当前位置:文档之家› 高中物理必修一(高考题总结)

高中物理必修一(高考题总结)

高中物理必修一(高考题总结)
高中物理必修一(高考题总结)

直线运动

1. 2010·天津·3质点做直线运动的v-t 图像如图所示,规定向右为正方向,则该质点在前8s 内平均速度的大小和方向分别为

A .0.25m/s 向右

B .0.25m/s 向左

C .1m/s 向右

D .1m/s 向左 答案:B

2. 2010·上海物理·12降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞 (A )下落的时间越短 (B )下落的时间越长

(C )落地时速度越小 (D )落地时速度越大 【解析】根据2

2

1gt H =,下落的时间不变; 根据22

y

x

v v v +=

,若风速越大,y v 越大,则降

落伞落地时速度越大;本题选D 。 本题考查运动的合成和分解。 难度:中等。

3.2010·全国卷Ⅰ·24汽车由静止开始在平直的公路上行驶,0 ~60s 内汽车的加速度随时间变化的图线如右图所示。

⑴画出汽车在0~60s 内的v-t 图线; ⑵求在这60s 内汽车行驶的路程。 【答案】⑴速度图像为右图。⑵900m

【解析】由加速度图像可知前10s 汽车匀加速,后20s 汽车匀减速恰好停止,因为图像的面积表示速度的变化,此两段的面积相等。最大速度为20m/s 。所以速度图像为右图。然后利用速度图像的面积求出位移。⑵汽车运动的面积为匀加速、匀速、匀减速三段的位移之和。

900

201020301010321=?+?+?=++=s s s s m

4. 2010·新课标·24(短跑名将博尔特在北京奥运会上创造了100m 和200m 短跑项目的新世界纪录,他的成绩分别是9.69s 和l9.30s.假定他在100m 比赛时从发令到起跑的反应时间是0.15s ,起跑后做匀加速运动,达到最大速率后做匀速运动.200m 比赛时,反应时间及起跑后加速阶段的加速度和加速时间与l00m 比赛时相同,但由于弯道和体力等因素的影响,以后的平均速率只有跑l00m 时最大速率的96%.求:(1)加速所用时间和达到的最大速率。(2)起跑后做匀加速运动的加速度。(结果保留两位小数)

解析:(1)加速所用时间t 和达到的最大速率v ,

100)15.069.9(20=--++t v t v

,200)15.030.19(%962

0=--++t v t v

联立解得:s t 29.1=,s m v /24.11= (2)起跑后做匀加速运动的加速度a ,

v a

1.(09·全国卷Ⅱ·15)两物体甲和乙在同一直线上运动,它们在0~0.4s 时间内的v-t 图象如图所示。若仅在两物体之间存在相互作用,则物体

甲与乙的质量之比和图中时间t 1分别为 ( B )

A .

1

3和0.30s B .3和0.30s C .1

3

和0.28s D .3和0.28s

解析:本题考查图象问题.根据速度图象的特点可知甲做匀加速,乙做匀减速.根据t

v a ??=

得乙甲a a =3,根据牛顿第二定律有乙

甲m F

m F 31=

,得3=乙

m m ,由t s m a -===4.01/104.042乙,得t=0.3s,B 正确。

2.(09·江苏物理·7)如图所示,以8m/s 匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离停车线18m 。该车加速时最大加速

度大小为2

2m/s ,减速时最大加速度大小为

2

5m/s 。此路段允许行驶的最大速度为12.5m/s ,

下列说法中正确的有( AC )

A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线

B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速

C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线

D .如果距停车线5m 处减速,汽车能停在停车线处

解析:熟练应用匀变速直线运动的公式,是处理

问题的关键,对汽车运动的问题一定要注意所求解的问题是否与实际情况相

符。如果立即做匀加速直线

t 1=2s

2

11102

1t a t v x +

==20m>18m ,此时汽车的速度为=+=1101t a v v 12m/s<12.5m/s ,汽车没有超速,

A 项正确;如果立即做匀减速运动,速度减为零需要时间6.12

2==

a v t s ,此过程通过的位移为==

22222

1t a x 6.4m ,C 项正确、D 项错误。 3.(09·江苏物理·9)如图所示,两质量相等

的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始终处在弹性限度内。在物块A 上施加一个水平恒力,A 、B 从静止开始运动到第一次速度相等的过程中,下列说法中正确

的有 ( BCD )

A .当A 、

B 加速度相等时,系统的机械能最大 B .当A 、B 加速度相等时,A 、B 的速度差最大

C .当A 、B 的速度相等时,A 的速度达到最大

D .当A 、B 的速度相等时,弹簧的弹性势能最大

解析:处理本题的关键是对物体进行受力分析和运动过程分析,使用图象处理则可以使问题大大简化。对A 、B 在水平方向受力分析如图,F 1为弹簧的拉力;当加速度大小相同为a 时,对A有

ma F F =-1,对B有ma F =1,得2

1F

F =,在

整个过程中A的合力(加速度)一直减小而B的合力(加速度)一直增大,在达到共同加速度之前A 的合力(加速度)一直大于B的合力(加速度),之后A 的合力(加速度)一直小于B的合力(加速度)。两物体运动的v-t 图象如图,t l 时刻,两物体加速度相等,斜率相同,速度差最大,t 2时刻两物体的速度相等,A速度达到最大值,两实线之间围成的面积有最大值即两物体的相对位移最大,弹簧被拉到最长;除重力和弹簧弹力外其它力对系统正功,系统机械能增加,t l 时刻之后拉力依然做正功,即加速度相等时,系统机械能并非最大值。

4.(09·广东物理·3)某物体运动的速度图像如图,根据图像可知 ( AC )

A.0-2s 内的加速度为1m/s 2

B.0-5s 内的位移为10m

C.第1s 末与第3s 末的速度方向相同

D.第1s 末与第5s 末加速度方向相同 解析:v -t 图像反映的是速度v 随时t 的变化规律,其斜率表示的是加速度,A 正确;图中图像与坐标轴所围成的梯形面积表示的是0-5s 内的位移为7m ,在前5s 内物体的速度都大于零,即运动方向相同,C 正确;0-2s 加速度为正,4-5s 加速度为负,方向不同。

5.(09·海南物理·7)一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示。设该物体在0t 和

02t 时刻相对于出发点的位移分别是1x 和2x ,速

度分别是1v 和2v ,合外力从开始至o t 时刻做的功

是1W ,从0t 至02t 时刻做的功是2W ,则 ( AC )

A .215x x = 213v v =

B .12219 5x x v v ==

C .21215 8x x W W ==

D .2 1 2139v v W W == 6.(09·海南物理·8)甲乙两车在一平直道路上同向运动,其v t -图像如图所示,图中OPQ ?和OQT ?的面积分别为1s 和2s ()21s s >.初始

时,甲车在乙车前方0s 处。 ( ABC ) A .若012s s s =+,两车不会相遇

B .若01s s <,两车相遇2次

C .若01s s =,两车相遇1次

D .若02s s =,两车相遇1次

7.(09·广东理科基础·3)图1是甲、乙两物体做直线运动的v 一t 图象。下列表述正确的是 ( A )

A .乙做匀加速直线运动

B .0一ls 内甲和乙的位移相等

C .甲和乙的加速度方向相同

D .甲的加速度比乙的小

解析:甲乙两物体在速度图象里的图形都是倾斜的直线表明两物体都是匀变速直线,乙是匀加速,甲是匀减速,加速度方向不同A 对C 错;根据在速度图象里面积表示位移的方法可知在0一ls 内甲通过的位移大于乙通过的位移.B 错;根据斜率表示加速度可知甲的加速度大于乙的加速度,D 错。 8.(09·广东理科基础·9)物体在合外力作用下做直线运动的v 一t 图象如图所示。下列表述正确的是 ( A )

A .在0—1s 内,合外力做正功

B .在0—2s 内,合外力总是做负功

C .在1—2s 内,合外力不做功

D .在0—3s 内,合外力总是做正功

解析:根据物体的速度图象可知,物体0-1s 内做匀加速合外力做正功,A 正确;1-3s 内做匀减速合外力做负功。根据动能定理0到3s 内,1—2s 内合外力做功为零。

