当前位置:文档之家› 基带码型变换-AMI码型变化课程设计

基带码型变换-AMI码型变化课程设计

基带码型变换-AMI码型变化课程设计
基带码型变换-AMI码型变化课程设计

基带码型变换设计——AMI码码型变换1 技术指标

1.1设计AMI码的编译码电路;

1.2 输入信号为24位的周期NRZ码

1.3 编译码延时小于3个码元宽度

2 基本原理

AMI(Alternative Mark Inversion)码的全称是传号交替反转码,是通信编码中的一种,为极性交替翻转码,由高电平和低电平表示两个极性。其编码规则为:将消息码中的信号“1”传号交替变换为“+1”、“-1”,而“0”保持不变。例如:消息码 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0

AMI码 0 +1 -1 0 0 0 0 +1 0 -1 +1 -1 0 +1 -1 0 解码规则为:将收到的符号序列所有的-1变成+1。

AMI码的编码电路的实现主要解决的问题是将高电平转化为交替变化的正负电平,译码电路主要解决的问题是将负电平转化为正电平。可以采用逻辑门电路与运算放大器组成的电路或者CPLD(可编程逻辑器件)的组合实现。

3 设计方案及功能分析

3.1 方案一:基于运算放大器的AMI编译码电路的实现

3.1.1编码电路的设计

编码电路图如下

图1 基于运算放大器的AMI编码电路实现

编码电路由一个JK触发器、三个与门、一个非门、两个运算放大器及六个电阻和一个电容组成。

第一个与门一端接NRZ脉冲输入,另一端接频率为NRZ倍的时钟脉冲源,它的主要作用是将非归零码转换为归零码。JK触发器的JK端与第一个与门的输出端相连。时钟信号通过非门作为JK触发器的触发脉冲以保证在每个码元起始位置有上升沿触发。Q端和Q非端分别和一个与门相连两个与门的另一端都和归零码输出相连。这部分电路的作用是将归零消息码的“1”信号变为交替的“0”、“1”和交替的“1”、“0”分别输出。第二个与门和第三个与门的输出端分别作为一个求差运算放大器的输入,将交替变化的0”、“1”,“1”、“0”想减得到AMI码。由于这样得到的AMI码中掺杂着冲击信号,因此要添加电容将其滤除。后面再加以同向放大电路作为缓冲。NRZ码及其转换成的归零码形如下:

图2 NRZ码和归零码

单极性归零信号“1”转换为交替变化的“0”、“1”,“1”、“0”波形如下:

图3 单极性归零码“1”转换为交替变化的“0”、“1”,“1”、“0”

交替变化的“0”“1”,“1”“0”序列通过求差运算放大器并由电容滤波、同向放大以后的波形如下图

图4 AMI编码输出

3.1.2 译码电路的设计

译码电路图如下

图5 译码电路图

译码过程实际上是编码的逆过程。首先通过两个方向相反的二极管将归零AMI 码转化为“0”“0”、“1”“0”、“0”“-1”两路单极性码,通过减法器相减以后得到单极性归零信号。一部分输入一个自同步电路提取码元定时信息,码元定时信息送入比较器构成的抽样判决器进行抽样判决后得到比原脉冲延时一个码元的定时信息序列。AMI码及其转换的单极性归零码和定时信息序列如下图所示:

图6 AMI码、单极性归零码、定时信息序列

由D触发器的功能可知,将单极性归零码同向放大电路以后作为D触发器的D 端输入,并用定时信息序列作为其触发脉冲,即可将该单极性归零信号还原为对应的NRZ码。而这波形如下图所示:

图7 单极性归零码及译码后对应的NRZ码

3.1.3 全电路设计

全电路只需将编码电路的AMI码输出端接到译码电路的AMI输入端即可,电路图如下如下:

图8 全电路图

测得NRZ码输入和末端D触发器输出波形如图所示:

图9 NRZ码输入及对应编译码电路输出

3.2 方案二:基于CPLD的AMI码编译码电路设计

由于CPLD只能处理数字信息,输出为“0”或者“1”,而AMI码为双极性码,包含“0”、“1”、“-1”,故需要外围电路辅助。而由于实验仪器设计模块AMI编译码外围电路已确定,我们所要做的是,分析外围电路功能并根据其功能设计CPLD内部电路。

3.2.1 编码电路的设计

3.2.1.1编码电路外围电路:

图10 编码外围电路

电路原理:

图中芯片为4052,是一个差分4通道数字控制模拟开关有A、B两个控制输入端

和INH使能端。其真值表及引脚功能如下:

