,为瓜尔胶进一步开发研究提供参考。 关键词 瓜尔胶;半乳甘露聚糖;改性 Progress in Studies on Amendatory Guar Gum Z hu C hangling,X ue Huamao,Sun Dafeng,Z hang Weiming,Shi Jingsong,Gugongping (Nanjing Institute for the C omprehensive Utilization of Wild Plants,Nanjing 210042,China) Abstract G uar gum is a natural polygalactomannan.The capability of amendatory guar gum is https://www.doczj.com/doc/799849750.html,tely,the research of a mendatory guar gum becomes hotspot.The structure and character of guar gum and progress in studies on a mendatory guar gum w ere discussed in this article.Key words Guar gum;Polygalac tomannan;Amendatory 瓜尔胶又名古耳胶,瓜尔豆胶,英文名/G uar gum 0是一种天然半乳甘露聚糖胶,从产于印度、巴基斯坦等地的瓜尔豆种子的胚乳中提取得到。半乳甘露聚糖属中性多糖胶,是工业上有着广泛用途的植物多糖胶。半乳甘露聚糖胶水溶液为假塑性流体,大分子在自然状态下呈缠绕的网状结构,因而它在许多工业中用作增稠剂、稳定剂、乳化剂、粘结剂和调理剂等。食品行业的应用如冰淇淋、果汁饮料、面包、面条和调味料等,在香波、洗手液和肥皂生产中用作调理剂,在造纸、纺织和炸药行业中用作增稠剂和絮凝剂。压裂液采油和油气井钻井是多糖胶用量最大的行业之一[1,2]。 近年来随着各国对环境污染问题的日益关注和重视,天然高分子材料逐步引起人们的重视,瓜尔胶就是其中之一。瓜尔胶通过改性尤其是化学改性,理化性能方面解决了原胶的缺点,成为研究的热点。本文就改性瓜尔胶研究进展进行了综述,为瓜尔胶进一步开发研究提供参考。 1 瓜尔胶结构和性质 瓜尔胶是线状半乳甘露聚糖,属于非离子型高分子。在结构上,以B -1,4键相互连接的D-甘露糖单元为主链,不均匀地在主链的一些D-甘露糖单元的C 6位上再连接了单个D-半乳糖(B -1,6键)为支链,其半乳糖与甘露糖之比约为1B 1.8,简化为1B 2[3] 。 瓜尔胶在冷水中能充分水化(一般需要2h),能分散在热水或冷水中形成半透明粘稠液,不溶于乙醇等有机溶剂,1%水溶液粘度在4~5Pa #s 之间,具体粘度取决于粒度、制备条件及温度,为天然胶中粘度最高者。分散于冷水中2h 后呈现较强粘度,以后粘度逐渐增大,24h 后达到最高,粘稠力为淀粉糊的5~8倍,加热则迅速达到最高粘度,胶溶液的粘度随胶粉粒度直径的减小而增加;水化速率则随温度的上升而加快,如果经85e 制备,10min 即可充分水化达到最大粘度,但长时间高温处理将导致瓜尔胶本身降解,使粘度下降。瓜尔胶溶液在pH8~9时可达最快水化速度,然而大于10或小于4则水化速度反而慢[4]。 ) 9) 第24卷第4期2005年8月 中国野生植物资源Chines e W ild P lant Reso urces V ol.24No.4 A ug.2005