9.(09·山东·17)某物体做直线运动的v-t 图象如图甲所示,据此判断图乙(F 表示物体所受合力,

x 表示物体的位移)四个选项中正确的是 ( B )

解析:由图甲可知前两秒物体做初速度为零的匀加速直线运动,所以前两秒受力恒定,2s-4s 做正方向匀加速直线运动,所以受力为负,且恒定,4s-6s 做负方向匀加速直线运动,所以受力为负,恒定,6s-8s 做负方向匀减速直线运动,所以受力为正,恒定,综上分析B 正确。

考点:v-t 图象、牛顿第二定律

提示:在v-t 图象中倾斜的直线表示物体做匀变速直线运动,加速度恒定,受力恒定。

速度——时间图象特点:

①因速度是矢量,故速度——时间图象上只能表

示物体运动的两个方向,t 轴上方代表的“正方向”,t 轴下方代表的是“负方向”,所以“速度——时间”图象只能描述物体做“直线运动”的情况,如果做曲线运动,则画不出物体的“位移——时间”图象;

②“速度——时间”图象没有时间t 的“负轴”,因时间没有负值,画图要注意这一点;

③“速度——时间”图象上图线上每一点的斜率代表的该点的加速度,斜率的大小表示加速度的大

小,斜率的正负表示加速度的方向;

④“速度——时间”图象上表示速度的图线与时间轴所夹的“面积”表示物体的位移。

10.(09·广东文科基础·56)下列运动图象中表示质点做匀变速直线运动的是( C )

二、非选择题

11.(09年福建卷)21.如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m、带电量为q (q>0)的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g。

(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1

(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为v m,求滑块从静止释

放到速度大小为v m过程中弹簧的弹力所做的功W;

(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整

个过程中速度与时间关系v-t图象。图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的

速度大小,v m是题中所指的物理量。(本小题不要

.....

求写出计算过程

.......)

答案:(1)

θ

sin

2

1mg

qE

ms

t

+

=; (2)

)

sin

(

)

sin

(

2

1

2

k

qE

mg

s

qE

mg

mv

W

m

+

+

?

+

-

=

θ

θ;

(3)

解析:本题考查的是电场中斜面上的弹簧类问题。涉及到匀变速直线运动、运用动能定理处理变力功问题、最大速度问题和运动过程分析。

(1)滑块从静止释放到与弹簧刚接触的过程中作初速度为零的匀加速直线运动,设加速度大小为a,则有

qE+mg sinθ=ma①

2

1

02

1

at

s=②联立①②可得

θ

sin

2

1mg

qE

ms

t

+

=③(2)滑块速度最大时受力平衡,设此时弹簧压

缩量为

x,则有

sin kx

qE

mg=

+

θ④

从静止释放到速度达到最大的过程中,由动能定理得

02

1)()sin (2

0-=++?+m m mv W x x qE mg θ

⑤ 联立④⑤可得

)sin ()sin (2102

k

qE mg s qE mg mv W m ++?+-=

θθs

(3)如图

12.(09·江苏·13)(15分)航模兴趣小组设计出一架遥控飞行器,其质量m =2㎏,动力系统提供的恒定升力F =28 N 。试飞时,飞行器从地面由静止开始竖直上升。设飞行器飞行时所受的阻力大小不变,g 取10m/s 2

(1)第一次试飞,飞行器飞行t 1 = 8 s 时到达高

度H = 64 m 。求飞行器所阻力f 的大小; (2)第二次试飞,飞行器飞行t 2 = 6 s 时遥控器出现故障,飞行器立即失去升力。求飞行器能达到的最大高度h ;(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t 3 。

解析:(1)第一次飞行中,设加速度为1a 匀加速运动2

112

1t a H =

由牛顿第二定律1ma f mg F =-- 解得)(4N f =

(2)第二次飞行中,设失去升力时的速度为

1v ,上升的高度为1s

匀加速运动22112

1t a s =

设失去升力后的速度为2a ,上升的高度为2s 由牛顿第二定律2ma f mg =+

211t a v =

2

2

122a v s = 解得)(4221m s s h =+=

(3)设失去升力下降阶段加速度为3a ;恢复

升力后加速度为4a ,恢复升力时速度为3v

由牛顿第二定律 3ma f mg =- F+f-mg=ma 4

且223334

22v v h a a += V 3=a 3t 3 解得t 3

=

2

(s)(或2.1s) 13.(09·海南物理·15)(9分)一卡车拖挂一相同质量的车厢,在水平直道上以012/v m s =的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关。某时刻,车厢脱落,并以大小为

22/a m s =的加速

度减速滑行。在车厢脱落3t s =后,司机才发觉并紧急刹车,刹车时阻力为正常行驶时的3倍。假设

刹车前牵引力不变,

求卡车和车厢都停下后两者之间的距离。 解析:设卡车的质量为M ,车所受阻力与车重之比为μ;刹车前卡车牵引力的大小为F ,

卡车刹车前后加速度的大小分别为1a 和2a 。重力加速度大小为g 。由牛顿第二定律有

1220 3 f Mg F Mg Ma Mg Ma Mg Ma μμμμ-=-===①②

设车厢脱落后,

3t s =内卡车行驶的路程为1s ,末速度为1v ,根据运动学公式有

21011

2

s v t a t =+ ⑤

101v v a t =+ ⑥

21222v a s = ⑦

式中,2s 是卡车在刹车后减速行驶的路程。设车厢脱落后滑行的路程为,s ,有

20

2v as = ⑧

卡车和车厢都停下来后相距

12s s s s ?=+- ⑨

由①至⑨式得

2

00242

333

v s v t at a ?=-++ ○10

带入题给数据得

36s m ?= ○11

评分参考:本题9分。①至⑧式各1分,○11式1分

1.(08宁夏理综17)甲、乙两车在公路上沿同一方向做直线运动,它们的 v-t 图象如图所示.两图象

在t=t 1时相交于P 点,P 在横轴上的投影为Q,△OPQ 的面积为S.在t=0时刻,乙车在甲车前面,相距为d.已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( )

A.S d t t ==',1

B.S d t t 41

,211==' C.S d t t 21

,211=='

D.S d t t 4

3

,211=='

答案

D

解析 假设t ′=t 1,由v-t 图象可知在t 1时刻v 甲=v 乙,由于甲做匀速直线运动,乙做匀加速直线运动,则若在t 1

时刻第一次相遇,也就不会存在第二次相遇的问题,与已知条件两次相遇相矛盾. 当t ′=

2

1

t 1时,v 乙

8

22,21111t t x v v v v =?=='=乙乙乙t

t

对于甲:x 甲=v ·

乙x d t +=2

1

所以:8

211t d v v +=t ,183t d v =

因为12t S v =,所以S d 4

3

=.

2.(08广东10)某人骑自行车在平直道路上行进,图中的实线记录了自行车开

始一段时间内的v-t 图象,某同学为了简化计算,用虚线作近似处理,下列说

法正确的是 ( ) A.在t 1时刻,虚线反映的加速度比实际的大 B.在0~t 1时间内,由虚线计算出的平均速度比实

际的大

C.在t 1~ t 2时间内,由虚线计算出的位移比实际的大

D.在t 3~t 4时间内,虚线反映的是匀速直线运动 答案

BD

解析 如右图所示,t 1时刻,实线上A 点的切线为AB,实际加速度为AB 的斜率,

由图可知虚线反映的加速度小于实际加速度,故选项A 错误;在v-t 图象中,位

移等于所对应图线与坐标轴所包围的面积,0~t 1时间内,虚线所对应的位移大于 实线所对应的位移,由t

s

v 知,由虚线计算出的平均速度比实际的大,故选项B 正确;在t 1~t 2时间内,虚线计算出的位移比实际小,故选项C 错误;t 3~t 4时间内虚线为平行于时间轴的直线,此线反映的运动为匀速直线运动, 故选项D 正确.