4052真值表

INH B A 输出

0 0 0 0X, 0Y

0 0 1 1X, 1Y

0 1 0 2X, 2Y

0 1 1 3X, 3Y

1 * * NONE

表1 4052真值表

4052引脚功能说明

引脚号符号功能

1 2 4 5 IN/OUT Y通道输入/输出端

11 12 14 15 IN/OUT X通道输入/输出端

9 10 A B 地址端

3 IN/OUT Y公共输入/输出端

13 IN/OUT X通道输入/输出端

6 INH 禁止端

7 VEE 模拟信号接地端

8 VSS 数字信号接地端

16 VDD 电源+

表2 4052引脚功能说明

由上两表可以看出编码外围电路中,INH为低电平模拟开关导通,AMIA、AMIB和X

输出的关系见下表:

AMIA AMIB X输出

0 0 0

0 1 0

1 0 1

1 1 -1

表3 AMIA、AMIB与X输出关系

由上表可知AMIA、AMIB的“0”“0”,“0”“1”,“1”“1”分别控制输出的“0”、“+1”、“-1”。

3.2.1.1 编码电路CPLD内部电路

图11 编码CPLD内部电路

电路原理:

电路由一个JK触发器,两个D触发器,一个非门,一个与门构成。两个D触发器均用2BS信号作为触发脉冲,BS和NRZ分别作为D端输入,其作用就是将BS及NRZ信号分别延时。延时后的BS信号保证在每个NRZ码元起始很小时间后都有一下降沿。可以看出,在NRZ码为“0”时,AMIA(即NRZ)输出为“0”;延时后的NRZ 经过一个与门后使得AMIB输出也为“0”。将其输入外围电路后,由表3可知,AMI 输出为“0”。在NRZ码为1时,AMIA(即NRZ)为“1”;输入JK触发器的NRZ码经稍延时的BS非信号触发后,在上升沿输出Q状态反转,假设Q初始状态为“0”,则反转为“1”。将AMIA、AMIB输入外围电路中,由表3可知,AMI输出为“-1”。此后,若NRZ为“0”,则Q输出保持“1”,外围电路AMI输出为“0”。当NRZ码第二个“1”到来时,AMIA为“1”;JK触发器状态反转为“0”,AMIB为“0”,由表3可知,外围输出AMI为“1”。以此继续。可见其实现了将消息码中的“1”变为“+1”、“-1”交替。

3.2.2 译码电路的设计

3.2.2.1 译码外围电路

图12 译码外围电路

电路原理:

该电路的主体为两个电压比较器。R4、R5、R6为三个阻值相同的电阻,易知,放大器AR1的反向输入端电势为-1.7V,AR2的同向输入端电势为1.7V。当AMI端输入正电平时,AR1同向输入端电势大于反向输入端,输出高电平,又经非门U1后AMI-1输出低电平;同时AR2反向输入端电势大于同向输入端,输出低电平,又经非门U2后AMI-2输出高电平。当AMI端输入0电平时,AR1同向输入端电势小于反向输入端,输出低电平,又经非门U1后AMI1输出高电平;同时AR2反向输入端电势大于同向输入端,输出低电平,又经非门U2后AMI2输出高电平。当AMI端输入负电平时,AR1同向输入端电势小于反向输入端,输出低电平,又经非门U1后AMI-1输出高电平;同时AR2反向输入端电势小于同向输入端,输出高电平,又经非门U2后AMI-2输出低电平。

输入电平、AMI-1、AMI-2的上述关系可以用下表表示:

AMI输入AMI-1 AMI-2 理论译码OAMI

1 0 1 1

0 1 1 0

-1 1 0 1

表4 AMI、AMI-1、AMI-2、理论译码值关系

3.2.2.2译码CPLD内部电路

由表4易于看出,由AMI-1、AMI-2与理论NRZ译码输出的关系为:AM I-1+AM I-2=OAM I

故其内部电路设计很简单,有两个非门一个或门构成,以实现此关系译码,如下图所示:

图13 译码CPLD内部电路图

3.3.3 全电路设计

全电路设计只需将编码外围电路的AMI输出接到译码外围电路的AMI输入端即可。

3.3 方案比较

方案一由D触发器、逻辑门、运算放大器电阻电容等器件构成,原理及实现方式简单。方案二外围电路与方案一实现方式相似,另外由于应用CPLD可编程逻辑器件,使得CPLD内部电路可调整,方便更改修正。

4 实现方案

由实验提供的仪器可以确定,实现方案采用方案二。其全电路图如下:

图14 实现方案全电路图

其电路原理同方案二原理分析。

5 调试过程及结论

选择EPM7128SLC84-15 CPLD芯片,正确锁定引脚,并将内部电路拷入芯片。在试验箱的设计模块接入BS、2BS、NRZ输入后,测得AMI-1、AMI-2、AMI、OAMI各处波形如下图所示:

NRZ和AMI-1波形 NRZ和AMI-2波形

NRZ和AMI码波形 NRZ和OAMI波形初次设计的编码CPLD内部电路没有两个D触发器。将电路拷入芯片内部后,观察到的波形在NRZ为连续“1”时,“+1”“-1”交替,码形正确,而“0”前后极性相同,分析后猜测是由于BS触发脉冲上升沿与NRZ码同时跃变,致使触发时,NRZ 作为JK输入仍然保持“0”状态,Q输出保持,致使AMIB不发生变化,输出极性不变。于是在BS后加入D触发器,用2BS作为其触发脉冲,以实现延时。再次用示波器观察波形发现波形中当NRZ码由“0”变化为“1”或由“1”变化为“0”时分别出现一正、负脉冲干扰,尝试将NRZ码经过D触发器延时后,NRZ码由“0”变化为“1”的地方各点脉冲干扰消失,而NRZ码由“1”变化为“0”处,各点脉冲干扰仍然存在。由于掌握知识有限,问题没有得到解决,是本实验的一个遗憾。

由示波器测得的电路图可以看出,译码输出OAMI与原NRZ输入基本完全一致,不存在明显延时,AMI、AMI-1、AMI-2也符合理论推断。总体看来,电路设计还是相当成功的。

6 心得体会

这是我的第二次课程设计,相比之前一次的匆忙与紧张,对这次课设的准备及操控方面都有了明显进步。

此次课程设计的题目为AMI码形变化的设计,用到的知识主要来源于本学期所学专业课程《通信原理》。AMI码的编译码规则都很简单,编码是把消息中的“1”变为交替变化的“+1”、“-1”,译码是把传输码中的“-1”变回“1”。但是由于双极性码,编译码电路的设计过程遭遇了一些困难。首先在对外围电路的分析理解上。由于编码电路的芯片未知,电路图也不是很清晰,对其分析主要靠推测,大致得出了其工作原理。译码外围电路也遭遇了同样问题。另外一个最重要的问题就是对CPLD 用途、用法等不了解,查找资料也不能理解其确切功能,使得实验设计初期处于很懵懂的状态,不了解到底要做什么样的电路出来、做出来的电路怎么跟CPLD联系起来。所以建议在以后课设之前,老师能对CPLD的功能、用法等做指导性的讲解。在调试过程中,锁定引脚之后,编译出现问题,经过一番摸索并在老师的指导之下终于明白是BS、2BS信号作为脉冲源时需要在其后添加DCELL消除错误。之后波形测量时,发现了电路的不足,思考并做了改进之后,终于得到预期波形。

总结本次试验,通过对电路的设计,进一步加深了对所学码形转换知识的印象,掌握了软件MUXPLUS2的应用,调试并改善电路的过程中进行深入思考并解决问题的过程让我体会到,要做一个优秀的实验者,必须考虑到试验中各种微小的影响并排除干扰,不懈努力才能领略到最后成功的喜悦。

7 参考文献

[1] 樊昌信,张甫翊.通信原理第五版.国防工业出版社,2003

[2] 曹志刚.现代通信原理与技术.清华大学出版社,2001

[3] https://www.doczj.com/doc/794629624.html,/view/a48b92a6f524ccbff1218491.html

[4] https://www.doczj.com/doc/794629624.html,/soft/73/2008/200809118429.html

数字基带信号

数字基带信号 通信系统2007-09-24 16:40:29 阅读1500 评论3 字号:大中小订阅 一,数字基带信号 1.数字基带信号 所谓数字基带信号,就是消息代码的电波形。数字基带信号的类型很多,本节以由矩形脉冲构成的基带信号为例,主要研究这些基带信号的时域波形、频谱波形以及功率谱密度波形。 单极性不归零信号: 设消息代码由二进制符号0、1组成,则单极性不归零信号的时域波形如图5-2-1所示,其中基带信号的0电位对应于二进制符号0;正电位对应于二进制符号1。单极性不归零信号在一个码元时间内,不是有电压(或电流),就是无电压(或电流),电脉冲之间没有间隔,不易区分识别,归零码可以改善这种情况。单极性不归零信号的频域波形和功率谱密度波形分别如图所示。 (1) 时域波形 单极性不归零信号的时域波形 (2) 频谱波形 单极性不归零信号的频谱图 (3) 功率谱密度波形

单极性不归零信号的功率谱密度 单极性归零信号: 设消息代码由二进制符号0、1组成,则单极性归零信号的时域波形如图5-2-4所示,发"1"码时对应于正电位,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲,当发"0"码时,仍然完全不发送电流,所以称这种信号为单极性归零信号。单极性归零信号的频域波形和功率谱密度波形分别如图5-2-5、图5-2-6 所示。 (1) 时域波形 单极性归零信号的时域波形 (2) 频谱波形 单极性归零信号的频谱图 (3) 功率谱密度波形

