当前位置:文档之家› 发光细菌法急性毒性的测定

发光细菌法急性毒性的测定

发光细菌法急性毒性的测定

大连理工大学环境与生命学院

1978年美国Beckman 公司即推出功能完备的生物发光光度计“Microtox”,自此,这一急性毒性测试技术在世界范围内迅速推广。因此人们也将发光菌毒性测试称为Microtox 测试。

简介

发光菌毒性测试是20世纪70年代后兴起

的一种微生物监测环境污染及检测污染物毒

性的新方法。

采用现代光电检测手段(生物发光光度计)的发光菌生物毒性实验是毒理学中生物测定的方法之一。该方法快速、简便、灵敏、廉价,在有毒物质的筛选,环境污染生物学评价等方面有重要的意义,因而备受各国有关研究者的关注。

1995年3月,国家环境保护局、国家技术监督局将发光菌毒性测试定为水质监测标准方法(GB/T 15441-1995)。

一、实验目的与内容

实验目的

1. 掌握发光细菌毒性测试的标准方法;

2. 根据发光细菌发光强度的变化判断

受试化合物的毒性;

3. 初步了解发光细菌毒性测试的影响因素。

实验内容

1. 发光细菌的复苏;

2. 发光细菌发光强度的测定;

3. 受试化合物毒性的计算。

实验原理

发光菌的发光现象是其正常的代谢活动, 在一定条件下发光强度是恒定的, 与外来受试物(无机、有机毒物, 抑菌、杀菌物等) 接触后, 其发光强度即有所改变。变化的大小与受试物的浓度呈相关关系, 同时与该物质的毒性大小有关。通常认为外来受试物通过下面两个途径抑制细菌发光: (1) 直接抑制参与发光反应的酶类活性; (2) 抑制细胞内与发光反应有关的代谢过程(如细胞呼吸等)。

毒物的毒性可以用EC50表示, 即发光菌发光强度降低50% 时毒物的浓度。实验结果显示, 毒物浓度与菌体发光强度呈线性负相关关系。因而可以根据发光菌发光强度判断毒物毒性大小, 用发光强度表征毒物所在环境的急性毒性。

二、实验材料与方法

1. 试剂:氯化汞(分析纯);氯化钠(化学纯);蒸馏水。

氯化钠溶液,2.0 g/100 ml (3.0 g/100 ml),称取2.0 g (3.0 g)氯化钠溶于100ml蒸馏水中,置于2-5℃冰箱备用。

氯化汞母液,2 000 mg/L,万分之一分析天平精称密封保存良好的无结晶水氯化汞0.1000 g于50 ml容量瓶中,用3.0

g/100ml氯化钠溶液稀释至刻度,置于2-5℃冰箱备用,保存期6个月。

氯化汞工作液,2.0 mg/L,用移液管吸取氯化汞母液10 ml 入1000 ml容量瓶,用3.0 g/100ml氯化钠溶液定容。再用移液管吸取氯化汞20 mg/L 液25 ml入250 ml容量瓶,用3.0 g/100 ml氯化钠溶液定容,将此液倒入配有半微量滴定管的试液瓶,然后,用3.0 g/100 ml氯化钠溶液将氯化汞2.0 mg/L溶液按表1稀释成系列浓度(稀释至50 ml容量瓶中)。配制的稀释液保存期不超过24小时。

2. 明亮发光杆菌T3小种(Photobacterium phosphoreum T3 spp.)冻干粉,安培瓶包装,在2-5℃冰箱内有效保存期为6个月。新制备的发光细菌休眠细胞(冻干粉)密度不低于每克800万个细胞;冻干粉复苏2 min 后即发光,可在暗室内检验,肉眼可见微光,

稀释成工作液后,经稀释平板法测定,每毫升菌液不低于1.6万个细胞(5毫升测试管)或2万个细胞(2毫升测试管)。在DXY-2型毒性测试仪上测出的初始发光量应在600-1900 mV之间,低于600 mV允许将倍率调至“X2”档,高于1900 mV允许将倍率调至“X0.5”档。仍达不到标准者,更换冻干粉。发光细菌的毒性实验在美国Maxwell(MSI.)LuminMax-C 冷光仪完成。

发光细菌的复苏

从冰箱内取出含有0.5 g 发光细菌冻干粉和氯化钠溶液,置于含有冰块的小号保温瓶,用1 ml注射器吸取0.5 ml冷的氯化钠2.0 g/100 ml溶液(适用于5ml的测试管)或1 ml 冷的氯化钠2.5%溶液(适用于2 ml的测试管)注入冻干粉中,充分混匀。2 min后菌即复苏发光,可在暗室观察,肉眼可见微光。备用。

发光细菌的培养:

(1)培养液:酵母浸出汁5.0g,胰蛋白胨5.0g,NaCl30.0g,

NaHPO4 5.0g,KH2PO4 1.0g,甘油3.0g,加蒸馏水至1000ml,pH调至7±0.5,趁热分装于150ml三角瓶中,每瓶约50ml,塞上棉球,用牛皮纸包扎好,经115℃、20-30min高压蒸汽灭菌后置于4℃左右冰箱中备用。

(2)固体培养基:

取上述培养液100ml,加入1.5~2g琼脂粉,电炉加热使溶解至透明,调节pH值为7±0.5,趁热用漏斗分装于试管中,每支试管各约10ml,塞上棉球,用牛皮纸包扎好,经121℃高压灭菌20–30min后,取出制成斜面。

(3)斜面菌种培养:

将发光菌冻干粉用0.5ml 3%NaCl溶解,迅速转入50ml培养液中,20℃恒温培养,每24h后转接一次斜面,将培养好的第三代斜面置4℃冰箱中备用。

(4) 摇瓶菌液培养:将培养好的第三代新鲜斜面菌种T3接入装

有50ml培养液的150ml锥形瓶中,接种量不得超过一接种环,于20℃振荡(180r/min)培养12h(即对数生长期)后备用。

(5) 工作菌液培养:吸取一定量刚培养好的摇瓶菌液,用3%的NaCl溶液稀释并磁力搅拌均匀。控制对照(2.0ml 3%NaCl溶液+0.1ml工作菌液)发光强度300mv-900mv。

3. 仪器:

生物发光光度计,配制2或5 ml测试管,当氯化汞标准液浓度为0.10 mg/L时,发光细菌的相对发光度为50%,其误差不超过10%。2或5 ml 测试样品管,具标准磨口塞,为制造比色管的玻璃料制作,由专业玻璃仪器厂制造,分别适用于相应型号的生物放光光度计。注射器(1 ml)、微量注射器(10 μl)、定量加液瓶(5 ml)、吸管(2、10、25 ml)、试剂瓶(100 ml)、量桶(100、500 ml)、棕色容量瓶(50、250、1000 ml)、半微量滴定管(配磨口试液瓶,全套仪器均为棕色,10 ml)等若干。

三、测定

在预实验的基础上,将待测物配成5-7个浓度梯度,各取不同浓度梯度溶液2ml加入具塞磨口比色管中,取0.2ml 工作菌液与各比色管中,加塞上下振荡摇匀,去塞,暴露15min,以2ml3%的NaCl溶液做空白对照。测发光强度。每个浓度梯度设3组平行。

四、实验结果

五、注意事项

(1)实验前判断发光细菌是否复合测试要求。

(2)平行或批处理样品的处理与测试应注意

操作时间的一致性。

六、思考与讨论

1. 测试结果误差的主要来源?

2. 测试过程中,暴露时间、温度以及体系的pH等对发光细菌的发光特性是否有影响,及影响如何?

3. 本测试方法与上述三种测试方法的结果是否一致,应如何解释?

水中发光细菌的急性毒性快速检测技术

水中发光细菌的急性毒性快速检测技术 刘康 (北京市环境保护监测中心 北京 100048) 摘 要 现场检测中,通过对水体进行发光细菌急性毒性检测,快速判定水体的综合毒性和污染量级,起到早期预警作用。文章介绍了DeltaTox毒性仪及其工作原理和方法、毒性参照物实验和比对实验等内容。仪器通过高敏感度分析仪(光度计)测试发光细菌与水样混合后的光强度,并与空白实验的光强度比较,根据实验前后样本发光强度的变化得到光损失或光增益的百分比。该检测耗时短,操作简便,敏感度高,适用于现场检测或突发性污染事故的应急监测。 关键词 发光细菌;急性毒性;快速检测 Rapid Testing Technique on Acute Toxicity of Luminescent Bacteria in Water Kang Liu (Beijing Municipal Environmental Monitoring Center,Beijing,100048) Abstract By acute toxicity test using luminescent bacteria,the concerned water’s overall toxicity and polluted level can be rapidly determined right in field.This test can be used as an early warning.The essay introduced the working principle of DeltaTox instrument,the toxicity reference substance experiments and the contrast experiments,etc.The high-sensitivity analyzer(photometer)of the DeltaTox detects the light intensity of the mixture of the luminescent bacteria and the potentially contaminated https://www.doczj.com/doc/798215930.html,paring it with the blank test,we can obtain the percentage of optical loss and gain according to the luminous intensity of the simples before and after the experiment.This testing method is a simple,sensitive and rapid way which can be used both in pollution accidents and regular on-site testing. Key words Luminescent bacteria;A cute toxicity;Rapid testing 近些年,随着工农业的快速发展,各种有毒有害物质大量产生,它们随着地表径流直接排入到江、河、湖泊等环境水体中,给人类赖以生存的水资源带来了巨大威胁.为及时掌握水质情况,控制水体污染,提高水环境安全水平,为制定水污染防治措施提供技术支撑,需要对环境水体的水质进行便捷、快速地监测.目前对水体毒性物质的分析主要采用气相或液相色谱等化学分析方法进行。通过分析某一种或几种代表性污染物浓度来估测水体的毒性.其有效性并不为毒理学界广泛认同。另外.分析化学方法虽然精密度和灵敏度较高.但设备庞大,无法在野外进行水质毒性的快速检测。近来水质毒性的生物检测方法取得了快速的进展.尤其以发光细菌检测方法相对简便和快速,应用较广泛。 1 实验部分 1.1 仪器(试剂) DeltaTox是美国SDI(Strategic Diagnostics Inc)一种急性毒性检测系统,该毒性测试技术是一种基于生物传感技术的应急毒性检测系统,测定系统的基础是使用一种发光细菌即:费希尔弧菌(Vibrio fiseheri)。该毒性仪体积小、携带方便,工作温度在10°C -28°C之间,非常适合变化的现场环境。整个系统包括一台高灵敏度的分析仪(光度计)、干冻的细菌试剂、实验控制液和补充液。

海洋氮循环中细菌的厌氧氨氧化_洪义国

Mini -Review 小型综述 微生物学报Acta Micro biologica Sinica 49(3):281-286;4M arch 2009ISSN 0001-6209;CN 11-1995 Q http : journals .im .ac .cn actamicrocn 基金项目:国家自然科学基金(30800032);广东省自然科学基金(84510301001692);中科院院长专项启动基金(07Y Q091001) *通信作者。Tel :+86-20-89023345;E -mai :jdgu @hkucc .hku .hk 作者简介:洪义国(1974-),内蒙赤峰人,博士,主要从事海洋环境与分子微生物学的研究。E -mail :yghong @scsio .ac .cn 收稿日期:2008-09-30;修回日期:2008-12-08 海洋氮循环中细菌的厌氧氨氧化 洪义国1,李猛2,顾继东 1,2* (1中国科学院南海海洋研究所,中国科学院热带海洋环境动力学重点实验室,广州510301) (2香港大学生物科学学院,香港) 摘要:细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应。厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群。而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右。由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响。另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础。关键词:厌氧氨氧化(Ana mmox )细菌;海洋氮循环;厌氧氨氧化体 中图分类号:Q938.1 文献标识码:A 文章编号:0001-6209(2009)03-0281-06 氮是生命活动必需的元素,是组成蛋白质、核酸等生物大分子以及氨基酸、维生素等小分子化合物的重要成分。氮通过在自然界中的不断循环,维持着整个生物圈的生态平衡和物种的不断进化。通过科学家们大量的长期的研究,目前对氮的生物地球化学循环有了基本的了解 [1] 。传统的观点认为,大 气中的氮气主要来源于微生物的硝化(Nitrification )和反硝化作用(Denitrification ),氨(NH 3)只能在有氧条件下才能被氧化成亚硝氮(NO -2)或硝氮(NO - 3),NO -2或NO -3再被还原成氮气(N 2)释放。近年来,微生物家发现了在厌氧条件下微生物能够以NO -2 作为电子受体将NH 3氧化成N 2的过程,而且认识到这一过程在自然界的氮循环中可能发挥极其重要的作用。这一发现改变人们对传统氮的生物地球化学循环的认识,近十年来在这一领域取得了很多突破性进展。 1 厌氧氨氧化的发现缘于偶然 长期以来,NH + 4的氧化一直被认为是在绝对有氧条件下进行的。1977年,Broda 根据热力学反应自由能计算和生物进化关系的分析,推测自然界中可能存在化能自养微生物将NH + 4氧化成N 2,但一直没有找到实验证据 [2] 。在上个世纪90年代,在荷 兰Delft 一个酵母厂的污水脱氮流化床反应器中,工人们发现了一个奇怪的现象,反应器中有NH + 4消失,且随NH + 4和NO - 3的消耗,有N 2生成。这一发现与原来认为的只有在有氧条件下才能去除NH + 4 的认识相违背。Delft 大学的微生物学家Gijs Kuenen 对这一现象进行详细研究,Kuenen 认为这一神秘的现象一定是由一种特殊的微生物作用完成的,而且这种微生物的发现可能为废水处理提供新的方法。如果这种微生物广泛分布在自然界中,那么这种代 DOI :10.13343/j .cn ki .wsxb .2009.03.009