3.(08山东理综17)质量为1 500 kg 的汽车在平直的公路上运动,v-t 图象如图所示.由此可求 ( )

A.前25 s 内汽车的平均速度

B.前l0 s 内汽车的加速度

C.前l0 s 内汽车所受的阻力

D.15~25 s 内合外力对汽车所做的功 答案

ABD

解析 由v-t 图象的斜率表示加速度大小,这样由牛顿第二定律可求出合力,由v-t 图象与坐标轴所围面积表

示位移大小,位移除以相应时间就求出平均速度大小,由力和位移可求出合外力的功.

4.(08全国Ⅰ15)如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( )

A.向右做加速运动

B.向右做减速运动

C.向左做加速运动

D.向左做减速运动 答案

AD

解析 研究对象小球所受的合外力等于弹簧对小球的弹力,方向水平向右,由牛顿第二定律的同向性可知,小球的加速度方向水平向右.由于小球的速度方向可能向左,也可能向右,则小球及小车的运动性质为:向右的加速运动或向左的减速运动.

5.(08广东理科基础10)如图是某物体做直线运动的v-t 图象,由图象可得到的正确结果是

( )

A.t=1 s 时物体的加速度大小为1.0 m/s 2

B. t=5 s 时物体的加速度大小为0.75 m/s 2

C.第3 s 内物体的位移为 1.5 m

D.物体在加速过程的位移比减速过程的位移大 答案

B

解析 t =1 s 时物体加速度大小为1.5 m/s 2

;t=5 s 时物体加速度大小为0.75 m/s 2

;第3 s 内的位移为3 m ;物体加速过程的位移比减速过程的位

移小. 二、非选择题

6.(08四川理综23)A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s,且

以2 m/s 2

的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 答案 6 s

解析 设A 车的速度为v A ,B 车加速行驶时间为t ,两车在t 0时相遇.则有

0t s A A v = ①

))((2

1

02t t at B -+++=at t s B B v v ②

式中,t 0 =12 s,s A 、s B 分别为 A 、B 两车相遇前行驶的路程.依题意有

s s s B A += ③

式中 s =84 m,由①②③式得

[]0)(2202=--+

-a

s t A B 0t t t v v ④

代入题给数据得

v A =20 m/s,v B =4 m/s,a=2 m/s

2

有 t 2

-24t+108=0 ⑤

式中t 的单位为s.解得

t 1=6s,t 2=18 s ⑥

t 2=18 s 不合题意,舍去.因此,B 车加速行驶的时

间为6 s

7.(08全国Ⅰ23)已知O 、A 、B 、C 为同一直线上

的四点.AB 间的距离为l 1,BC 间的距离为l 2,一

物体自O 点由静止出发,沿此直线做匀加速运动,

依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离.

答案

)

(8)3(122

21l l l l -

-

解析 设物体的加速度为a,到达A 点的速度为v 0,通过AB 段和BC 段所用的时间为t,则有

2

012

1at t l +

=v ① 222021at t l l +=+v ②

联立①②式得2

12at

l l =

- ③

t l 02123v =-l ④ 设O 与A 的距离为l ,则有a

l 202

v

= ⑤

联立③④⑤式得)

(8)3(122

21l l l l l --=

8.(08山东理综38)一个物体静置于光滑水平面上,外面扣一质量为M 的盒子,如图1所示.现给盒子一初

速度v 0,此后,盒子运动的v-t 图象呈周期性变化,如图2所示.请据此求盒内物体的质量.

答案 M

解析 设物体的质量为m,t 0时刻受盒子碰撞

获得速度v,

根据动量守恒定律

Mv 0=mv ①

3t 0时刻物体与盒子右壁碰撞使盒子速度又变

为v 0,说明碰撞是弹性碰撞

22

02

121v v m m = ②

联立①②解得m=M

(也可通过图象分析得出v 0=v,结合动量守恒,得出正确结果)

相互运动

1. 2010·江苏物理·1如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度(A )大小和方向均不变(B )大小不变,方向改变 (C )大小改变,方向不变(D )大小和方向均改变 答案:A

2. 2010·新课标·15

一根轻质弹簧一端固定,用大小为1F 的力压弹簧的另一端,平衡时长度为1l ;改用大小为2F 的力拉弹簧,平衡时长度为2l .弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为

A 、2121F F l l --

B 、21

21

F F l l ++

C 、

21

21

F F l l +- D 、2

121F F l l -+答案:C ,

解析:根据胡克定律有:)(101l l k F -=,

)(022l l k F -=,解得:k=

21

21

F F l l +-

3. 2010·江苏物理·3如图所示,置于水平地面的三脚架上固定着一质量为m 的照相机,三脚架的三根轻质支架等长,与竖直

方向均成30?角,则每根支架中承受的压力大小为 (A )1

3mg (B )23mg (C

)6mg (D

)9

mg 答案:D

4.2010·新课标·18如图所示,一物块置于水平地面上.当用与水平方向成0

60角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成0

30

角的力2F 推物块时,物块仍做匀速直线运动.若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数

A

1 B

、2 C

12- D 、

解析:B;物体受重力mg 、支持力N 、摩擦力f 、已知力F 处于平衡,根据平衡条件,有

)

60sin (60cos 0101F mg F -=μ,

)30sin (30cos 0202F mg F +=μ,联立解得:

=

μ2

5.2010·海南物理·5如右图,水平地面上有一楔形物块a ,其斜面上有一小物块b ,b 与平行于斜面的细绳的一端相连,细绳的另一端固定在斜面上.a 与b 之间光滑,a 和b 以共同速度在地面轨道的光滑段向左运动.当它们刚运行至轨道的粗糙段时

A .绳的张力减小,b 对a 的正压力减小

B .绳的张力增加,斜面对b 的支持力增加

C .绳的张力减小,地面对a

的支持力

增加

D .绳的张力增加.地面对a 的支持力减小 【答案】C

【解析】在光滑段运动时,

系统及物块b 处于平衡状态,因此有

N cos sin 0

F F θθ-=,

N sin cos 0F F mg θθ+-=;

当它们刚运行至轨道

的粗糙段时,系统有水平向右的加速度,此时有两种可能,一是物块b 仍相对静止,竖直方向加速度为零,则

N sin cos 0F F mg θθ+-=仍成立,但

N cos sin 0F F ma θθ-=<,因此绳的张力F 将

减小,而地面对a 的支持力不变;二是物块b 相对于a 向上滑动,具有向上的加速度,是超重,因此绳的张力减小,地面对a 的支持力增大,C 正确。 6.2010·安徽·19 L 型木板P (上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q 相连,如图所示。若P 、Q 一起沿斜面匀速下滑,不计空气阻力。则木板

P 的受力个数为 A.3 B.4 C.5 D.6 【答案】C

【解析】P 、Q 一起沿斜面

匀速下滑时,由于木板P 上表面光滑,滑块Q 受到

重力、P 的支持力和弹簧沿斜面向上的弹力。木板P 受到重力、斜面的支持力、斜面的摩擦力、Q 的压力和弹簧沿斜面向下的弹力,所以选项C 正确。

1.(09·上海·44)自行车的设计蕴含了许多物理知识,利用所学知识完成下表

答案:减小压强(提高稳定性);增大摩擦(防止打滑;排水)

2.(09·天津·1)物块静止在固定的斜面上,分别按图示的方向对物块施加大小相等的力F ,A 中F 垂直于斜面向上。B 中F 垂直于斜面向下,C 中F 竖直向上,D 中F 竖直向下,施力后物块仍然

静止,则物块所受的静摩擦力增大的是 ( D )

解析:四个图中都是静摩擦。A 图中f A =G sin θ;B 图中f B =G sin θ;C 图中f C =(

G -F )sin

θ;D 图中f C =(G +F )sin θ。

3.(09·广东物理·7)某

缓冲装置可抽象成图所示的简

单模型。图中1,2K K 为原长相

等,劲度系数不同的轻质弹簧。下列表述正确的是 ( BD )