单极性归零信号的功率谱密度 双极性不归零信号: 设消息代码由二进制符号0、1组成,则双极性不归零信号的时域波形如图5-2-7所示,其中基带信号的负电位对应于二进制符号0;正电位对应于二进制符号1。双极性不归零信号的频域波形和功率谱密度 波形分别如图所示。 (1) 时域波形 双极性不归零信号的时域波形 (2) 频谱波形 双极性不归零信号的频谱图 (3) 功率谱密度波形

基带传输技术

上次课回顾 非导向性媒体→ 无线电波→ 不同波段无线电波的作用及传播方式 无线传播模型: → 自由空间传播模型→ 信号衰减与距离的平方成正比 → 双线地面反射模型→ 信号衰减与距离的四次发成正比,并与天 线的高度有关 多径效应→ 频率选择性衰弱 多普勒效应+ 多径效应→ 多普勒扩展→ 时间选择性衰落 阴影衰落 分集接收 7

2.4 基带传输技术 2.4.1 基带传输的常用码型 在采用无线基带传输时,信号无需载波调制而直接被发射出去。送 入信道的数字基带信号的码型应该符合以下一些要求: ?传输码型应不含直流分量; ?可以从基带信号中提取位同步信号; ?基带编码最好能够具有内在检错能力; ?码型变换过程应具有透明性,即与信源的统计特性无关; ?应尽量减少基带信号频谱中的高频分量,以节省传输频带,提 高信道的频谱利用率,并减少串扰。 8

2.4 基带传输技术 2.4.1 基带传输的常用码型 AMI(Alternative Mark Inversion)码 原信息码的“0”编为传输码的“0”;原信息码的“1”,在编为 传输码时,交替的用“+1”和“-1”表示。 例: 消息代码:1 0 1 0 1 0 0 0 1 0 1 1 1” AMI码:+1 0 -1 0 +1 0 0 0 -1 0 +1 -1 +1” 评价: ?AMI码所确定的基带信号无直流分量 ?但当信息代码中出现长零串时,信道中会出现长时间的0电位, 而影响定时信号的提取。 9

2.4 基带传输技术 2.4.1 基带传输的常用码型 HDB3(High Density Bipolar of order 3 code)码 ?先检查消息代码的连“0”个数,当连“0”个数少于4个时,仍按 AMI码规则进行编码; ?消息代码的连“0”个数达到或超过4个时,则将每个4连“0”小 段的第4个“0”变换成非“0”符号(+1或-1),这个符号称为破 坏符号,用V符号表示,记作“+V”或“-V”。 ?V码的极性应与其前一个非“0”符号极性相同,同时满足V码的 极性必须交替出现。否则,将4连“0”小段的第1个“0”变换成 “+B”或“-B”,称为恢复码或平衡码。B符号的极性应与其前 一个非“0”符号极性相反。

通信原理报告 数字基带信号HDB3码型编码转换实现

通信原理课程设计报告 题目:数字基带信号HDB3码型编码转换实现 专业班级: 姓名: 学号: 指导教师:

设计任务要求: 仿真实现数字基带通信系统信源输入24位二进制序列产生HDB3码,通过高斯白噪声信道,接收端滤波、解码的时域图及频谱图。以矩形波为例,要求实现输入24位二进制序列产生AMI码,HDB3码,接收端滤波、解码上述码型。

摘要 HDB3码全称三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。HDB3码实行转换一般分为三个步骤,先将消息码转换AMI码然后加“V”,接着加“B”,这几部我们可以使用C语言进行编程实现。为了实现HDB3码的编码与转换,同时加深对通信系统工作原理的了解,我们采用了MATLAB软件进行编码仿真,同时学习掌握MATLAB软件的基础使用。 关键词:AMI码;HDB3码;编码;解码;MATLAB;仿真

目录 1. 设计原理 (4) 1.1 HDB3码的介绍 (4) 1.2 HDB3码的编码转换规则 (5) 1.3 HDB3码的解码转换规则 (5) 1.4 HDB3码的软件程序设计 (6) 2. MATLAB软件仿真结果及其分析 (10) 2.1 MATLAB软件的介绍 (10) 2.2 仿真结果图示 (12) 2.3 仿真结果分析 (15) 3. 设计总结及心得体会 (22) 4. 参考文献 (22) 5. 致谢 (23)