Lumifox2000便携式发光细菌水质综合毒性检测仪

产品名称:手持式发光细菌毒性检测仪 Product name: portable water toxicity detector 小巧、轻便的理想应急检测产品 Smart and lightweight product ideal for emergency 快速、准确 Fast, accuracy 一次性检测出水质综合毒性 detect comprehensive toxicity of water quality at a time 中文智能引导式操作界面 Chinese intelligent operation guide menu LumiFox 2000 手持式发光细菌毒性检测仪是朗石公司最新推出的专利产品,其 工作原理是通过检测水质综合毒性对发光细菌发光强度的抑制率来确定水样的毒性强弱。LumiFox 2000是手持式的,其最大优点是可在现场快速方便地进行水质毒性(尤其是对于未知化学污染物)检测。在出现水质污染紧急事故时,可以帮助您快速评估水样的污染程度。因此,它是一种理想的应急产品。 Lumifox2000 portable water toxicity detector is a patent product published by Labsun. The design principle on the basis is detecting the intensity of emitting-light of the bacterium for evaluating the toxicity of water sample. The portable Lumifox2000’s greatest strength is fast and easily on-site detecting poison materials in water (especially for un-known pollutant). When water pollution emergency occurred, Lumifox2000 can help you fast evaluate the pollution level. Consequently it is an ideal choice for emergency. 产品用途:水环境污染事故应急监测

实验十二细菌常用生理生化反应实验结果观察

实验十二细菌常用生理生化反应实验结果观察 一结果观察 1葡萄糖发酵实验 直接观察试管, 试管变黄者为葡萄糖发酵阳性菌,不变者为阴性菌. 左边为恶臭假单胞菌,有气泡并变为黄色;右边为大肠杆菌, 2V. P. 反应和甲基红试验: 将培养好的液体培养基分装于两个干净的小试管中,在一管中滴入2-3滴甲基红试剂, 溶液变红的为甲基红阳性菌,不变的为甲基红阴性菌. 在另一管中加入V. P. 试剂,在37℃保温15分钟, 变红者为阳性菌,不变者为阴性菌. VP,图为右边为大肠杆菌,溶液变红,为阳性菌。 3吲哚实验 在培养好的液体培养基中加入1厘米高的乙醚,振荡,静置分层,加入2-4滴吲哚试剂,在掖面交界出现红色者为吲哚反应阳性菌,不变者为阴性菌.

左边为大肠杆菌,出现红色阳性菌;右边为产气杆菌,颜色不变,阴 性菌。 4硝酸盐还原实验 在点滴板上滴入革里斯试剂A液和B液,如过溶液变红说明有亚硝酸盐,为硝酸盐还原阳性菌,如果不变色需要再倒出部分培养基在另外的小孔中再滴如耳苯胺试剂,如果变蓝,说明此菌为阴性菌;如果不变色,说明此菌为硝酸盐还原强阳性菌. 右下方恶臭假单胞菌,加入革里斯试剂A、B后不变色,再加入二苯 胺试剂后变蓝,为阴性菌;左上方大肠杆菌为红色。 5柠檬酸盐实验 直接观察斜面,斜面变兰色者为柠檬酸盐利用阳性菌,不变者为阴性菌.

左边产生蓝色,产气杆菌阳性;右边为大肠杆菌,阴性。 6明胶水解 向培养好的明胶培养基中加入酸性氯化汞或三氯乙酸溶液,并铺满平板,菌落周围出现透明圈的菌为明胶水解阳性菌,没有透明圈的菌为阴性菌. 左边为大肠杆菌,出现透明圈,阳性;右边为枯草杆菌,阴性菌。 7 淀粉水解实验 向培养好的淀粉培养基平板上加入碘液,并铺满平板,菌落周围出现透明圈的菌为淀粉水解阳性菌,没有透明圈的菌为阴性菌.

发光细菌法测生物毒性

主要任务 1.对常用钻井液材料进行生物毒性分析,遴选出符合环保要求的材料。 2.通过进行生物毒性分析,对不符合环保要求的钻井液材料,如果是必备材 料而且目前又找不到相同功能的替代品,则研制新型的符合环保要求的替代品材料。 3.在遴选出的钻井液材料中,择优选用价格性能比较好的材料,通过室内钻 井液性能综合试验研究,研制出一种钻井液性能优良,能保证钻探施工顺 利进行,符合环境保护要求的新型钻井液体系。 4.现场试验两口井,通过实践检验其钻井液综合性能,整理试验数据,编写 研究报告。 一、完成了符合环保要求的钻井液材料的遴选 1.生物毒性测定方法的选择 (1)糠虾生物试验法 (2)微毒性分析法 (3)发光细菌法 通过对发光细菌法与糠虾法试验结果对比,我们发现发光细菌法的EC50值与糠虾生物试验法的LC50值之间具有一定的相关性:EC50值总是小于LC50值,实验结果见表1。这说明相同数值的EC50值和LC50值相比,EC50值比LC50值对环境的毒性污染更小,更安全可靠。