A .缓冲效果与弹簧的劲度系数无关

B .垫片向右移动时,两弹簧产生的弹力大小相等

C .垫片向右移动时,两弹簧的长度保持相等

D .垫片向右移动时,两弹簧的弹性势能发生改变

解析:不同弹簧的缓冲效果与弹簧的劲度系数有关,A 错误;在垫片向右运动的过程中,由于两个弹簧相连,则它们之间的作用力等大,B 正确;由于两弹簧的劲度系数不同,由胡克定律x k F ?=可知,两弹簧的型变量不同,则两弹簧的长度不相等,C 错误;在垫片向右运动的过程中,由于弹簧的弹力做功,则弹性势能将发生变化,D 正确。

4.(09·江苏物理·2)用一根长1m 的轻质细绳将一副质量为1kg 的画框对称悬挂在墙壁上,已知绳能承受的最大张力为10N ,为使绳不断裂,画

框上两个挂钉的间距最大为(g 取2

10m/s )

( A )

A.2 B

.m 2

C .1m 2 D

解析:熟练应用力的合成和分解以及合成与分解中的一些规律,是解决本题的根本;一个大小方向确定的力分解为两个等大的力时,合力在分力的角平分线上,且两分力的夹角越大,分力越大。题中当绳子拉力达到F =10N 的时候,绳子间的张角最大,即两个挂钉间的距离最大;画框受到重力和绳子的拉力,三个力为共点力,受力如图。绳子与竖直方向的夹角为θ,绳子长为L 0=1m,则有

θcos 2F mg =,两个挂钉的间距离

θsin 220L L ?

=,解得2

3=L m ,A 项正确。 5.(09·广东理科基础·4)建筑工人用图所示的

定滑轮装置运送建筑材料。质量为70.0kg 的工人站在地面上,通过定滑轮将20.0kg 的建筑材料以0.500m /

s 2

的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g 取lOm /s 2) ( B )

A .510 N

B .490 N

C .890 N

D .910 N

解析:对建筑材料进行受力分析。根据牛顿第二定律有ma mg F =-,得绳子的拉力大小等于F=210N,然后再对人受力分析由平衡的知识得

N F F Mg +=,得F N =490N,根据牛顿第三定律可知

人对地面间的压力为490N.B 对。 6.(09·浙江·14)如图所示,质量为m 的等

边三棱柱静止在水平放置的斜面上。已知三棱柱与

斜面之间的动摩擦因数为μ,斜面的倾角为o

30,

则斜面对三棱柱的支持力与摩擦力的大小分别为

( A )

A .

2

3

mg 和21mg

B .

21mg 和2

3mg C .2

1mg 和

2

1

μmg D .

23mg 和2

3μmg

8.(08·山东理综·16) 用轻弹簧竖直悬挂质

量为m 的物体,静止时弹簧伸长量为L.现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧

伸长量也为L.斜面倾角为300

,如图所示.则物体所受摩擦力( )

A.等于零

B.大小为

mg 2

1

,方向沿斜面向下 C.大小为m g 2

3,方向沿斜面向上

D.大小为mg,方向沿斜面向上 答案

A 解析 竖直悬挂时mg=kL

① 沿斜面拉2m 物体时,设物体受摩擦力为f,方向沿斜面向下,则kL =2mgsin 30°+f ② 由①②得f=0. 9.(08·全国Ⅱ·16)如右图,一固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑,A 与B 的接触面光滑.已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍,斜面倾角为α.B 与斜面之间的动摩擦因数是 ( ) A.αtan 3

2

B.

αcot 3

2

C.αtan

D.αcot

答案

A

解析 对于AB 做匀速直线运动,根据共点力的平衡条件有:2mgsin α-3μmgcos α

=0 所以B 与斜面间的动摩擦因数为:μ=

3

2

tan α. 10.(08·广东理科基础·12)质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为f,加速度为a=

g 3

1

,则f 的大小是 ( ) A.mg f 3

1

=

B.mg f 32

=

C.mg f =

D.mg f 3

4

=

答案 B

解析 由牛顿第二定律得mg- f =ma,得,f =mg

-ma=mg 3

2

.

11.(08·广东理科基础·9)探究弹力和弹簧伸

长的关系时,在弹性限度内,悬挂15 N 重物时,弹簧

长度为0.16 m,悬挂20 N 重物时,弹簧长度为0.18

m,则弹簧的原长L 0和劲度系数k 分别为

( )

A.L 0=0.02 m k=500 N/m

B.L 0

=0.10 m k=500 N/m

C.L 0=0.02 m k=250 N/m

D.L 0

=0.10 m k=250 N/m

答案

D 解析 由胡克定律知F 1=k (L 1-L 0)

F 2= k (L 2-L 0)

② 由①②解得:L 0=0.1 m,k =250 N/m. 12.(08·广东理科基础·2) 人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动, 如图所示.以下说法正确的是 ( ) A.人受到重力和支持力的作用

B. C.人受到的合外力不为零 D.人受到的合外力方向与速度方向相同 答案

A 解析 由于人做匀速运动,所以人所受的合外力为零,水平方向不可能受力的作用. 考点2 力的合成与分解

13.(09·北京·18)如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上。滑块与斜面之间的动摩擦因数为μ。若滑块与斜面之间的最大静摩擦力合滑动摩擦力大小相等,重力加速度为g ,则 ( C )

A .将滑块由静止释放,如果μ>tan θ,滑块将下滑

B .给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑

C .用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ,拉力大小应是2mgsin θ

D .用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ,拉力大小应是mgsin θ

解析:对处于斜面上的物块受力分析,要使物块沿斜面下滑则mgsin θ>μmgcos θ,故μ

的作用下沿斜面匀速上滑,由平衡条件有:F-mgsin

θ-μmgcos θ=0故F= mgsin θ+μmgcos θ,若μ

=tan θ,则mgsin θ=μmgcos θ, 即F=2mgsin θ

故C 项正确;若要使物块在平行于斜面向下的拉力

F 作用下沿斜面向下匀速滑动,由平衡条件有:

F+mgsin θ-μmgcos θ=0 则 F=μmgcos θ- mgsin

θ 若μ=tan θ,则mgsin θ=μmgcos θ,即F=0,

故D 项错误。

14.(09·海南物理·1)两个大小分别为1F 和

2F (21F F <

)的力作用在同一质点上,它们的合

力的大小F 满足 ( C ) A .21F F F ≤≤ B .

1212

22

F F F F F -+≤≤ C .1212F F F F F -≤≤+

D . 222221212F F F F F -≤≤+

答案:C

解析:共点的两个力合成,同向时最大为1F +

2F ,反向时最小为1F -2F 。

15. (08·北京理综·20)有一些问题你可能不

会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.

举例如下:如图所示.质量为M 、倾角为θ的滑块A 放于水平地面上,把质量为m 的滑块B 放在A 的斜面上,忽略一切摩擦,有人求得B 相对地面的加

速度a = ,式中g 为重力加速

度.对于上述解,某同学首先分析了等号右侧量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误的.请你指出该项 ( )

A.当θ=0°时,该解给出a=0,这符合常识,说明该解可能是对的

B.当θ=90°时,该解给出a=g,这符合实验结论,说明该解可能是对的

C.当M m 时,该解给出a =gsin θ,这符合预期的结果,说明该解可能是对的

D.当m

M 时,该解给出a =

θ

sin g

,这符合预期的结果,说明该解可能是对的 答案

D

解析 B 沿斜面下滑的过程中,B 的加速度大小a ≤g,选项D 中a=

θ

sin g

≥g,这与实际情况不符,故正确答案为D.