正文 1.设计原理 1.1 HDB3码的介绍 HDB3码即三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,“三阶”通俗讲就是最多3个连0码元,“高密度双极性”就是没有直流分量,不会连续出现+1或-1,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。 三阶高密度双极性码用于所有层次的欧洲E-carrier系统,HDB3码将4个连续的"0"位元取代成"000V"或"B00V"。这个做法可以确保连续的相隔单数的一般B记号。 1.2 HDB3的编码转换规则 HDB3码的编码规则主要分为3步: 1 .先将消息代码变换成AMI码,若AMI码中连0的个数小于4,此时的AMI 码就是HDB3码; 2 .若AMI码中连0的个数大于等于4,则将每4个连0小段的第4个0变换成与前一个非0符号(+1或-1)同极性的符号,用表示(+V,-V);

AMI、HDB3码型变换实验

实验二码型变换AMI/HDB3实验 一.实验目的 1.了解二进制单极性码变换为AMI/HDB3 码的编码规则; 2.熟悉AMI码与HDB3 码的基本特征; 3.熟悉HDB3 码的编译码器工作原理和实现方法; 4.根据测量和分析结果,画出电路关键部位的波形; 二.实验仪器 1.JH7001 通信原理综合实验系统一台 2.双踪示波器一台 3.函数信号发生器一台 三、实验任务与要求 1实验原理和电路说明 1.1.1 实验原理 AMI 码的全称是传号交替反转码。这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的1 交替地变换为传输码的+1、–1、+1、–1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。 由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。。AMI 码对应的波形是占空比为0.5 的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)TS 的关系是τ=0.5TS。 AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0 串,因而会造成提取定时信号的困难。为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI 码,HDB3 码就是其中有代表性的一种。 HDB3码的全称是三阶高密度双极性码。它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI 码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1 或–1)同极性的符号。显然,这样做可能破坏“极性交替反转”的规律。这个符号就称为破坏符号,用V 符号表示(即+1 记为+V, –1记为–V)。为使附加V符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻V符号也应极性交替。这一点,当相邻符号之间有奇数个非0符号时,则是能得到保证的;当有偶数个非0 符号时,则就得不到保证,这时再将该小段的第1个0 变换成+B 或–B符号的极性与前一非0 符号的相反,并让后面的非0符号从V 符号开始再交替变化。 虽然HDB3码的编码规则比较复杂,但译码却比较简单。从上述原理看出,每一个破坏

通信原理第四章(数字基带传输系统)习题及其答案

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否? 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量 1 s f T =否?

【答案4-2】 1)随机二进制序列的双边功率谱密度为 2 2 1212()(1)()()[()(1)()]() s s s s s s m P f P P G f G f f PG mf P G mf f mf ωδ∞ -∞=--++--∑ 由于 12()()()g t g t g t =-= 可得: 2 2 22 ()4(1)()(12) ()() s s s s s m P f P P G f f P G mf f mf ωδ∞ =-∞ =-+--∑ 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2 2 2 2 2 2 22 1()2 [4(1)()(12)()()] 4(1)()(12)() () 4(1)()(12) () s s s s s m s s s s m s s s m S P d f P P G f f P G mf f mf df f P P G f df f P G mf f mf df f P P G f df f P G mf ωω π δδ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ =-∞ = =-+--=-+ --=-+-? ∑ ?∑ ?? ∑ ? ----- 2)当基带脉冲波形()g t 为 1 (){2 0 else s T t g t t ≤= ()g t 的付式变换()G f 为

基于GUI的数字基带传输码型仿真—采用Miller码CMI码双极性归零码双极性不归零码

基于G U I的数字基带传输码型仿真—采用 M i l l e r码C M I码双极性归零码双极性不归零 码 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

《通信原理》 CDIO项目设计总结报告 项目名称:基于GUI的数字基带传输码型仿真—采用 Miller码、CMI码、双极性归零码、双极性不 归零码 班级:班 学号: 姓名: 年月日

目录目录

1.项目目的与要求 项目目的 1.对数字基带传输系统主要原理和技术进行研究,包括基带传输的常用码型Miller码、CMI码、双极性归零码、双极性不归零码。 2.建立数字基带传输系统数学模型。 3.利用Matlab编写基于GUI的数字基带传输码型程序。 4.对系统进行仿真、分析。 5.观察并记录信息码波形和传输码的波形,并进行分析。 项目要求 1.建立数字基带传输系统数学模型。 2.利用Matlab编写基于GUI的数字基带传输码型程序。 3.对通信系统进行时间流上的仿真,得到仿真结果。 4.将仿真结果与理论结果进行比较、分析。 2.项目设计 项目分析 数字基带传输系统 基带传输系统的基本组成如下图所示,它主要由信道信号形成器、信道、接受滤波器和抽样判决器。