表1 四种钻井液体系的EC 50值与LC 50值比较 因此本项目采用发光细菌法,测定钻井液单剂及体系的生物毒性,用EC50(相对发光率50%时)来表征被测物的生物毒性, EC50值越大,表明被测物的生物毒性越小;EC50值越小,表明被测物的生物毒性越大。我们参照糠虾法的排放标准,以EC50>30000ppm 作为钻井液单剂及体系允许排放的标准。并参照糠虾生物毒性试验法的生物毒性分级标准,将生物毒性等级划分为六个等级(表2),以此作为本项目的环境可接受性评价方法和标准。 表2 生物毒性等级分类

生物发光毒性测试分析.pdf

生物发光毒性测试分析 毒性是一项综合的生物学参数,它是衡量样品对活性生物体所产生的影响,不能以化学分析的方法进行测定,一些生物测试方法如鱼类试验、浮游动物试验、藻类试验等则较为复杂,且必须使用高等生物进行试验,从而引起众多的争议。发光细菌测试使用了具有发光特性的天然或人工遗传改造的微生物,这一方法经研究被证实具有快速、简便的特点,同时有很好的灵敏度和可靠性,发光细菌本身又没有危害性。发光细菌试验已成为环境样品毒性检测的生物测试技术,被列入了我国国家标准GB/T 15441-1995,德国国家标准(DIN38412)和国际标准(ISO11348)。 发光细菌毒性测试方法是一个我国国家标准和ISO标准认证的,运用发光细菌Vibrio fischeri进行急性毒理测试。 发光细菌闪烁测试(flash test)是一个改良的方法用于测试含有固体和有色的样品。 上述两个系统包括化学发光检测仪(闪烁测试系统的发光仪必需有自动样品注射器),软件程序,试剂冷却/孵育器和冷冻干粉状态的测试用发光细菌。 生物重金属试剂盒是一个革命性地用于分析环境中少量样品的方法。这些细菌能够特异性地感受到某种特定金属的存在,如来自固体和液体样品中ppb水平的铅、汞、砷和镉。发光终点测试方法具有很高的灵敏度,快速和高通量进行。 发光细菌毒性测试 此方法是传统和标准的通过发光细菌方法来测试化合物或污水的毒性(GB/T 15441-1995,ISO 113483: 水质)测定水样对Vibrio fischeri <发光细菌测试>的光发射抑制效果。这个测试方法是建立在此基础之上的――当有毒性的化合物存在时,细菌的发光量会降低。这个方法非常快速,只需要5-30分钟就可以完成。。 标准发光细菌的测试过程是:把样品和细菌混合在一起,经过短暂的孵育,测试发光强度。检测仪器只需要化学发光仪(如Berthold Detection Systems管式或板式化学发光仪)。 检测系统包括仪器和试剂(冷冻干粉)。细菌可以常温运送给客户。 生物发光毒性测试产品: Berthold Detection Systems公司的化学发光仪 Kenreal TM生物毒性试剂盒 制冷恒温孵育器 分析软件

DXY-3型智能化生物毒性污染测试仪使用说明书

DXY-3型智能化生物毒性(污染)测试仪使用说明书 一、仪器特点 DXY-3型智能化生物毒性(污染)测试仪是在DXY-2型生物毒性(污染)测试仪基础上改进,并加人智能化功能的新型号机,与国际上同类产品相当,但是,价格低廉,发光菌能保证供应。 该仪器是基于毒性物质对特殊的发光细菌的发光度的抑制作用而设计的,它通过测定发光细菌发光度的变化,量度被测环境样品中由重金属和其它有机污染物所造成的急性生物毒性。与传统的鱼、蚤和其它水生生物作为生物检测方法相比,发光细菌法简便、快速、灵敏、适应性强、重复性好、精度高、费用低、用途广,凡有毒化合物、废水、废弃物的生物毒性均可测定。因此,它是对受污染环境的生物毒性检测进行初筛、监测较为理想的工具,也是其他领域开拓新的实验测试方法的新工具。 该仪器可测量和显示待测液的毒性含量,测量所得数据可存储,可一次存储10组数据,每组数据包含3个标准液测量值和3个待检溶液的测量值,以便查看;同时,可以上传到计算机,以便分析和长期保存。仪器显示界面由液晶显示屏提供,仪器的控制输入由按键实现。 该仪器2型机为中国环境监测总站监制产品。 该仪器测定方法为国家标准,标准号:“GB/T15441-1995水质急性毒性的测定发光细菌法”由中国标准出版社出标准文版。仪器标准号:Q宁/KTS 01-93。经过近三十年的不断开发,已经在环境科学、微生物学、免疫学、细菌学、生物化学和临床检验等领域得到广泛应用。 二、仪器用途 测定纯化合物(包括有机分子、无机金属离子)的急性毒性。 测定受污染水体(包括工业排放污水、矿山采矿和冶炼废水、河水等水系)的急性毒性。 测定受污染土壤、河流和沿海带底泥的急性毒性。 用于研究有毒元素以及化合物相互之间的相互作用-协同或拮抗效应。 用于慢性反应的化学发光分析等。 三、测试原理 测试原理:总体急性生物毒性。 明亮发光杆菌之所以发光,是由于菌的发光系统发生了如下反应: 基质 ↓ ATP ATP A TP 还原型辅酶A → 黄素(H2) → 细胞色素→ 02 ↓ 载氢黄素单核苷酸 荧光酶(电子)↓ 02RCH0 RCO0H 电子→ FMNH2→ 电子→ FMNH → 光+FMN+电子十H2O ↓ OOH 黑暗↓ 电子十黄素单核苷酸十H2O2 当细胞活性高,处于积极分裂状态时,细胞A TP含量高,发光强;休眠细胞ATP含量明显下降,发光弱;当细胞死亡,ATP立即消失,发光停止。 处于活性期的发光菌,当加入毒性物质(如重金属离子Cu2+/Cd2+/Se4+/Zn2+/As3+/Pb2+,农药五氧吩嗪、福美双,染料对氨基苯甲醚、对硝基邻甲苯胺,酸、碱等),菌体就会受抑甚至死亡,体内A TP含量也会随之降低甚至消失,发光度便下降甚至到零。由于毒物浓度与菌体发光度呈线性负相关地变化,因而可据

