当前位置:文档之家› 工程光学第1章

工程光学第1章

工程光学第1章
工程光学第1章

工程光学习题解答第十章_光的干涉

第十一章 光的干涉 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多 少? 解:由题知两种波长光的条纹间距分别为 ∴第十级亮纹间距()()65211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。 解:设厚度为h 3. 一个长30mm 定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25 解:设气体折射率为n ,则光程差改变0n n h ?=- 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 又 ()1n d ?=- 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λλ ν ν ?= ?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频率宽度和相干长度。 解: c λν= λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 6. 直径为0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于1mm ,双孔 必须与灯相距离多少? 解:设钨灯波长为λ,则干涉孔径角bc λ β= 又∵横向相干宽度为1d mm = 图11-47 习题2 图 C 图11-18

工程光学习题解答

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则 可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学习题参考答案第十一章 光的干涉和干涉系统

第十一章 光的干涉和干涉系统 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多 少? 解:由题知两种波长光的条纹间距分别为 9 6 113 158910 5891010 D e m d λ---??= = =? 9 6 223 1589.610 589.61010 D e m d λ---??= = =? ∴第十级亮纹间距()()6 5 211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了 0.5场面,试决定试件厚度。 解:设厚度为h ,则前后光程差为()1n h ?=- ()1x d n h D ??∴-= 2 3 0.510 10 0.580.5 h --??= 2 1.7210h mm -=? 3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到 稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。试求注入气室内气体的折射率。 解:设气体折射率为n ,则光程差改变()0n n h ?=- 图11-47 习题2 图

()02525x d d n n h e D D λ??∴-= =? = 9 025656.2810 1.000276 1.0008230.03 m n n h λ-??= += += 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变 d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 2 00'4cos 2xd I I I D πλ== ()' 104xd m m D λ? ?∴?= =+≥ ?? ? 又()1n d ?=- 114d m n λ ? ?∴= + ?-?? 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λ λ νν ?=?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频 率宽度和相干长度。 解:c λν= λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 8 9 8 4 18 21010 310 1.4981063 2.8632.810 c Hz λ λ ννλ λ λ ---??????∴?= ?= ? = =??? C 图11-18

工程光学习题解答(第1章)

工程光学习题解答(第1章)

(1)

(2) m/s (3) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (4) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (5) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (6) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s *背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。那时候的玻璃极不均匀,多泡沫。除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。 3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。 解: 706050=+l l ? l =300mm 6 57l

4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:本题是关于全反射条件的问题。若要在玻璃板上方看不到金属片,则纸片最小尺寸应能够挡住金属片边缘光线达到全反射的位置。 (1) 求α角:nsin α=n ’sin90 ? 1.5sin α=1 α=41.81? (2) 求厚度为h 、α=41.81?所对应的宽度l : l =htg α=200×tg41.81?=179mm (3) 纸片最小直径:d min =d 金属片+2l=1+179×2=359mm 5.试分析当光从光疏介质进入光密介质时,发生全反射的可能性。 6.证明光线通过平行玻璃平板时,出射光线与入射光线平行。 7.如图1-15所示,光线入射到一楔形光学元件上。已知楔角为α,折射率为n ,求光线经过该楔形光学元件后的偏角δ。 α 90h

工程光学习题参考答案第十章 光的电磁理论基础

第十章 光的电磁理论基础 解:(1)平面电磁波cos[2()]E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10()]0.65E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?= -= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

解:∵ exp[()]E A i k r t ω=- x y z k r k x k y k z ?=?+?+? 0000000000 2,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=?+?+?=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试 求反射系数和透射系数。设玻璃折射率为1.5。 解:由折射定律 1 2211221122111122sin sin cos 1.5cos cos 0.3034cos cos 22cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ= =∴=--∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解: 22 2221 2 1112222221 22 111212sin sin 212111.54cos 4sin cos 30.8231cos sin () 2 cos 4sin cos 0.998cos sin ()cos ()() 0.91 2 s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=??= ?==+=?=+-+∴= = 8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反

工程光学课后答案(12 13 15章)