其中各部分的作用如下: 脉冲形成器:基带传输系统的输入是由终端设备或编码器产生的脉冲序列,脉冲形成器的作用就是形成适合信道传输的基带信号,主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。 信道:它是允许基带信号通过的煤质。信道的传输特性通常不满足无失真传输条件,另外信道还会进入噪声。 接受滤波器:它的主要作用是滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 抽样判决器:它是在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接受滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 miller码 密勒码又称为延迟调制码,是双相码的一种变形。编码规则如下:“1”码用码元间隔中心点出现越变来表示,即用10或01表示。“0”码有两种情况:对原始符号“0”则分成单个“0”还是连续“0”予以不同处理,单个“0”时,在码元边界处电平不跃变,在码元中间点电平也不跃变;对于连续“0”,则使连续两个“0”的边界处发生电平跃变,即“00”与“11”交替。

HDB3码型变换实验报告

实验二HDB3码型变换实验 一、实验目的 1、了解几种常用的数字基带信号的特征和作用。 2、掌握HDB3码的编译规则。 3、了解滤波法位同步在的码变换过程中的作用。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、HDB3编译码实验原理框图

HDB3编译码实验原理框图 2、实验框图说明 我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。当没有连续4个连0时与AMI编码规则相同。当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。 同样AMI译码只需将所有的±1变为1,0变为0即可。而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。实验框图中译码过

程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。 四、实验步骤 实验项目一HDB3编译码(256KHz归零码实验) 概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。 3、此时系统初始状态为:编码输入信号为256K的PN序列。 4、实验操作及波形观测。

实验十五 码型变换实验

实验十五码型变换实验 一、实验目的 1、了解几种常用的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握常用CPLD实现码型变换的方法。 二、实验内容 1、观察NRZ码、RZ码、AMI码、HDB3码、CMI码、BPH码的波形。 2、观察全0码或全1码时各码型的波形。 3、观察HDB3码、AMI码的正负极性波形。 4、观察RZ码、AMI码、HDB3码、CMI码、BPH码经过码型反变换后的输出波形。 5、自行设计码型变换电路,下载并观察波形。 三、实验器材 1、信号源模块一块 2、⑥号模块一块 3、⑦号模块一块 4、20M双踪示波器一台 5、连接线若干 四、实验原理 (一)基本原理 在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。例如,在市区内利用电传机直接进行电报通信,或者利用中继方式在长距离上直接传输PCM 信号等。这种不使用载波调制装置而直接传送基带信号的系统,我们称它为基带传输系统,它的基本结构如图15-1所示。 信道信号形成器信道接收 滤波器 抽样 判决器 基带脉冲 输出 基带脉冲 输入 干扰 图15-1 基带传输系统的基本结构 该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。这里信道信号形成

器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。 若一个变换器把数字基带信号变换成适合于基带信号传输的基带信号,则称此变换器为数字基带调制器;相反,把信道基带信号变换成原始数字基带信号的变换器,称之为基带解调器。 基带信号是代码的一种电表示形式。在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。单极性基带波形就是一个典型例子。再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。归纳起来,对传输用的基带信号的主要要求有两点:(1)对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2)对所选码型的电波形要求,期望电波形适宜于在信道中传输。 (二)编码规则 1、 NRZ 码 NRZ 码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。例如: +E 0 1 0 1 0 0 1 1 0 2、 RZ 码 RZ 码的全称是单极性归零码,与NRZ 码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。例如: 1 0 1 0 0 1 1 0 +E 0 3、 AMI 码 AMI 码的全称是传号交替反转码。这是一种将信息代码0(空号)和1(传号)按如下方式进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1,-1,

通信原理实验报告二基带传输常用码的编码解码方法

实验二基带传输常用码的编码解码方法 一、实验目的 了解基带传输常用码的编码解码方法。 二、实验内容 设定一个信息码串,产生常见的编码如单极性非归零、双极性非归零、单极性归零、双极性归零、AMI、HDB3码的时域波形;不考虑噪声影响,以采样电平为依据恢复出原始信息串。 三、实验原理 1、单极性非归零。它用正电平和零电平分别对应二进制码“1”和“0”,波形特点是电脉冲之间无间隔,极性单一。 2.双极性非归零。用正负电平的脉冲分别代表二进制代码“1”和“0”。其正负电平的幅度相等、极性相反。 3.单极性归零。是单极性非归零波形的形式。 4.双极性归零。是双极性非归零波形的形式,兼有双极性和归零波形的特点。 5.AMI。全称是传号交替反转码,其编码规则是将消息码的“1”交替的变换为“+1”和“-1”,而“0”保持不变。 6.HDB3。全称是三阶高密度双极性码。编码规则是: 1)检查消息码中“0”的个数。当连“0”数目小于等于3时,HDB3码与AMI码一样,+1、-1交替; 2)当连“0”个数超过3时,将每四个连“0”化作一小节,定义为B00V,称为破坏节,其中V称为破坏脉冲,而B称为调节脉冲;