常用研究细菌的实验技术

大多数动物植物的研究、利用都能以个体为单位进行,而微生物由于个体微小,在绝大多数情况下都是利用群体来研究其属性,微生物的物种(菌株)一般也是以群体的形式进行繁衍、保存。在微生物学中,在人为规定的条件下培养、繁殖得到的微生物群体称为培养物(culture),而只有一种微生物的培养物称为纯培养物(pure culture)。由于在通常情况下纯培养物能较好地被研究、利用和重复结果,因此把特定的微生物从自然界混杂存在的状态中分离、纯化出来的纯培养技术是进行微生物学研究的基础。相应的,微生物个体微小的特点也决定了显微技术是进行微生物研究的另一项重要技术,因为绝大多数微生物的个体形态及其内部结构只能通过显微镜才能进行观察和研究。显微技术包括显微标本的制作、观察、测定、分析及记录等方面的内容。实际上,正是由于显微技术及微生物纯培养技术的建立才使我们得以认识丰富多彩的微生物世界,并真正使对微生物的研究发展成为一门科学。 1 微生物的分离和纯培养 1.1 无菌技术 微生物通常是肉眼看不到的微小生物,而且无处不在。因此,在微生物的研究及应用中,不仅需要通过分离纯化技术从混杂的天然微生物群中分离出特定的微生物,而且还必须随时注意保持微生物纯培养物的“纯洁”,防止其他微生物的混入。在分离、转接及培养纯培养物时防止其被其他微生物污染的技术被称为无菌技术(aseptic technique),它是保证微生物学研究正常进行的关键。 (1) 微生物培养的常用器具及其灭菌 试管、玻璃烧瓶、平皿(culture dish,Petri dish)等是最为常用的培养微生物的器具,在使用前必须先行灭菌,使容器中不含任何生物。培养微生物的营养物质[称为培养基(culture medium)]可以加到器皿中后一起灭菌,也可在单独灭菌后加到无菌的器具中。最常用的灭菌方法是高压蒸汽灭菌,它可以杀灭所有的生物,包括最耐热的某些微生物的休眠体,同时可以基本保持培养基的营养成分不被破坏。有些玻璃器皿也可采用高温干热灭菌。为了防止杂菌,特别是空气中的杂菌污染,试管及玻璃烧瓶都需采用适宜的塞子塞口,通常采用棉花塞,也可采用各种金属、塑料及硅胶帽,它们只可让空气通过,而空气中的其他微生物不能通过。而平皿是由正反两平面板互扣而成,这种器具是专为防止空气中微生物的污染而设计的。 (2) 接种操作 用接种环或接种针分离微生物,或在无菌条件下把微生物由一个培养器皿转接到另一个培养容器进行培养,是微生物学研究中最常用的基本操作。由于打开器皿就可能引起器皿内部被环境中的其他微生物污染,因此微生物实验的所有操作均应在无菌条件下进行,其要点是在火焰附近进行熟练的无菌操作(图2—1),或在无菌箱或操作室内无菌的环境下进行操作(图2—2)。操作箱或操作室内的空气可在使用前一段时间内用紫外灯或化学药剂灭菌。有的无菌室通无菌空气维持无菌状态。

海洋细菌的分离与培养5

海洋细菌的分离与培养 制药工程王凯 指导教师曲田丽 摘要:本文自青岛城阳区海西村海域距离海岸50m处采集海泥和海水样品,采用平板稀释分离方法进行海洋细菌分离,共分离出4种海洋细菌分别为X1、X2、X3、X4。再以6种病原细菌,6种病原真菌为供试靶标菌进行生物活性测定,结果表明,所分离的海洋细菌X4对番茄早抑病菌抑菌效果最好,最高抑菌率达84.7%。 关键词:海洋细菌;分离;培养;活性测定 Isolation and Cultivation the Marine Bacteria Pharmaceutical engineering Wang kai Tutor Qu Tianli Abstract:The mud and sea water of this experiment was come from the city of Haixi Village of Chengyang Qingdao sea,where away off the coast 50m, then use separation-plate -dilution method and flat culture isolated four species of bacteria. Then use six bacteria, six fungi as the bacteria tested target for bacteria bioassay. At last the marine bacteria had best effect on Alternaria solani,the inhibitory rate was 84.7%. Key word: Marine bacterium; Separation; Raise; Active determination

实验室常用的细菌作用及其选择

第一篇:JM109,DH5a,BL21这些感受态有何区别 1:DH5a菌株 DH5a是一种常用于质粒克隆的菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2:BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT, hsdS(rBB-mB-),gal, dcm(DE3) 3:BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompT hsdS(rBB-mB-),gal, dcm(DE3,pLysS ,Camr 4:JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac -proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5:TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697, galU ,galK ,rps, (Strr) endA1, nupG 6:HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验