10. 甲基丙烯酸甲酯对纤维素的接枝聚合

甲基丙烯酸甲酯对纤维素的接枝聚合 一、 实验目的 了解接枝聚合的原理 二、 实验原理 所谓接枝聚合,即在聚合物的主链上,以化学或物理方法,制造聚合起始活性点,再以不同单体加成至活性点,成长成带分枝的聚合物。如图(10-1)所示: (主链) 起始活性点 单体 M MMMMM.... 接枝共聚物 (10-1) 接枝聚合的主要目的,在于高分子材料的改性,研究最多的有纤维、塑料及橡胶等固体材料,进行自由基聚合接枝,并均已实用化。此类的接枝聚合为不均匀体系,往往有未被接枝的聚合物(homopolymer )存在,算是一种副产物残留在固体材料的内部。另外已工业化的ABS 树脂即是利用苯乙烯、丙烯晴等单体接枝在聚丁二烯主链上,为实用的工业塑料之一。 本实验所进行的固相纤维素的接枝聚合,即为典型的不均匀体系自由基接枝聚合,常为纤维素纤维(cellulose fiber )改性的目的之一。聚合起始点的产生方法,可以辐射线照射或使用化学方法。本实验以化学方法中最常用的四价铈盐作为接枝聚合的试剂。 铈盐(Ce 4+),在酸性条件下,可与醇,特别是1,2-二醇形成配位体,产生分解如式(10-2)的自由基。 Ce 4++ CH CH OH OH (配位Ce 3++ CH O CH OH +H + +(10-2) 纤维素分子内存在1,2-二醇的结构,容易与Ce 4+进行氧化还原反应,主链上生成活性自由基,再引发加入的烯类单体,则可进行接枝聚合。 本实验用单体甲基丙烯酸甲酯(MMA )对纤维素薄膜,进行接枝聚合。接枝聚合后,测定薄膜质量的增加量以及对水的润湿性的变化。同时与具有1,2-二醇的低分子化合物蔗糖作一比较。 三、主要仪器和试剂 1. 实验仪器 恒温槽,氮气瓶,100 mL 烧瓶,25 mm 试管6个,12 mm 试管,三叉管5个,橡胶活栓5个,50 mL 烧杯4个,200 mL 烧杯5个,20 mL 吸量管,2 mL 吸量管,1 mL 吸量管,0.1 mL

瓜尔胶的改性及在造纸工业中的应用

瓜尔胶的改性及在造纸工业中的应用 摘要:结合瓜尔胶的结构特点综述了其改性方法,并对瓜尔胶在造纸工业中的应用和最新研究成果进行了介绍,阐述了瓜尔胶是一种新型环保型造纸助剂,有着广阔的应用前景。 关键词:瓜尔胶;改性;造纸助剂; 瓜尔胶是从种植于印巴次大陆的豆科植物——瓜尔豆中提取的一种植物胶。它在化学性质上是聚半乳糖甘露糖。由于其独特的分子结构及物理化学特性,使它成为一种很有潜力的新型环保助剂。瓜尔胶的首要特点是其生长于高温、干旱的环境中,因此不耐水,在冷水中就可以水化、溶解,这与淀粉系列助剂的使用需要糊化相比是一个很大的优势。瓜尔胶的另一特点是分子结构与纤维素分子非常相似。瓜尔胶分子中甘露糖单元通过1,4一β苷键连接成主链,半乳糖支链则以1,6一a键间隔与甘露糖主链相连,与纤维素分子的相似性使它易于吸附到纤维上产生助留效果。天然瓜尔胶作为造纸助剂时,可以提高纸页强度,减少灰斑形成并提高纸页匀度。 近几年来,瓜尔胶系列助剂在卷烟纸行业中得到了广泛应用。瓜尔胶用于卷烟纸不但具有优良的助留、助滤和增强效果,而且抄成的纸在燃烧时没有异味,满足卷烟用纸的需要。 但是。瓜尔胶原粉在使用过程中总会有不尽入意之处,它会造成滤水困难等,因此人们常用化学手段改变其理化特性以满足实际工业生产的需要。 1 瓜尔胶的改性方法 1.1 阳离子型瓜尔胶的制备 由于瓜尔胶分子结构中每个甘露糖或半乳糖上都有羟基,在强碱的条件下,与阳离子醚化剂作用生成醚化阳离子瓜尔胶衍生物(威廉姆森反应) 。秦丽娟等讨论了半干法合成阳离子瓜尔胶(CEG)的影响因素,优化出合成阳离子瓜尔胶的最佳工艺条件。并将所合成的阳离子瓜尔胶作为助留剂应用于废纸脱墨浆。万小芳㈨等用一步泥浆法合成新型助留助滤剂——阳离子羟乙基瓜尔胶(cEG),过程为将悬浮于醇/水体系中的瓜尔胶,先与阳离子单体发生醚化反应,然后与氯乙醇在微过量碱催化剂存在下进行羟乙基化反应,阳离子中间产物不必分离。重点研究了阳离子醚化产物的黏度及氮质量分数的影响因素,确定了阳离子化反应优化条件为:m(阳离子单体):m(瓜尔胶)=0.4 :1,m(N~OH):m(瓜尔胶)=0.25:1,反应温度60℃,反应时间2.5h。经红外光谱分析,证实了接枝产物中季铵阳离子基团的存在。由于CEG 分子结构同时含有季铵阳离子和非离子的活性羟基,CEG 常温水合作用进一步强化,1%CEG 的水溶液的透光率增加到80%。 1.2 非离子型瓜尔胶的制备 非离子型瓜尔胶是瓜尔胶中的羟基与活性物质作用,生成瓜尔胶衍生物。例如用环氧烷基在碱性催化剂的作用下,制得羟丙基瓜尔胶。 1.3 阴离子型瓜尔胶的制备 阴离子型瓜尔胶是瓜尔胶中的羟基与有机酸作用生成的衍生物。例如在碱性条件下,利用3一氯- 2- 羟基磺酸可以制得阴离子醚化瓜尔胶衍生物,M ontgomery Rex等人制成了羧甲基改性的阴离子瓜尔胶,