16.(08·广东理科基础·6) 如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直

方向的夹角为θ.设水平横梁OA 和斜梁OB 作用于O

点的弹力分别为F 1和F 2,以

下结果正确的是 ( ) A.F 1=mgsin θ B.F 1=

θsin m

g

C.F 2=mgcos θ

D.F 2=

θ

cos m g

答案

D

解析 O 点受力如图所示.由图可知F 1=mgtan θ,F 2=

θ

cos mg

. 考点3 受力分析、物体的平衡

17.(09·广东物理·11)如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、磁感应强度为B 的匀强磁场中。质量为m 、带电量为+Q 的小滑块从斜面顶端由静止下滑。在滑块

下滑的过程中,下列判断正确的是 ( CD )

A .滑块受到的摩擦力不变

B .滑块到地面时的动能与B 的大小无关

C .滑块受到的洛伦兹力方向垂直斜面向下

D .B 很大时,滑块可能静止于斜面上 解析:取物块为研究对象,小滑块沿斜面下滑由于受到洛伦兹力作用,如图所示,C 正确;N=mgcos θ+qvB ,由于v 不断增大,则N 不断增大,滑动摩擦力f =μN ,摩擦力增大,A 错误;

滑块的摩擦力与B 有关,摩擦力做功与B 有关,依据动能定理,在滑块下滑到地面的过程中,满足

fs mgh mv -=-02

12

,所以滑块到地面时的动能与B 有关,B 错误;当B 很大,则摩擦力有可能很大,所以滑块可能静止在斜面上,D 正确。

18.(09·宁夏·21)水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。现对

木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平面夹角为θ,如图,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则 ( AC )

2sin sin M m g M m θ

θ

+

+

A.F 先减小后增大

B.F 一直增大

C.F 的功率减小

D.F 的功率不变 7.(09·四川·20)如图所示,粗糙程度均匀

的绝缘斜面下方O 点处有一正点电荷,带负电的小物体以初速度V 1从M 点沿斜面上滑,到达N 点时速度为零,然后下滑回到M 点,此时速度为V 2(V 2<V 1)。若小物体电荷量保持不变,OM =ON ,则

( AD )

A .小物体上升的最大高度为

2212

4V V g +

B .从N 到M 的过程中,小物体的电势能逐渐减小

C .从M 到N 的过程中,电场力对小物体先做负功后做正功

D .从N 到M 的过程中,小物体受到的摩擦力和电场力均是先增大后减小

解析:设斜面倾角为θ、上升过程沿斜面运动的最大距离为L 。因为OM =ON ,则MN 两点电势相等,小物体从M 到N 、从N 到M 电场力做功均为0。上滑和下滑经过同一个位置时,垂直斜面方向上电场力的分力相等,则经过相等的一小段位移在上滑和下滑过程中电场力分力对应的摩擦力所作的功均为相等的负功,所以上滑和下滑过程克服电场力产生的摩擦力所作的功相等、并设为W 1。在上滑和下滑过程,对小物体,应用动能定理分别有:-

mgsin θL -μmgcos θL -W 1=-2

12mV 和mgsin θL

-μmgcos θL -W 1=2

22

mV ,上两式相减可得sin

θL =22

124V V g

+,A 对;由OM =ON ,可知电场力对

小物体先作正功后作负功,电势能先减小后增大,BC 错;从N 到M 的过程中,小物体受到的电场力垂直斜面的分力先增大后减小,而重力分力不变,则摩擦力先增大后减小,在此过程中小物体到O 的距离先减小后增大,根据库仑定律可知小物体受到的

电场力先增大后减小,D 对。 19.(09·海南物理·3)两刚性球a 和b 的质量分别为a m 和b m 、直径分别为a d 个b d (a d >b d )。

将a 、b 球依次放入一竖直放置、内径为的平底圆筒内,如图所示。设a 、b 两球静止时对圆筒侧面的压力大小分别为1f 和2f ,筒底所受的压力大小

为F .已知重力加速度大小为g 。若所以接触都是光滑的,则 ( A )

A .()a b 12 F m m g f f =+=

B .()a 12

b F m m g f f =+≠

C .()a 12 a b m g F m m g f f <<+=

D .()a a 12

, b m g F m m g f f <<+≠

解析:A;对两刚性球a 和b 整体分析,竖直方向平衡可知F =(a m +b m )g 、水平方向平衡有1f =2f 。 20.(09·广东文科基础·58)如图8所示,用一轻绳系一小球悬于O 点。现将小球拉至水平位置,然后释放,不计阻力。小球下落到最低点的过程中,下列表述正确的是( A )

A .小球的机械能守恒

B .小球所受的合力不变

C .小球的动能不断减小

D .小球的重力势能增加

21.(09·山东·16)如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。设滑块所受支持力为F N 。OF 与水平方向的夹角为0。下列关系正确的是 ( A )

A .tan mg

F =θ B .F =mgtan θ

C

tan N mg

F =

θ

D .F N =mgtan θ

解析:对小滑块受力分析如图所示,根据三角形定则可得tan mg

F =

θ

sin N mg

F =

θ

,所以A 正确。 考点:受力分析,正交分解或三角形定则。提示:支持力的方向垂直于接触面,即指向圆心。正交分解列式求解也可。

22.(09·山东·22)图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质

量为M

。木箱在

轨道端时,自动装货装置将质量为m 的货物装入

木箱,然后木箱载着货物沿轨道无初速滑下,与

轻弹簧被压缩至最短时,自动卸货装置立刻将货

物卸下,然后木箱恰好被弹回到轨道顶端,再重

复上述过程。下列选项正确的是

( BC )

A .m =M

B .m =2M

C .木箱不与

弹簧接触时,上

滑的加速度大于

下滑的加速度

D .在木箱与货物从顶端滑到最低点的过程中,

减少的重力势能全部转化为弹簧的弹性势能

解析:受力分析可知,下滑时加速度为

cos g g μθ-,上滑时加速度为cos g g μθ+,所以C 正确。设下滑的距离为l ,根据能量守恒有

()cos cos sin m M gl Mgl mgl μ

θμθθ++=,得m =2M 。也可以根据除了重力、弹性力做功以外,还有其他力(非重力、弹性力)做的功之和等于系统机械能的变化量,B 正确。在木箱与货物从顶端滑到最低点的过程中,减少的重力势能转化为弹簧的

弹性势能和内能,所以D 不正确。 考点:能量守恒定律,机械能守恒定律,牛顿第二定律,受力分析 提示:能量守恒定律的理解及应用。

23.(09·安徽·17)为了节省能量,某商场

安装了智能化的电动扶梯。无人乘行时,扶梯运转

得很慢;有人站上扶梯时,它会先慢慢加速,再匀

速运转。一顾客乘扶梯上楼,恰好经历了这两个过

程,如图所示。那么下列说法中正确的是

( C )A. 顾客始终受到三个力的作用

B. 顾客始终处于超重状态

C. 顾客对扶梯作用力的方向先指向左下方,再竖

直向下 D. 顾客对扶梯

作用的方向先指向右下方,再竖直向下

解析:在慢慢加速的过程中顾客受到的摩擦力水

平向左,电梯对其的支持力和摩擦力的合力方向指向右上,由牛顿第三定律,它的反作用力即人对电

梯的作用方向指向向左下;在匀速运动的过程中,

顾客与电梯间的摩擦力 等于零,顾客对扶梯的作

用仅剩下压力,方向沿竖直向下。

24.(09·全国Ⅰ·25)

(18分) 如图所示,

倾角为θ的斜面上静止放置三个质量均为m 的木

箱,相邻两木箱的距离均为l 。工人用沿斜面的力

推最下面的木箱使之上滑,逐一与其它木箱碰撞。

每次碰撞后木箱都粘在一起运动。整个过程中工人

的推力不变,最后恰好能推着三个木箱匀速上滑。

已知木箱与斜面间的动摩擦因数为μ,重力加速度

为g.设碰撞时间极短,求

(1)工人的推力;

(2)三个木箱匀速运动的速度;