3)V与前一个相邻的非“0”脉冲的极性相同,并且要求相邻的V码之间极性必须交替。V的取值为+1或-1; 4)B的取值可选0、+1或-1,以使V同时满足(3)中的两个要求;5)V码后面的传号码极性也要交替。 译码:从收到的符号序列中可以很容易的找到破坏点V,就可以断定V符号及前面的三个符号必须是连“0”符号,从而恢复四个连“0”码,再将所有-1变成+1后便得到原消息代码。 四、实验内容 (一)单极性非归零、双极性非归零、单极性归零、双极性归零时域波形。 实验代码: M=10000; %产生码元数 L=10; %每码元复制32次 dt=0.1; %采样间隔 T=L*dt; %码元时间 TotalT=M*T; %总时间 t=0:dt:TotalT; %时间 F=1/dt; %仿真频宽 df=1/T otalT; %频率间隔 f=-F/2:df:F/2-df; %频率 N=M*L; %总长度 ShowM=16; %显示码元数 ShowN=ShowM*L; ShowT=(ShowN-1)*dt; Showt=0:dt:ShowT; %时间 dutyradio=0.5; %占空比 randwave=round(rand(1,M)); %产生二进制随机码,M为码元个数 randwave(1:16)=[1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0]; onessample=ones(1,L); %定义复制的次数L,L为每码元的采样点数rerandwave=randwave(onessample,:); %复制的第1行复制L次 unipolarwave=reshape(rerandwave,1,L*M); %重排成1*L*M数组 %单极性不归零码 subplot(4,1,1);plot(Showt,unipolarwave(1:ShowN));axis([0 20 -1.2 1.2]);

实验三 码型变换实验

实验三码型变换实验 一、实验目的 1.了解几种常见的数字基带信号。 2.掌握常用数字基带传输码型的编码规则。 3.掌握用FPGA实现码型变换的方法。 二、实验内容 1.观察NRZ、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。2.观察全0码或全1码时各码型波形。 3.观察HDB3码、AMI码、BNRZ码正、负极性波形。 4.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。 5.自行设计码型变换电路,下载并观察输出波形。 三、实验器材 1.信号源模块 2.码型变换模块 3.20M双踪示波器一台 4.频率计(可选)一台 5.PC机(可选)一台 6.连接线若干 四、实验原理 1.编码规则 ①NRZ码(见教材) ②RZ码(见教材) ③BNRZ码-双极性不归零码 1 0 1 0 0 1 1 0 +E -E ④BRZ码-双极性归零码 1 0 1 0 0 1 1 0 +E -E ⑤AMI码(见教材) ⑥HDB3码(见教材) ⑦BPH码

BPH码的全称是数字双相码(Digital Diphase),又叫分相码(Biphase,Split-phase)或曼彻斯特码(Manchester),其编码规则之一是: 0 01(零相位的一个周期的方波); 110(π相位的一个周期的方波)。例如: 代码: 1 1 0 0 1 0 1 双相码: 10 10 01 01 10 01 10 这种码既能提取足够的定时分量,又无直流漂移,编码过程简单。但带宽要宽些。⑧CMI码 CMI码的全称是传号反转码,其编码规则如下:信息码中的“1”码交替用“11”和“00”表示,“0”码用“01”表示。例如: 代码: 1 1 0 1 0 0 1 0 CMI码: 11 00 01 11 01 01 00 01 这种码型有较多的电平跃变,因此,含有丰富的定时信息。该码已被ITU-T推荐为PCM四次群的接口码型。在光纤传输系统中有时也用CMI码作线路传输码型。 2.电路原理 将信号源产生的NRZ码和位同步信号BS送入U900(EPM7128SLC84-15)进行变换,可以直接得到各种单极性码和各种双极性码的正、负极性编码信号。解码时同样也需要送入FPGA进行解码,得到NRZ码。 ①NRZ码 从信号源“NRZ”点输出的数字码型即为NRZ码,请参考信号源工作原理。 ②BRZ、BNRZ码 将NRZ码和位同步信号BS分别送入双四路模拟开关U902(4052)的控制端作为控制信号,在同一时刻,NRZ码和BS信号电平高低的不同组合(00、01、10、11)将控制U902分别接通不同的通道,输出BRZ码和BNRZ码。X通道的4个输入端X0、X1、X2、X3分别接-5V、GND、+5V、GND,在控制信号控制下输出BRZ码;Y通道的4个输入端Y0、Y1、Y2、Y3分别接-5V、-5V、+5V、+5V,在控制信号控制下输出BNRZ 码。解码时通过电压比较器U907(LM339)将双极性的BRZ和BNRZ码转换为两路单极性码,即双—单(极性)变换,再送入U900进行解码,恢复出原始的NRZ码。 ③RZ、BPH码 同BRZ、BNRZ,因是单极性码,其编解码过程全在U900中完成,在这里不再赘述。 ④AMI码 由于AMI码是双极性的码型,所以它的变换过程分成了两个部分。首先,在U900中,将NRZ码经过一个时钟为BS的JK触发器后,再与NRZ信号相与后得到控制信号AMIB,该信号与NRZ码作为控制信号送入单八路模拟开关U905(4051)的控制端,U905的输出即为AMI码。解码过程与BNRZ码一样,也需先经过双—单变换,再送入U900进行解码。 ⑤HDB3码 HDB3码的编、解码框图分别如图3-1、3-2所示,其编、解码过程与AMI码相同,这里不再赘述。