海洋浮游细菌研究

海洋浮游细菌研究 1 引言 海洋细菌是海洋生态系统中的重要组成部分,在海洋物质循环、能量流动以及生态调控等方面具有重要作用.海洋细菌的群落结构与种类组成直接影响整个海洋生态系统的健康发展,同时细菌群落结构又与其栖息的环境密切相关.海洋细菌的分类鉴定及其群落结构的分析方法包括表型鉴定法和分子遗传学鉴定法两大类(金光,2011),表型鉴定法包括细菌形态和生理生化水平、细胞组分水平、蛋白质水平上的鉴定,分子遗传学鉴定法是在核酸水平上的鉴定,包括核酸杂交、PCR 技术、16S rRNA序列分析、全基因组测序等. 变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)技术最早是由Fischer和Lerman于1983年创立的,是根据在不同浓度的变性剂中DNA片段解链行为的不同而导致电泳迁移率发生变化,从而将片段大小相同而碱基组成不同的片段分开.近年来PCR-DGGE 技术已经广泛运用于细菌的群落结构分析中. 大亚湾位于南海北部,是广东省重要的养殖基地,也是大亚湾核电站和惠州港所在地.由于近些年该海域污染日趋严重,海洋环境状况发生显著变化,浮游细菌群落结构也会发生明显变化.目前有关大亚湾浮游细菌方面的报道不多,尚未有浮游细菌DNA指纹及分子多样性方面的报道.为了了解大亚湾海域浮游细菌群落结构以及分子多样性,本文采集了大亚湾海域表层水样,利用PCR-DGGE技术对浮游细菌的DNA指纹进行了研究,以揭示DGGE技术等分子手段在浮游细菌群落结构多样性分析上的应用. 2 材料与方法 2.1 样品的采集与处理 在广东省大亚湾海域设置的9个采样点(图 1).S1~S3位于大亚湾澳头海域,该海域毗邻惠州市澳头镇,是重要网箱鱼类养殖基地;S4~S6位于大鹏澳海域,该海域位于深圳市大鹏镇,湾内有鱼类和贝类养殖区,同时也是大亚湾核电站和岭澳核电站所在地;S7~S8位于大亚湾湾口,受到养殖和人类活动的影响较小.分别于2010年12月15日(2010年冬)、2011年6月8日(2011年夏)采集表层水样,每个采样点采集水样9 L,并在现场用中性鲁哥试剂固定.固定的水样先用孔径为10 μm网筛过滤,然后再依次用GF/A滤膜(Whatman)以及 0.2 μm 聚醚砜滤膜(Millipore)过滤,滤膜上的样品置于1.8 mL SET裂解缓冲液(20% 蔗糖,50 mmol · L-1 Tris-HCl pH 7.6,50 mmol · L-1 EDTA)中,储存在-20 ℃待分析.

发光细菌毒性测试仪器LUMIStox300简易操作步骤

发光细菌毒性测试仪器LUMIStox300 SCREEN法简易操作步骤 1.打开LUMIStox300电源,预热30分钟。 2.打开LUMIStherm电源,必须等待其温度达到15℃才能使用。 3.准备样品。浊度大的污水,需静置后取上清液。一般样品不需加任何处理。如果是冷冻 样品,必须完全解冻;漩涡后沉淀、离心过滤必须混匀;如果样品pH值不在6.5-8.0之间,用HCL或NaOH调节至7.0±0.2;水样按3%比例投加NaCl置冰箱备用。若样品盐度不足2%,则应添加固体NaCl。样品盐度应在2%-5%之间。(选用2%的最小投加量,因为之前有加过缓冲盐,并且某些碱度样品中有碳酸盐。) 4.若每个样品测量两次,则一个批次可以同时测量9个样品;如果每个样品测量一次,则 一个批次可以同时测量14个样品。根据样品测量次数,用移液管移取每个样品以及一份控制液(LCK481,2%NaCl溶液)1.5 ml (供两次测量使用) 或1 ml (供一次测量使用)到每个测量试管中,放在LUMIStherm预温槽里使其达到正确的温度。 5.将LCK491冻干粉置冰浴中,加入1.0mL复苏液(LCX047),盖盖,摇晃,继续置冰浴中15 分钟。然后取0.1mL复苏发光细菌溶液,以1:50的体积比例,加入5mL稀释液(LCX048),制成细菌悬浮液,放在LUMIStherm上。 6.根据样品和控制溶液的数量,用移液管迅速移取相应数量的0.5 ml 细菌悬浮液到每个 测量试管中,放在LUMIStherm上恒温15分钟。 7.用移液管移取每个样品和控制溶液各0.5 ml 到每个细菌悬浮液测量试管中,继续放在 LUMIStherm预温槽中恒温15分钟。 8.在LUMIStox300上选择LU测量模式,测量参比溶液的发光度值,此数值应在800-1200之 间,表示发光细菌活性良好。若数值低于800,说明发光细菌活性较差,需要在下一批次制备细菌悬浮液时降低稀释液的比例。 9.在LUMIStox 300上选择评估模式,先测量控制溶液,然后迅速逐个测量样品溶液, 记录百分抑制率的结果。

生物毒性在线监测仪

系统概述: 慕迪WTox-8000生物毒性在线监测仪采用公认的ISO 11348标准测量方法,以发光细菌和待测水样反应时发光强度变化来快速准备地测出水样的生物毒性,毒谱范围涵盖多于五千种潜在的毒性物质。生物毒性测试技术是一张基于生物传感技术的毒性检测系统,它提供一种有效应对污染的检测手段,整个测量过程可以在5-30分钟内完成,因而能保证对水质变化进行最快速的反应。水样毒性的大小可以通过发光细菌发光强度变化来表示。该系统广泛用于饮用水水源安全、应急评估及多种污染物毒性测定,能对水污染事件进行预警,同时可预警一般性污染事件以及慢性中毒事件。 系统特点: 检测灵活,测量周期短,相应速度快,检测过程可自由设定,可由用户定制测量周期,最短检测时间5分钟。 自动进行质控和校准,保证测试结果的一致性和可靠性,可检测包括重金属、农药、生物毒物、其他有机和无机有毒等才超过5000多种毒性物质; 可调定量取样装置,确保仪器通过调整试剂用量和取样量来准确测量各种水样。 生物毒性在线监测仪采用长寿命的非接触式注射泵,避免液体直接接触注射泵,可大大延长核心部件寿命、降低用户使用成本。 全进口器件及创新的分析流路设计和试剂配方保证了极高的测量重现性,目前测量重现性可达到5%。 全自动运行,无需人员值守,可实现自动调零、自动校准、自动测量、自动清洗、自动维护、自我保护、自动回复等职能化功能。 在线监测方式多样式,可实现人工随时测量、自动定时测量、自动周期性测量等测定方式。 技术参数: 测量方式:发光菌法 光监测器:光电倍增管 测试量程:0~100% 重复性:5% 检测下限:0.5% 相应时间:可根据水样自行调整,最少5min; 测试方式:定时、等间隔、手动; 校准方式:自动校准; 相应范围:可响应5000多种有毒物质; 维护周期:1-2周更换一次发光菌; 模拟输出:4—20mA 模拟输出; 数据传输方式:RS232,RS485,GPRS; 显示:8寸彩色触摸屏,分辨率为800*600; 数据存储:五年有效数据; 工作温度:+0℃~ +40℃; 电源:220V AC±10% / 50-60H; 功耗:约100W; 尺寸:500mm*1650mm*321mm; 重量:约70KG;