(3)在第一次碰撞中损失的机械能。

答案:(1)3sin 3cos mg mg θμθ+; (2 (3)(sin cos )mgL θμθ+。 解析:(1)当匀速时,把三个物体看作一个整体受重

力、推力F 、摩擦力f 和支持力.根据平衡的知识有

θμθcos 3sin 3mg mg F +=; (2)第一个木箱与第二个木箱碰撞之前的速度为V 1,

加速度

)

cos (sin 2cos sin 1θμθθ

μθ+=--=g m

mg mg F a 根据运动学公式或动能定理

mg

有)cos (sin 21θμθ+=gL V ,碰撞后的速度为V 2根据动量守恒有212mV mV =,即碰撞后的速度为)cos (sin 2θμθ+=

gL V ,然后一起去碰撞第

三个木箱,设碰撞前的速度为V 3。 从V2到V3的加

2

)

cos (sin 2cos 2sin 22θμθθμθ+=

--=

g m mg mg F a ,根据运动学公式有L a V V 22

22

32=-,得

)cos (sin 23θμθ+=

gL V ,跟第三个

木箱碰撞根据动量守恒有4332mV mV =,得

)cos (sin 23

2

4θμθ+=

gL V 就是匀速的速度; (3)设第一次碰撞中的能量损失为E ?,根据能量守

恒有2

22122121mV E mV +?=,带入数据得

)cos (sin θμθ+=?mgL E 。

25.(09·山东·24)(15分)如图所示,某货

场而将质量为m 1=100 kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R=1.8 m 。地面上紧靠轨道次排放两声完全相同的木板A 、B ,长度均为l=2m ,质量均为m 2=100 kg ,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ=0.2。(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s 2

(1)求货物到达圆轨道末端时对轨道的压力。 (2)若货物滑上木板4时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件。

(3)若μ1=0。5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间。

解析:(1)设货物滑

到圆轨道末

端是的速度为0v ,对货物的下滑过程中根据机械能

守恒定律得,

2

1012

mgR m v =

① 设货物在轨道末端所受支持力的大小为N F ,根据

牛顿第二定律得,20

11N v F m g m R

-=②

联立以上两式代入数据得3000N F N =③ 根据牛顿第三定律,货物到达圆轨道末端时对轨

道的压力大小为3000N ,方向竖直向下。

(2)若滑上木板A 时,木板不动,由受力分析得

11212(2)m g m m g μμ≤+④

若滑上木板B 时,木板B 开始滑动,由受力分析得11212()m g m m g μμ>+⑤

联立④⑤式代入数据得10.6μ0.4<≤⑥。 (3)10.5μ=,由⑥式可知,货物在木板A 上滑动时,木板不动。设货物在木板A 上做减速运动时的加速度大小为1a ,由牛顿第二定律得1111

m g m a μ≤⑦ 设货物滑到木板A 末端是的速度为1v ,由运动学

公式得22

1012v v a l -=-⑧

联立①⑦⑧式代入数据得14/v m s =⑨ 设在木板A 上运动的时间为t ,由运动学公式得101v v a t =-⑩

联立①⑦⑨⑩式代入数据得0.4t s =。

考点:机械能守恒定律、牛顿第二定律、运动学方程、受力分析

26.(09·安徽·22)(14分)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一

吊椅,另一端被坐在吊椅上的运动员拉住,如图

所示。设运动员的质量为65kg ,吊椅的质量为15kg ,不计定滑轮与绳子间的摩擦。重力加速度取

210m/s g =。当运动员与吊椅一起正以加速度

21m/s a =上升时,试求

(1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。 答案:440N ,275N

解析:解法一:(1)设运动员受到绳向上的拉力为F ,由于跨过定滑轮的两段绳子拉力相等,吊椅受到绳的拉力也是F 。对运动员和吊椅整体进行受力分析如图所示,则有:

()()a m m g m m -2F 椅人椅人+=+

N F 440=

由牛顿第三定律,运动员竖直向下拉绳的力

N

F 440='

(2)设吊椅对运动员的支持力为F N ,对运动员进

行受力分析如图所示,则有: a m g m -F F N 人人=+ 275N F N =

由牛顿第三定律,运动员对吊椅

的压力也为275N 解法二:设运动员和吊椅的质量分别为M 和m ;运动员竖直向下

的拉力为F ,对吊椅的压力大小

为F N 。

根据牛顿第三定律,绳对运动员

的拉力大小为F ,吊椅对运动员的支持力为F N 。分别以运动员和

吊椅为研究对象,根据牛顿第二定律

Ma g M -F F N =+ ① ma mg F F N =-- ②

由①②得 N F 440=

28.(09·宁夏理综·33)(10分)液压千斤顶是利用密闭容器内的液体能够把液体所受到的压强行各个方向传递的原理制成的。图为一小型千斤顶的结构示意图。大活塞的直径D 1=20cm ,小活塞B 的直径D 2=5cm ,手柄的长度OC=50cm ,小活塞与手柄的连接点到转轴O 的距离OD=10cm 。现用此千斤

顶使质量m=4×103

kg 的重物升高了h=10cm 。g 取

10m/s 2

,求

(i )若此千斤顶的效率为80%,在这一过程中人做的功为多少?

(ii )若此千斤顶的效率为100%,当重物上升时,人对手柄的作用力F 至少要多大?

解析:(i )将重物托起h 需要做的功

1mg W h = ① 设人对手柄做的功为2W ,则千斤顶的效率为

1

2

W W η=

② 代入数据可得32 5.010W J =? ③

(ii)设大活塞的面积为1S , 小活塞的面积为

2S ,作用在小活塞上的压力为1F ,当于斤顶的

效率为100%时,有

1

12

S mg F S =

④ 2

11222

S D S D = ⑤ 当1F 和F 都与杠杆垂直时,手对杠杆的压力最小。利用杠杆原理,有

1F OD F OC ?=? ⑥

由④⑤⑥式得

F=500N ⑦ 29.(08宁夏理综30)一足够长的斜面,最高点为O 点.有一长为l =1.00 m 的木条AB,A 端在斜面上,B 端伸出斜面外.斜面与木条间的摩擦力足够大,以致木条不会在斜面上滑动.在木条A 端固定一个质量为M=2.00 kg 的重物(可视为质点),B 端悬挂一个质量为m=0.50 kg 的重物.若要使木条不脱离

a

F

m 人g

a

斜面,在下列两种情况下,OA 的长度各需满足什么条件?

(Ⅰ)木条的质量可以忽略不计.

(Ⅱ)木条质量为m ′=0.50 kg,分布均匀

. 答案(Ⅰ)m

20.0>OA (Ⅱ)m 25.0>OA

解析 (Ⅰ)当木条A 端刚刚离开斜面时,受力情况如图a 所示.

设斜面倾角为θ,根据力矩平衡条件,则满足条件

θθcos cos mg Mg ?>?

木条不会脱离斜面.根据题意有

l OB OA =+

联立①②并代入已知条件得 m 20.0>OA

(Ⅱ)设G 为木条重心,

由题意可知

l AG 2

1=

当木条A 端刚刚离开斜面时,受力情况如图b 所

示.由(Ⅰ)中的分析可知,若满足

θ

θθcos cos cos OG g m OB mg OA Mg ?'+?>?⑤ 木条就不会脱离斜面.

联立②④⑤并代入已知条件得

25.0>OA m

牛顿运动定律

1.2010·全国卷Ⅰ·15如右图,轻弹簧上端与一质量为m 的木块1相连,

下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a 。重力加速度大小为g 。则有A .1a g =,2a g = B .10a =,2a g = C .10a =,2m M

a g M

+= D .1a g =,2m M

a g M

+= 【答案】C

【解析】在抽出木板的瞬时,弹簧对1的支持力和对2的压力并未改变。对1物体受重力和支持力,

mg=F,a 1=0. 对2物体受重力和压力,根据牛顿第二定律g M

m

M M Mg F a +=+=

【命题意图与考点定位】本题属于牛顿第二定律应用的瞬时加速度问题,关键是区分瞬时力与延时

力。

2. 2010·福建·16质量为2kg 的物体静止在足够

大的水平地面上,物体与地面间的动摩擦 因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等。从t=0时刻开始,物体受到方向不变、大小呈周期

性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示。重力加速度g 取10m /s 2, 则物体在t=0至t=12s 这段时间的位移大小为 A.18m B.54m C.72m D.198m 答案:B