1λ十二 十三 十五 第十二章 习题及答案 1。双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少? 解:由杨氏双缝干涉公式,亮条纹时: d D m λα= (m=0, ±1, ±2···) m=10时, nm x 89.51 1000105891061=???=-, nm x 896.511000106.5891062=???=- m x x x μ612=-=? 2。在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一 片折射率 1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。 2 1r r l n =+??2 2212? ?? ???-+=x d D r 2 2 2 2 2? ? ? ???++=x d D r x d x d x d r r r r ??=?? ? ???--??? ???+= +-222))((2 2 1212mm r r d x r r 22112105005 12-=?≈+??= -∴ , mm l mm l 2 210724.110)158.1(--?=?∴=?- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观 察到稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276 .10=n 。 试求注入气室内气体的折射率。

0008229.10005469.0000276.130 1028.6562525)(6 00=+=??= -=-?-n n n n n l λ 4。垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。 解:将通过玻璃板左右两部分的光强设为0 I ,当没有突 变d 时, 00004cos 2)(,0I k I I I I p I =???++==? 当有突变d 时d n )1('-=? ) 2 1()1(2)412( 1) 2,1,0(,2 )1(20'cos )(2 1 )(''cos 22'cos 2)('000000+-=+-= ±±=+ =-=?∴=?+=?++=m n m n d m m d n k p I p I k I I k I I I I p I λλ π πλ π ΛΘ 6。若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为γ和γ?, 证明:λλ νν ?=?,对于λ=632.8nm 氦氖激光,波长宽度nm 8102-?=?λ,求 频率宽度和相干 长度。 解: γ γ λ λ γγγγγ λλ?= ?∴???? ???-=???? ???-=?==C C D C CT 2 ,/Θ 当λ=632.8nm 时

工程光学习题解答第十章_光的干涉

第^一章光的干涉 1. 双缝 间距为1mm 离观察屏 1m,用钠 光灯做光 源,它 发出两种 波长的单色 光 「=589.Onm 和 ^589.6nm ,问两种单色光的第十级亮条纹之间的间距是多 少? 解:由题知两种波长光的条纹间距分别为 ???第十级亮纹间距.:-10 e 2 V-10 589.6-589 106 =0.6 10‘m 2. 在杨氏实验中,两小孔距离为 1mm 观察屏离小孔的距 离为 50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图 11-17 ),发现屏上的条纹系统移动了 0.5场面,试决定试件厚度。 入气室内气体的折射率。 解:设气体折射率为 n ,则光程差改变 厶=n-n 0 h 4. ** 垂直入射的平面波通过折射率为题2n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚 度沿着C 点且垂直于图面(见图11-18 )的直线发生光波波长量级的突变 d , 问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为"4l 0,j 突变时为 论10,设d',D. 解:设厚度为h ,则刖后光程差为 一个长30mm 的充以空气的气室置于杨氏装 定的干涉条纹系。继后抽去气室中的 气,注入某种气体,发现条纹系移动了 x 在观察屏上观察到稳 25 纭 =656.28nm ,空气折射率 ——D ---------------------------------- P 0 n 0 =1.000276。试求注 又:厶二 n —1)d 若光波的波长为九,波长宽度为 ■,相应的频率和频率宽度记为 > 和,证明 …,对于 -632.8nm 的氦氖激光,波长宽度"-2 10^nm ,求频 'I 图 11-18 率宽度和相干长度。 对于’=632.8 nm — -— 6. 直径为0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于 必须与灯相距离多少? 解:设钨灯波长为■,则干涉孔径角一: bc 1mm 双孔 又???横向相干宽度为 d =1mm 的一个小孔刖, 个条纹,已知照明光波-n R 1

工程光学基础教程-习题答案(完整)

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 1mm I 1=90? n 1 n 2 200mm L I 2 x

88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式: 会聚点位于第二面后15mm 处。 (2) 将第一面镀膜,就相当于凸面镜

工程光学第三版课后答案1分解

第一章 2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。 3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。 8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学第三章