实验三细菌的分布与消毒灭菌

实验三细菌的分布与消毒灭菌【目的】 ①了解细菌广泛分布于自然界及正常人体,树立“有菌观念”,从而认识无菌操作对于微生物学及医学实践的重要性。 ②了解正常人体中寄居着种类繁多的细菌,正常情况下不引起人类疾病,称为正常菌群。 ③熟悉外界因素对细菌的影响,学习常用的消毒灭菌方法。 ④了解不同细菌对外界因素具有不同的抵抗力。 一、细菌的分布检查 (一)空气中的细菌检查 【材料】 普通琼脂平板培养基。 【方法】 ①取普通琼脂平板一只开启皿盖,培养基面向上放于实验桌上,暴露5~ 30min后盖好。 ②置37℃培养18~24小时后观察结果。 【结果】(填表10-1) 平板培养基表面或多或少有菌落生长。 (二)地面水中的细菌检查 【材料】 地面水(河水、井水或池水)、高层琼脂培养基、1ml无菌吸管、灭菌培养皿。 【方法】 ①以无菌吸管吸取1ml地面水,加入灭菌平皿中。 ②将已溶化且冷至45℃左右的高层琼脂倾注人上述平皿中,加盖后轻轻摇动,使水与琼脂充分混匀,静凝。 ③37℃ 24小时后取出观察,计数菌落。 【结果】(填表10-1) (三)衣服、票证、头发、手指皮肤上的细菌检查 【材料】 普通琼脂平板培养基。 【方法】 取普通平板一个,用蜡笔在平板背面玻璃上划成四等分,并贴上标签(图 10-1)。然后以无菌操作法,用衣袖角、票证、头发及手指或指甲污物,在平板培养基表面相应部位轻轻涂抹,置37℃培养24 【结果】填表 培养基表面涂抹处有菌落生长。衣服、票证、头发、

手指皮肤上的细 菌检查 (四)正常人体咽喉部的细菌检查 【材料】 血液琼脂平板培养基、灭菌棉拭、接种环、酒精灯。 【方法】 取灭菌棉拭一支,在被检查者咽喉部轻轻涂擦后,再涂于血液琼脂培养基—侧,然后改用灭菌接种环作分离划线接种。盖上皿盖,37℃孵育24小时(或者采用咳喋法)。 【结果】(填表10-1) 琼脂平板表面有菌落生长。其中占优势的是一种细小菌落,其周围有草绿色的不完全溶血环。此为咽喉部的正常菌群—甲型链球菌。 (五)实验结果观察(填表) 二、消毒灭菌试验 (一)煮沸与高压灭菌法 【原理】 高温对细菌有明显的致死作用,主要机制是凝固菌体蛋白质,也可能与细菌DNA单螺旋断裂、细菌细胞膜功能受损及菌体电解质浓缩有关。 湿热灭菌法所需温度比干热法为低,时间较短。尤其是高压蒸气灭菌,因增加压力而提高沸点,灭菌效果最佳。有芽胞的细菌由于对热的抵抗力比无芽胞细菌强,所以只有采用高压蒸气灭菌法才能将芽胞彻底杀灭。 【材料】 琼脂平板两块、肉汤管两支、大肠埃希菌和枯草芽胞杆菌肉汤培养物。 【方法】 ①取琼脂平板两块,用记号笔分别在二平板底部玻面上,注明大肠埃希菌和枯草芽胞杆菌,并分别将二块平板底玻璃面划分三等份,于每块平板的三等份上分别注明对照、加热100℃ 10min及加热121℃ 20min。 ②取肉汤管二支,分别注明加热100℃ l0min及加热121℃ 20min,用毛细吸管吸取大肠埃希菌肉汤培养物,于上述二支肉汤管中各加入菌液一滴。混匀,再用接种环于二支肉汤管的任何一管中取一环菌液接种于大肠埃希菌平板的对

发光细菌

发光细菌 一、填空题 1.根据《水质急性毒性的测定发光细菌法》(GB/T 15441—1995),若须排除pH影响,应先将水样和氯化钠溶液的pH进行调整,具体为:含铜水样的pH调整为,含其他金属水样的pH调整为 5.4,含有机化合物水样的pH调整为。 2.《水质急性毒性的测定发光细菌法》(GB/T15441-1995)适用于、和实验室条件下可溶性化学物质的水质的急性毒性监测。 3.发光菌急性毒性试验中,样品的急性毒性水平可用相对发光度、 或等来表示。 4.淡水型的发光菌急性毒性试验中,样品的急性毒性水平则用相对发光度、 和等来表示。 5.用青海弧菌Q67进行发光菌急性毒性测定时,环境温度在℃之间均可进行,但在测试过程中要求温度波动在±℃内。 二、判断题 1.根据《水质急性毒性的测定发光细菌法》(GB/T 15441-1995),用发光菌测定样品的毒性非常简便,冻干粉经复苏后即可用于进行样品的测定。( ) 2.根据《水质急性毒性的测定发光细菌法》(GB/T15441-1995),若须测定包括pH影响在内的急性毒性,不应调节水样pH。( ) 3.在进行发光菌急性毒性试验中,对含有固体悬浮物的样品须离心或过滤去除,以免干扰测定。( ) 4.根据《水质急性毒性的测定发光细菌法》(GB/T 15441-1995),氯化汞母液可在2~5℃冰箱里保存6个月,而氯化汞工作液在2~5℃冰箱里只能保存24h。( ) 5.根据《水质急性毒性的测定发光细菌法》(GB/T 15441-1995),在测定有色样品时,先要进行颜色干扰的校正,计算出因颜色引起的发光量校正值。( ) 6.进行淡水型发光菌急性毒性试验时,苯酚溶液的保存和氯化汞溶液相同。( ) 7.EC50值越小,表示受试物的毒性也越小。( )

发光细菌的特性及其在环境监测方面的应用(精)