3.2010·上海物理·5将一个

物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体 (A )刚抛出时的速度最大

(B )在最高点的加速度为零

(C )上升时间大于下落时间 (D )上升时的加速度等于下落时的加速度 【解析】m f +

=g a 上,m

f -=

g a 下,所以上升时的加速度大于下落时的加速度,D 错误;

根据22

1

h gt =,上升时间小于下落时间,C 错误,

B 也错误,本题选A 。

本题考查牛顿运动定律和运动学公式。难度:中。 4.2010·海南物理·3下列说法正确的是 A .若物体运动速率始终不变,则物体所受合力一定为零

B .若物体的加速度均匀增加,则物体做匀加速直线运动

C .若物体所受合力与其速度方向相反,则物体做匀减速直线运动

D .若物体在任意的相等时间间隔内位移相等,则物体做匀速直线运动 【答案】D

【解析】物体运动速率不变但方向可能变化,因此合力不一定为零,A 错;物体的加速度均匀增加,即加速度在变化,是非匀加速直线运动,B 错;物体所受合力与其速度方向相反,只能判断其做减速运动,但加速度大小不可确定,C 错;若物体在任意的相等时间间隔内位移相等,则物体做匀速直线运动,D 对。

5.2010·海南物理·6在水平的足够长的固定木板上,一小物块以某一初速度开始滑动,经一段时间t 后停止.现将该木板改置成倾角为45°的斜面,让小物块以相同的初速度沿木板上滑.若小物块与木板之间的动摩擦因数为μ.则小物块上滑到最高位

置所需时间与t 之比为

A

.1μ+

B

C

D

【答案】A

【解析】木板水平时,小物块的加速度

1a g μ=,

设滑行初速度为

0v ,则滑行时间为

t g μ=

v ;木板

改成后,小物块上滑的加速

2sin 45cos 45mg mg a m μ?+?=

=

,滑

行时

间02t a '=

=

v ,因

12a t t a '==

,A 项正确。

6.2010·海南物理·8如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块:木箱静止时弹自由落体处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为 A .加速下降 B .加速上升 C .减速上升 D .减速下降 【答案】BD

【解析】木箱静止时物块对箱顶有压力,则物块受到顶向下的压力,当物块对箱顶刚好无压力时,表明系统有向上的加速度,是超重,BD 正确。 7.2010·海南物理·12雨摘下落时所受到的空气阻力与雨滴的速度有关,雨滴速度越大,它受到的

空气阻力越大:此外,当雨滴速度一定时,雨滴下

高中物理知识点总结必修一

高中物理知识点总结必修一 高一物理必修知识点归纳第一章运动的描述一、机械运动:一个物体相对于其它物体位置的变化,简称运动。 二、参考系:在描述一个物体运动时,选来作为参考标准的另一个物体。 1. 参考系是假定不动的物体,研究物体相对参考系是否发生位置变化来判断运动或静止。 2.同一运动,选取不同参考系,运动情况可能不同,比较几个物体的运动情况时必须选择同一个物体作为参考系才有意义。 (运动是绝对的、静止是相对的) 3. 方便原则(可任意选择参考系),研究地面上物体的运动通常以地球为参考系。 三、质点:用来代替物体的有质量的点。 1. 质点只是理想化模型 2. 可看做质点的条件:⑴物体上任一点的运动情况可代替整物体的运动情况,即平动时;⑵不是研究物体自转或物体上某部分运动情况时;⑶研究物体运动的轨迹,路径

或运动规律时;⑷物体的大小、形状时所研究的问题影响小,可以忽略时。 四、时间:在时间轴用线段表示,与物理过程相对应,两时刻间的间隔;时刻:在时间轴上用点来表示,与物理状态相对应,某一瞬间。 区分:“多少秒内,多少秒”指的是时间;“多少秒末、初、时”指的是时刻。 五、路程:标量,表示运动物体所通过的实际轨迹的长度;位移:矢量,初位置指向末位置的有向线段,线段长度为位移大小,初位置指向末位置。 路程大于等于位移的大小,只有在单向直线运动中两者大小相等。 矢量,有大小,方向的物理量;标量,只有大小,无方向的物理量。 六、打点计时器:记录物体运动时间与位移的常用工具。

电磁打点计时器:6V 交变电流,振针周期性振动 t=0.02s,电火花打点计时器:220V 交变电流,放电针周期性放电 t=0.02s 。 匀变速直线运动规律研究实验注意事项及实验步骤: 1. 限位孔竖直向下将打点计时器固定,连接电路; 2. 纸带与重锤相连,穿过限位孔,竖直上提纸带,拉直并让重物尽可能靠近打点计时器; 3. 先接通电源后松开纸带,让重锤自由下落;七、平均速度和瞬时速度,速度和速率:单位( m / s )转换:1km / h ?1 m/s 3.61.平均速度:描述做变速运动的物体在一段时间内运动的平均快慢程度,位移 S 与时间 t 的比值,它的方向为物体位移方向,矢量, v ? S / t ; 2.平均速率:路程S路与时间 t 的比值,标量,v率 ? S路 / t;平均速率一般大于平均速度,只有在单向直线运动中,两者大小相等。 3.瞬时速度:物体经过某一时刻(或某一位置)时运动的快慢程度,简称速度,矢量,它的方向为物体在运动轨迹上该点的切线方向; 4.瞬时速率:简称速率,速度的大小,标量。 八、加速度:矢量,速度的变化量与发生这一变化所用时间的比值。

高中物理公式知识点总结大全资料

高中物理公式知识点 总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) 7、 万有引力: F=G m m r 12 2 (1). 适用条件 (2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量 R 一天体半径 g 一天体表面重力 加速度) a 、万有引力=向心力 1

高中物理的所有公式归纳

高中物理公式、规律汇编表 一、力学 1、 胡克定律: F = kx (x 为伸长量或压缩量;k 为劲度系数,只与弹簧的 原长、粗细和材料有关) 2、 重力: G = mg (g 随离地面高度、纬度、地质结构而变化;重力约等 于地面上物体受到的地球引力) 3 、求F 1、F 2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合 外力为零。 F 合=0 或 : F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值 反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明 : ① F N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G ② μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明:

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理全部公式大全汇总

[转] 高中所有物理公式整理,参考下的。 超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理公式大全整理版)

高中物理公式大全 一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g ) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合,两个分力垂直时: 2 221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围:? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = μN (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ②μ为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0≤ f 静≤ f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 2 3 24GT r M π=r GM v =

高中物理所有公式总结

一, 质点的运动(1)----- 直线运动 1)匀变速直线运动 1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as 3.中间时刻速度Vt / 2= V平=(V t + V o) / 2 4.末速度V=Vo+at 5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2 6.位移S= V平t=V o t + at2 / 2=V t / 2 t 7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s 时间(t):秒(s) 位移(S):米(m)路程:米 速度单位换算:1m/ s=3.6Km/ h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度V_o =0 2.末速度V_t = g t 3.下落高度h=gt2 / 2(从V_o 位置向下计算) 4.推论V t2 = 2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=V_o t –gt 2 / 2 2.末速度V_t = V_o –g t (g=9.8≈10 m / s2 ) 3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起) 5.往返时间t=2V_o / g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 平抛运动

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

(完整word版)高中物理必修一知识点总结

(2017年10月14日) (1)质点是一种理想化物理模型,实际并不存在。 (2)物体能否被看作质点是由所研究问题的性质决定的,并非依据物体自身大小和形状来判断。 (3)质点不同于几何“点”,是忽略了物体的大小和形状的有质量的点,而几何中的“点”仅仅表示空间中的某一位置。 (1)任意性:参考系的选取原则上是任意的,通常选地面为参考系。 (2)同一性:比较不同物体的运动必须选同一参考系。 (1)当已知物体在微小时间Δt 内发生的微小位移Δx 时,可由v =Δx Δt 粗略地求出物体在该位置的瞬时速 度。 (2)计算平均速度时应注意的两个问题 ①平均速度的大小与物体不同的运动阶段有关,求解平均速度必须明确是哪一段位移或哪一段时间内的平均速度。