1. 平面镜的像,平面镜的偏转,双平面镜二次反射像特征及入、出射光线的夹角 2. 平行平板的近轴光成像特征 3. 常用反射棱镜及其展开、结构常数 4. 屋脊棱镜与棱镜组合系统,坐标判断 5. 角锥棱镜 6. 折射棱镜及其最小偏角,光楔 7. 光的色散 8. 光学材料及其技术参数
引言
球面系统能对任意位置的物体以要求的倍率成像。但有时为了起到透镜无法满足的作用, 球面系统能对任意位置的物体以要求的倍率成像。但有时为了起到透镜无法满足的作用,还常应用平面系 能对任意位置的物体以要求的倍率成像 透镜无法满足的作用 统。
平面镜
平行平板
反射棱镜
折射棱镜
§ 3-1 平面镜
我们日常使用的镜子就是平面镜 返回本章要点
? 平面镜的像 ---- 镜像 如图:
1

实物成虚像
虚物成实像
成镜像

当 n'=-n 时 且

得:
表明物像位于异侧
成正像
物像关于镜面对称,成像完善,但右手坐标系变成左手坐标系,成镜像。
由图可见: 平面镜能改变光轴方向,将较长的光路压缩在较小空间内,但成镜像,会造成观察者的错觉。 因此在绝大多数观察用的光学仪器中是不允许的。
奇次反射成镜像 偶次反射成一致像
? 平面镜的偏转
返回本章要点
若入射光线不动, 平面镜偏转 α 角,则反射光线转 过 2α 角 ( 因为入射角与反射角同时变化 了 α 角 ) 该性质可用于测量物体的微小转角或位移
当测杆处于零位时,平面镜处于垂直于光轴的状态
,此时
点发出的光束 点。
经物镜后与光轴平行,再经平面镜反射原路返回,重被聚焦于
2

工程光学习题解答第十二章光的衍射

第十二章 光的衍射 1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会 聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。 解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0a λθ?= ∴亮纹半宽度29 0035010500100.010.02510 r f f m a λ θ---???=??===? (2)第一亮纹,有1sin 4.493a π αθλ = ?= 9 13 4.493 4.493500100.02863.140.02510 rad a λθπ--??∴===?? 2 1150100.02860.014314.3r f m mm θ-∴=?=??== 同理224.6r mm = (3)衍射光强2 0sin I I αα?? = ??? ,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0I I 0 0 1 1 2 . . . . . . . . . 2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为

2 0sin[(sin sin )](sin sin )a i I I a i πθλπθλ??-??=????-?? 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a i λ θ?= 证明:(1))即可 (2)令 ()sin sin a i πθ πλ ==± ∴对于中央亮斑 sin sin i a λ θ-= 3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。问细丝直径是多少? 解:设直径为a ,则有 f d a λ = 93 632.8100.03 0.01261.510f a mm d λ--??===? 4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2 a b = 时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。 图 12-50 习题3图

工程光学习题解答第三章平面与平面系统

第三章 平面系统 1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解: 镜子的高度为1/2人身高,和前后距离无关。 2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面 镜平行,问两平面镜的夹角为多少? 解: OA M M //32 3211M M N M ⊥∴1''1I I -= 又 2' '2I I -=∴α 同理:1''1I I -=α 321M M M ?中 ? =-+-+180)()(1''12''2I I I I α O

? =∴60α 答:α角等于60?。 3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解: θ'2f y = rad 001.0100022=?= θ α θx = mm a x 01.0001.010=?=?=∴θ 图3-4 4. 一光学系统由一透镜和平面镜组成,如图3-29所示。平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像' 'A ''B 至 平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-29 习题4图 解: 由于平面镜性质可得' ' B A 及其位置在平面镜前150mm 处 ' '' 'B A 为虚像,' ' B A 为实像 则2 1 1-=β 21'1-==L L β 450150600'=-=-L L 解得 300-=L 150' =L 又 '1L -L 1=' 1f mm f 150' =∴ 答:透镜焦距为100mm 。 5.如图3-30所示,焦距为'f =120mm 的透镜后有一厚度为d =60mm 的平行平板,其折射 率n =1.5。当平行平板绕O 点旋转时,像点在像平面内上下移动,试求移动量△'y 与旋转角φ的关系,并画出关系曲线。如果像点移动允许有0.02mm 的非线形度,试求φ允许的最大值。