发光细菌的特性及其在环境监测方面的应用 发布时间:2008年7月30日 16时19分来源:化学工程与装备网 贺志庆1,王文波2 (1台州市环境监测中心站,浙江台州 318050 2台州市路桥区环境监测站,浙江台州 318050) 摘要:随着现代工业的不断发展,随之而来的环境问题也越来越突出。因此一些新的环境监测方法也应运而生。发光细菌检测方法就是其中的一种。它具有快速、简便、灵敏等特点,并在环境监测中的应用范围也很广泛。本文主要从发光细菌的原理、测定方法及其在环境监测中的应用等方面对其进 行了阐述。 关键词:发光细菌环境监测毒性 1 前言 到了二十一世纪,世界进入了工业化时代,随着现代工业的不断发展,当今世界面临着严重的环境问题。我国是一个发展中的大国 ,几十年来 ,尤其是改革开放以来经济发展突飞猛进 ,令全世界瞩目。但是随着工业化和城市化的不断发展,环境问题日益突出 ,严重影响了我国经济与社会的进一步发展。数量,种类日益增多的环境污染物迫切需要进行毒性鉴定,而传统的分析手段已难以对此做出迅速、有效、全面的回答。因此,发展新的快速,准确评价各类污染物毒性的有效方法显得非常迫切,必要。 环境中有毒物质生物毒性的测定与评价,一般用水生生物(如鱼,枣等)。植物(紫露草,蚕豆根类等)细菌或其他生物作为指示生物,以其形态,运动性,生理代谢的变化或死亡率做指标来评价环境物质的毒性。但这些方法大都操作繁琐,需要较多的仪器设备,结果不稳定,重复性差,因而难以推广应用。随着科学的不断发展,新的环境中有毒物质生物毒性的测定与评价不断建立,其指示生物包括细菌,藻类,底栖软体动物,浮游生物和鱼等,其中发光细菌因其独特的生理特性,与现代光电检测手段完美匹备的特点而备受关注,因此由其而发展起来的发光细菌毒性测试技术引人注目。发光细菌检测法是一种简单快速的生物毒性检测方法,它不仅能测试理化法所能测定的单因子指标,尤其能快速准确的测出环境的综合毒性指标,具有理化法无可比拟的 特点。 2 发光细菌检测有毒物质的原理 发光菌检测法是以一种非致病的明亮发光杆菌作指示生物,以其发光强度的变化为指标,测定环境中有害有毒物质的生物毒性的一种方法。细菌的发光过程是菌体内一种新陈代谢的生理过程,是光呼吸进程,是呼吸链上的一个

海洋细菌活性物质

海洋细菌活性物质的研究概况 刘拥微生物与生化药学2111007135 海洋是生命之源,人类物质资源的天然宝库。海洋生物量约占地球生物总量的80%,生物种类20万种以上,蕴藏着丰富的药用资源。但是,目前人们对海洋生物的认识仍相当有限,利用率仅l%左右。海洋生态环境十分独特,海洋的特殊环境如高压、低营养、低温(特别是深海)、无光照以及局部的高温和高盐等,造成了海洋微生物的多样性和特殊性。使海洋微生物产生了与陆地微生物不同的代谢系统和防御体系,特别是从海洋微生物中提取的生物活性物质,常常具有新颖的化学结构和特异的生理功能,在抗菌、抗病毒、抗肿瘤、保健等方面具有独特效应,已成为开发新药、特药的主要研究方向之一。海洋细菌是海洋微生物中的优势类群,同时具有产生生物活性物质的巨大潜力,由于海洋细菌具有独特的代谢途径和遗传背景,故可产生出不同结构和功能的天然活性物质,所以为寻找能解决目前疑难杂症的药物提供了丰富的资源,也为微生物工业化生产新药开辟了一条崭新道路。海洋细菌活性物质的研究,是目前国际研究的热点。 1 海洋细菌资源 海洋中常见的细菌主要属于以下几个系统类群:变形细菌(Proteobacteria)类群、革兰氏阳性细菌类群(包括高G+c和低G+c)、噬纤维菌属一黄杆菌(Cytophaga-Flavobacterium)类群、浮霉状菌(Planctomycetales)/衣原体类群、疣微菌(Verrucomicrobiales)类群及一些人工尚未培养成功的系统类群等。其他一些细菌类群也存在于海洋生态环境中,但研究报道较少?。早期人们从海水中分离得到的海洋细菌有9o%以上是革兰氏阴性细菌,对这些细菌的研究较多也较集中。随着研究的深入,发现海洋中同样存在许多革兰氏阳性细菌,但大多分布于海洋沉积物和海洋生物共生系统中,并常在系统学上形成独特的分支。海洋中的革兰氏阳性细菌包括产芽孢和不产芽孢的属群,主要有:芽孢杆菌属(Bacillus)、类芽孢杆菌(Paenibavillus)、葡萄球菌属(Staphylococcus)、链球菌属(Streptococcus)、消化球菌属(Peptococcus)、微球菌(Micrococcus)、梭菌属(Clostridium)、八叠球菌属(Sarcina)、动性球菌属(Planococcus)、盐芽孢杆菌属(Halobacillus)、放线菌属(Actinomycetes) 。 2 海洋细菌药物研究 2.1 抗菌活性物质 抗菌活性物质主要包括抗细菌、抗真菌、抗病毒物质三类,其中主要以抗细菌活性物质为主。许多海洋细菌可产生抗生素,包括链霉菌属(Streptomyces)、交替单胞菌属(Alteromonas)、假单胞菌属(Pseudomonas)、黄杆菌属(Flavobavterium)、微球菌属、着色菌属(Chromatium)、钦氏菌属(Chainia)、Madurmacetes等菌及许多未定菌。已报道海洋细菌产生的抗生素有溴化吡咯、a—n— pentylquinolind、magnesidins,istamycins,aplasmomycins,ahermicidin,macmlactins,diketoplperazines、3-氨基一3一脱氧一D一葡萄糖、oncorhynco|ide、maduralide、salinamides、靛红、对羟苯基乙醇、醌、thiomarinds BC、trisindoline、pyrolnitrim等,其中有些种类在陆生菌中从未见过。Jaruchoktaweechai等从海泥里分离出一株芽孢杆菌(Bacillus sp.)Sc026,并从其培养液中分离出3个大环内酯化合物对枯草杆菌和金黄色葡萄球菌均有抑制活性。Fudou等从海藻中分离出一种新属黏细菌Halisngium luteum,其培养液的丙酮浸膏中分离出一个新的抗真菌抗生素—Haliangicin。

相关主题
文本预览
相关文档 最新文档