纤维素改性技术研究现状.

纤维素改性技术研究现状 摘要介绍了纤维素的改性反应,主要对近年来纤维素及其衍生物的接枝共聚技术的研究现状作综述。概述了纤维素结构及纤维素反应的特征,描述了一些以纤维素为基体的接枝共聚技术,包括传统的接枝共聚技术,对近来发展的可控枝技术、优化结构的功能集团的引用技术作重点阐述。 关键词纤维素改性接枝研究现状 The Research Aactuality of C ellulose’s Modifying Techologies Abstract Introduct cellulose's modifying reactions and the recent advances in graft polymerisation tech-niques involving cellulose and its derivatives are primary. It summarises some of the features of cellulose structure and cellulose reactivity. Also described are the various techniques for grafting synthetic polymers from the cellulo-sic substrate. In addition to the traditional grafting techniques, we highlight the recent developments in polymer synthesis that allow increased control over the grafting process and permit the production of functional celluloses that possess improved physical properties and chemical properties。 Keywords chemical modification of cellulose; graft; research actuality Contents 1 Introduction 2 The Molecule Structure of Cellulose 3 The Modifying Reaction of Cellulose 3.1Chemical Modifying 4 Cellulose Graft 4.1 Free Radicel Graft Copolymerisation 4.2Ionic Graft Polymerisation 4.3Ring Opening Polymerisation 4.4The End Radicel Coupling 4.5Living and Controling Free Radicel Polymerisation 5 Conclusions and Outlook 收稿:××××年××月。收修改稿:××××年××月 * 国家自然科学基金资助项目(No. xxxxxxxx) * * Corresponding author e-mail: aaa@https://www.doczj.com/doc/799849750.html,