工程光学习题参考答案第十一章 光的干涉和干涉系统

第十一章 光的干涉和干涉系统 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少 解:由题知两种波长光的条纹间距分别为 96113 1589105891010D e m d λ---??===? 9 6223 1589.610589.61010 D e m d λ---??===? ∴第十级亮纹间距()()6 5 211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了场面,试决定试件厚度。 解:设厚度为h ,则前后光程差为()1n h ?=- ()1x d n h D ??∴-= 23 0.510100.580.5 h --??= 2 1.7210h mm -=? 3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到 稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25 个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。试求注入气室内气体的折射率。 解:设气体折射率为n ,则光程差改变()0n n h ?=- 图11-47 习题2 图

()02525x d d n n h e D D λ??∴-= =?= 9 025656.2810 1.000276 1.0008230.03 m n n h λ-??=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 2 00' 4cos 2xd I I I D πλ== ()'104xd m m D λ?? ∴?= =+≥ ??? 又()1n d ?=-Q 114d m n λ? ? ∴= + ?-?? 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λ λ ν ν ?= ?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频 率宽度和相干长度。 解:c λν=Q λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 898 41821010310 1.49810632.8632.810 c Hz λ λννλλλ---??????∴?=?=?==??? C 图11-18

工程光学习题解答(第1章)复习课程

工程光学习题解答(第 1章)

第一章 1.举例说明符合光传播基本定律的生活现象及各定律的应用。 答:(1)光的直线传播定律 影子的形成;日蚀;月蚀;均可证明此定律。 应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。 (2)光的独立传播定律 定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。 2.已知真空中的光速c 3×108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。解:v=c/n (1)光在水中的速度:v=3×108/1.333=2.25×108 m/s (2)光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (3)光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (4)光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (5)光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s *背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。那时候的玻璃极不均

匀,多泡沫。除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。 3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。 解: 70 6050=+l l ? l =300mm 4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:本题是关于全反射条件的问题。若要在玻璃板上方看不到金属片,则纸片最小尺寸应能够挡住金属片边缘光线达到全反射的位置。 (1) 求α角:nsin α=n ’sin90 ? 1.5sin α=1 α=41.81? (2) 求厚度为h 、α=41.81?所对应的宽度l : l =htg α=200×tg41.81?=179mm (3) 纸片最小直径:d min =d 金属片+2l=1+179×2=359mm 5.试分析当光从光疏介质进入光密介质时,发生全反射的可能性。 6.证明光线通过平行玻璃平板时,出射光线与入射光线平行。 7.如图1-15所示,光线入射到一楔形光学元件上。已知楔角为α,折射率为n ,求光线经过该楔形光学元件后的偏角δ。

工程光学 郁道银版 习题解答(一题不落)第十章_光的电磁理论基础

第十章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示2 15 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10()]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

工程光学课后答案-第二版-郁道银(学习答案)

工程光学第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到 针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1)

工程光学第三章知识点

理想光学系统 第三章 理想光学系统 第一节 理想光学系统的共线理论 ● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ● 描述理想光学系统必须满足的物像关系的理论称为“共线理论” 共线理论 (1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点) (2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面) ● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面 ● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上) ● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数 第二节 无限远轴上物点与其对应像点F ’---像方焦点 ● 设有一理想光学系统 ● 有一条平行于光轴的光线A1E1入射到这个系统 ● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点 ● 在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点” 共轴球面系统 焦点、焦平面、主平面示意图

焦点、焦平面、主平面示意图 ● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭 ● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点 2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点 ● 像方平行于光轴的光线,表示像方光轴上的无限远点 ● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点 3,垂轴放大率β=+1的一对共轭面——主平面 ● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面 ● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭 ● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距 ● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f ● 焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距 计算式 tan tan h f U h f U '= '= 焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组 无限远轴外物点的共轭像点 焦点、焦平面、主平面示意图

工程光学,郁道银,第一章 习题及答案

第一章习题及答案 1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在 冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火 石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加 拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在 金刚石中,n=2.417 时,v=1.24*108m/s。 2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为:

(1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为 n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即 n0sinI1,其中 I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n0 . 5、一束平行细光束入射到一半径r=30mm、折射率n=1.5 的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决,

相关主题
文本预览
相关文档 最新文档