②v -=Δx Δt 是平均速度的定义式,适用于所有的运动。 v - =12 (v 0+v )只适用于匀变速直线运动。 (1)速度的大小和加速度的大小无直接关系。速度大,加速度不一定大,加速度大,速度也不一定大;加速度为零,速度可以不为零,速度为零,加速度也可以不为零。 (2)速度的方向和加速度的方向无直接关系。加速度与速度的方向可能相同,也可能相反,两者的方向还可能不在一条直线上。 (1)除时间t 外,x 、v 0、v 、a 均为矢量,所以需要确定正方向,一般以v 0的方向为正方向。与初速度同向的物理量取正值,反向的物理量取负值,当v 0=0时,一般以加速度a 的方向为正方向。 (2)五个物理量t 、v 0、v 、a 、x 必须针对同一过程。

(1)1T末、2T末、3T末……瞬时速度的比为:v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。 (2)1T内、2T内、3T内……位移的比为:x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2。 (3)第一个T内、第二个T内、第三个T内……位移的比为: xⅠ∶xⅡ∶xⅢ∶…∶x N=1∶3∶5∶…∶(2N-1)。 (4)从静止开始通过连续相等的位移所用时间的比为: t1∶t2∶t3∶…∶t n

高中物理学考公式大全

学习必备 欢迎下载 高中物理学考公式大全 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:(无位移)at v v t +=0 位移公式:(无末速度)2 02 1at t v x + = 推论公式(无时间):ax v v t 2202=- (无加速度)t v v x t 2 0+= 2、计算平均速度 t x v ??=【计算所有运动的平均速度】 2 0t v v v += 【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率50HZ 【计数点要看清是相邻的打印点(间隔 )还是每隔个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a (b)求某点速度公式:t x v v t 22==【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 力的合成与分解:满足平行四边形定则 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别) (4)运用牛顿运动定律解题

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高中物理必修一 知识点总结

高一物理上学期知识点归纳 归纳再好,也得自己消化(再说我归纳的又不好) “做练习可以加深理解,融会贯通,锻炼思考问题和解决问题的能力。一道习题做不出来,说明你还没有真懂;即使所有的习题都做出来了,也不一定说明你全懂了,因为你做习题时有时只是在凑公式而已。如果知道自己懂在什么地方,不懂又在什么地方,还能设法去弄懂它,到了这种地步,习题就可以少做。” ——严济慈 要做好练习,做练习是学习物理知识的一个环节,是运用知识的一个方面。每做一题,务必真正弄懂,务必有所收获。 1.质点:一个物体能否看成质点,关键在于把这个物体看成质点后对所研究的问题有没有影响。如果有就不能,如果没有就可以。 不是物体大就不能当成质点,物体小就可以。例:公转的地球可以当成质点,子弹穿过纸牌的时间、火车过桥不能当成质点 2.速度、速率:速度的大小叫做速率。(这里都是指“瞬时”,一般“瞬时”两个字都省略掉)。 这里注意的是平均速度与平均速率的区别: 平均速度=位移/时间 平均速率=路程/时间 平均速度的大小≠平均速率 (除非是单向直线运动) 3.加速度:0t v v v a t t -?==?a ,v 同向加速、反向减速 其中v ?是速度的变化量(矢量),速度变化多少(标量)就是指v ?的 大小;单位时间内速度的变化量是速度变化率,就是v t ??(理论上讲矢量对时间的变化率也是矢量,所以说速度的变化率就是加速度a ,不过我们现在一般不说变化率的方向,只是谈大小:速度变化率大,速度变化得快,加速度大) 速度的快慢,就是速度的大小;速度变化的快慢就是加速度的大小; 第三章: 4.匀变速直线运动最常用的3个公式(括号中为初速度00v =的演变) (1)速度公式:0t v v at =+ (t v at =) (2)位移公式:2012s v t at =+ (212s at =) (3)课本推论:2202t v v as -= (22t v as =)

高中物理公式知识点总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与 弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212 sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) F 1

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高中物理必修一知识点总结 (1)

物理(必修一)——知识考点归纳 考点一:时刻与时间间隔的关系 时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如: 第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。 区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。 考点二:路程与位移的关系 位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小 ..。 ..等于路程。一般情况下,路程≥位移的大小

考点五:运动图象的理解及应用 由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x -t 图象和v —t 图象。 1. 理解图象的含义: (1)x -t 图象是描述位移随时间的变化规律 (2)v —t 图象是描述速度随时间的变化规律 2. 明确图象斜率的含义: (1) x -t 图象中,图线的斜率表示速度 (2) v —t 图象中,图线的斜率表示加速度 考点一:匀变速直线运动的基本公式和推理 1. 基本公式: (1) 速度—时间关系式:at v v +=0 (2) 位移—时间关系式:202 1at t v x + = (3) 位移—速度关系式:ax v v 22 02=- 三个公式中的物理量只要知道任意三个,就可求出其余两个。 利用公式解题时注意:x 、v 、a 为矢量及正、负号所代表的是方向的不同。 解题时要有正方向的规定。 2. 常用推论: (1) 平均速度公式:()v v v += 02 1 (2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:()v v v v t += =02 2 1 (3) 一段位移的中间位置的瞬时速度:2 2 202 v v v x += (4) 任意两个连续相等的时间间隔(T )内位移之差为常数(逐差相等): ()2aT n m x x x n m -=-=? 考点二:对运动图象的理解及应用 1. 研究运动图象: (1) 从图象识别物体的运动性质 (2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义 (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义 (4) 能认识图象与坐标轴所围面积的物理意义 (5) 能说明图象上任一点的物理意义

2017人教版高中物理公式详细大全

人教版高考复习——物理公式大全 一、质点的运动------直线运动 (一)匀变速直线运动 1、平均速度(定义式):t s v = ; 2、有用推论:as v v t 22 02 =-; 3、中间时刻速度:2 02 t t v v v v += =; 4、末速度:at v v t +=0; 5、中间位置速度:22 202 t s v v v +=; 6、位移:20021 2at t v t v v t v s t +=?+= ?=; 7、加速度:t v v a t 0 -={以0v 为正方向,a 与0v 同向(加速)0>a ;反向则0

高中物理现行高考所有公式大全(最全整理)

高中物理现行高考常用公式 一. 力学 1.1 静力学 物理概念规律名称 公式 重力 G mg = (g 随高度、纬度而变化) 摩擦力 (1) 滑动摩擦力: f= μN (2) 静摩擦力:大小范围O ≤ f 静≤ f m (f m 为最大静摩擦力与正压力有关) 浮力、密度 浮力F 浮= ρ液gV 排 ;密度ρ=m V 压强、液体压强 压强p F S = ;液体压强 p gh =ρ 胡克定律 F kx =(在弹性限度内) 万有引力定律 a 万有引力=向心力:F G m m r =?12 2 G Mm R h m () +=2 V R h m R h m T R h 2 22 2 24()()()+=+=+ωπ b 、近地卫星mg = G Mm R 2(黄金代换);地球赤道上G 2 R Mm -N=mR ω2 不从心 同步卫星G 2 r Mm =mr ω2 c. 第一宇宙速度mg = m V R 2 V= gR GM R =/ d. 行星密度 ρ= 2 3GT π(T 为近地卫星的周期) V 球= 3 3 4R π S 球=4πR 2 e. 双星系统 G m m r 122 =m 1R 1ω2=m 2R 2ω2 (R 1+R 2=r) 互成角度的二力的合成 F F F F F F F F 合= ++= ?+1222122122cos tan sin cos α θα α 正交分解法: F F F F F x y y x 合= += 22tan α 力矩 M FL =(不要求) 共点力的平衡条件 F 合=0或F F x y ==?? ?00 ∑F=o 或∑F x =o ∑F y =o 有固定转轴物体的平衡 条件 M 合=0或M M 逆顺= 共面力的平衡 F M 合合,==00

高中物理必修一二总结知识点

《高中物理会考考点知识解读》(理科) 一、相互作用 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件可以判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解. 5.物体的受力分析 (1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析. (3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态. 6.力的合成与分解 (1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就

相关主题
文本预览
相关文档 最新文档