纤维素衍生物粘合剂的应用

纤维素衍生物粘合剂的应用 班级:高分1031 姓名:张赛学号:201020205121 纤维素是自然界广泛存在的可再生的天然资源,据专家计,全球每年利用天然生物可生产数千亿吨的纤维素。然纤维素的利用尚未充分开发,造成资源及能源的巨大浪。纤维素是由D一吡喃葡萄糖酐以B—l,4苷键相互连接而的线形高分子,或看成是n个D-葡萄糖酐的聚合物(即失葡萄糖)。含有3个活泼的羟基,酯化和醚化可生成纤维素酯和纤维素醚2大类纤维素衍物。纤维素衍生物因其本身的优良性能,作为粘合剂在工业中有着广泛的应用。 1纤维素衍生物 1.1纤维素的醚类衍生物 可作粘合剂的纤维素醚类衍生物主要有甲基纤维素(Methylcellulose,Mc)、乙基纤维素(Ethylcellulose,Ec)、羧甲基纤维素(carboxymethylcellulose,cMC)和羧乙基纤维素(Carboxyethylcellulose,cEc)等。Mc是由氯甲烷或硫酸二甲酯与纤维素在碱存在下反应而得,亦可由纤维素与甲醇在脱水剂存在下反应而成,产物为灰白色纤维状粉末,不溶于乙醇、乙醚,但溶于冰醋酸,在水中溶胀成半透明胶状黏性液。Ec主要用氯乙烷醚化纤维素而成,产物为白色粒状热塑性固体,性质随乙氧基含量而变化。醚化度在0.7~1.3的EC具有水溶性。cMc是由一氯醋酸与纤维素在碱作用下反应生成,当醚化度为l,0~1.3时,可溶于碱液,醚化度在0.4以上时可溶于水。CMC为白色纤维状粉末或颗粒,无臭、无味、易溶于水,呈透明胶体溶液,水溶液呈中性或微碱性,不溶于酸、甲醇等有机溶剂,具有良好的粘接力、分散性、乳化性、扩散性及黏性,成膜性能良好。cEc是由氧化乙烯与纤维素在碱作用下生成,当每个葡萄糖基上的氧化乙烯反应度在0.64以上时,产品为水溶性;反应度在0.05~0.4时,产品为碱溶性。1.2纤维素的酯类衍生物 用作粘合剂的纤维素的酯类衍生物主要有硝酸纤维素(Nitrocellulose,Nc)和醋酸纤维素(Acetylcellulose,Ac)。硝酸纤维素又称纤维素硝酸酯,由纤维素经不同配比的硝酸一硫酸混合液处理而得,该品呈微黄色,外观如纤维,含氮量约为10%左右。Nc配制粘合剂时,需适当配合树脂、增塑剂、溶剂和助剂等。其缺点是易燃,长期光照会变色发脆。Ac亦可用作粘合剂,与Nc相比,其耐燃性

瓜尔胶教案资料

瓜尔胶

瓜尔胶 摘要:瓜尔胶及其衍生物是新型的天然高分子化合物,应用前景广阔,综述了瓜尔胶及其衍生物的国内外应用研究进展,详细介绍了瓜尔胶及其衍生物在医药工业、日用化学品工业、食品工业、石油钻探工业等方面的应用,强调了其特殊性能的优势和应用潜力,阐明了我国研究开发瓜尔胶及其衍生物的意义。 关键词:瓜尔胶;半乳甘露聚糖;改性;亲水胶体 瓜尔胶又称瓜尔豆胶、胍胶,是目前国际上较为廉价而广泛应用的食用胶体之一。瓜尔胶是从瓜儿树种子中分离出来的一种可食用的多糖类化合物。瓜尔胶为天然高分子亲水胶体,主要由半乳糖和甘露糖聚合而成,属于天然半乳甘露聚糖,是一种来源稳定、价格相对便宜、黏度高、用途广的食品胶体,也是一种常见的食品品质改良剂。自1993年瓜尔胶进入中国市场以来,由于其优良的特性和较低廉的价格,已逐渐地成为中国食品工业中用量最大的食品胶之一。近年来,通过化学改性使得瓜尔胶的分散性、黏度、水化速率和溶液透明度等特性大大提高,瓜尔胶的应用价值得到进一步提升。 1 瓜尔胶的结构和性质 1.1 瓜尔胶的结构组成 瓜尔胶主链由(1-4)-β-D-甘露糖为单元联接而成,侧链由单个α-D-半乳糖组成并以(1-6)键与主链相接,如图1所示。瓜尔胶因来源不同分子量约为100~200万,甘露糖与半乳糖之比约为1.5~2:1[1]。从支链的半乳糖来看,有四个羟基均可以参与酯化或醚化反应,考虑到空间的位阻效应,羟甲基中的伯羟基反应活性最强,此外甘露糖的羟基也有一定的反应活性。这种特性与那些无分支、不溶于水的葡甘露聚糖有明显的不同。 图1 瓜尔胶的结构 1.2 瓜尔胶的制法 先将瓜尔胶豆磨碎,经筛分、吹风处理。除去皮和胚芽得到胚乳,再将胚乳用含极性有机溶剂的碱性水溶液在70~90℃温度下处理,然后过筛除去外壳,加水进行水洗除碱。再加酸性极性有机溶剂中和、过滤,并在减压下于60~80℃温度下下燥,最后,磨碎、过筛,收集粒度小于1.41mm的粉粒为产品。产率以瓜尔豆中所含半乳甘露聚糖约90%。瓜尔胶的组成一般含75%~85%的多糖,8%~14%的水份,5%~6%的粗蛋白质,2%~3%的粗纤维及0.5%~1%的灰分。根据其产地和加工方式的不同,其成份略有差别,按粒度和黏度可分为不同的等级。

纤维素功能化研究进展及其前景-周彤

陕西科技大学研究生考试试卷 考试科目纤维素化学 专业制浆造纸工程 年级造纸研10级 考生姓名周彤 考生类别日校生

纤维素功能化研究进展及其前景 周彤1001017 摘要:本文总结了纤维素功能化的最新进展,介绍了纤维素功能化新产品并对今后对纤维素的研究利用做出了展望。 关键词:纤维素功能化;纤维素新产品;展望 纤维素是无水葡萄糖残基通过β-1、4苷键连接的立体规整性高分子,是自然界中最为丰富的可再生资源,每年由光合作用可产生几百亿吨。近年来随着石油、煤炭储量的下降,纤维素这种可再生资源的重要性日益显著,尤其是在环境污染问题日益突出的今天,迫使人们把注意力重新集中到纤维素这一具有生物可降解性、环境协调性的可再生资源上来。纤维素大分子易于参与化学改性反应,因此可以制备各种用途的功能材料,例如高吸水材料、贵重金属吸取材料、医疗卫生用材料等。同时纤维素可以以粉状、片状、膜以及溶液等不同形式出现,进一步提高了纤维素功能化的灵活性和应用的广泛性[1]。 1、纤维素的改性 纤维素大分子每个基环均具有三个醇羟基,可以发生氧化。酯化、醚化、接枝共聚等反应;两个末端基性质各异,在一端的葡萄糖基第1个碳原子上存在1个苷羟基,当葡萄糖环结构变成开链式,次羟基即转变成为醛基而具有还原性,而另一端,在末端基的第4个碳原子上存在仲醇羟基,它不具有还原性[2]。纤维素化学改性主要依靠与纤维素羟基有关的反应来完成。例如酯化反应将纤维素的羟基转变为酯基,氢键减少或消失分子间相互作用减弱,纤维素成为热塑性的纤维素酯;醚化反应将纤维素转变为纤维素醚,具有较高的机械强度和柔韧性,可用于制造塑料、薄膜、清漆和胶黏剂等。利用纤维素的羟基作为接枝点,将聚合物连接到纤维素骨架上,称为纤维素的接枝反应。依据接枝聚合物的结构、性质、相对分子质量的不同,可赋予纤维素多种性能和用途[3]。 1.1纤维素酯 纤维素酯又可分为纤维素无机酸酯和有机酸酯。纤维素无机酸酯是指纤维素分子链中的羟基与无机酸如:硝酸、硫酸、磷酸等进行酯化反应的生成物。纤维素有机酸酯是指纤维素分于链中的羟基与有机酸、酸酐或酰卤反应的生成物。主要有纤维素的甲酸酯、乙酸酯、丙酸酯、丁酸酯、乙酸丁酸酯、高级脂肪酸酯、芳香酸酯和二元酸酯等,此外还有各种纤维素混合酯,如醋酸丙酸纤维素、醋酸丁酸纤维素、醋酸琥珀酸纤维素和醋酸邻苯二甲酸纤维素等[4]。

相关主题
文本预览
相关文档 最新文档