通信原理报告数字基带信号HDB3码型编码转换实现

通信原理课程设计报告题目:数字基带信号HDB3码型编码转换实现 专业班级: 姓名: 学号:

指导教师: 设计任务要求: 仿真实现数字基带通信系统信源输入24位二进制序列产生HDB3码,通过高斯白噪声信道,接收端滤波、解码的时域图及频谱图。以矩形波为例,要现输入24位二进制序列产生AMI码,HDB3码,接收端滤波、解码上述码型。

摘要 HDB3码全称三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编

码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。HDB3码实行转换一般分为三个步骤,先将消息码转换AMI码然后加“V”,接着加“B”,这几部我们可以使用C语言进行编程实现。为了实现HDB3码的编码与转换,同时加深对通信系统工作原理的了解,我们采用了MATLAB软件进行编码仿真,同时学习掌握MATLAB软件的基础使用。 关键词:AMI码;HDB3码;编码;解码;MATLAB;仿真 目录 1. 设计原理 (4) 1.1 HDB3码的介绍 (4)

1.2 HDB3码的编码转换规则 (5) 1.3 HDB3码的解码转换规则 (5) 1.4 HDB3码的软件程序设计 (6) 2. MATLAB软件仿真结果及其分析 (10) 2.1 MATLAB软件的介绍 (10) 2.2 仿真结果图示 (12) 2.3 仿真结果分析 (15) 3. 设计总结及心得体会 (22) 4. 参考文献 (22) 5. 致 (23)

正文 1.设计原理 1.1 HDB3码的介绍 HDB3码即三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,“三阶”通俗讲就是最多3个连0码元,“高密度双极性”就是没有直流分量,不会连续出现+1或-1,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。 三阶高密度双极性码用于所有层次的欧洲E-carrier系统,HDB3码将4个连续的"0"位元取代成"000V"或"B00V"。这个做法可以确保连续的相隔单数的一般B记号。 1.2 HDB3的编码转换规则 HDB3码的编码规则主要分为3步: 1 .先将消息代码变换成AMI码,若AMI码中连0的个数小于4,此时的AMI 码就是HDB3码;

数字基带传输常用码型的MATLAB表示

数字基带传输常用码型的MATLA表示 在某些具有低通特性的有线信道中,特别是传输距离较近的情况下,数字基带信号不经调制可以直接传输,这种系统称为数字基带系统。而具有调制解调过程的数字系统称为数字带通传输系统。在第七章中,将列举数字带通传输系统仿真的例子,在本章中,我们重点讨论数字基带常用码型的产生,即数字基带信号的产生。教材中,我们以单极性不归零码和单极性不归零码的实现作为参考。 单极性不归零码MATLA程序如下: function y=snrz(x) % 本函数实现输入二进制码,输出编号的单极性非归零码 % 输入x 为二进制码,输出y 为单极性非归零码 num=200; % 单极性非归零码每一个码元包含的点 t=0:1/num:length(x); for i=1:length(x); if x(i)==1; for j=1:num; y((i-1)*num+j)=1; % 对应的点赋值为1 end else for j=1:num; y((i-1)*num+j)=0; % 对应的点赋值为0 end end end y=[y,x(i)]; % 为了绘制图形,注意要将y 序列加最后一位 plot(t,y); grid on; axis([0 i -0.2 1.2]); title(' 单极性非归零码1 0 0 1 0 1'); % 绘图 在MATLA命令行窗口中键入x的值,并调用函数snrz(x),就可以得到对应的单极性不归零码。如输入以下指令,将出现图 1 所示的结果。

单极性不归零码MATLA 程序如下: fun ctio n y=srz(x) %本函数实现输入二进制码,输出编号的单极性归零码 %输入x 为二进制码,输出y 为单极性归零码 plot(t,y); grid on; axis([0 i -0.2 1.2]); title(' 单极性非归零码 1 0 0 1 0 1'); num=200; %单极性非归零码每 t=0:1/num:le ngth(x); for i=1:le ngth(x); if x(i)==1; for j=1: nu m/2; y((i*2-2)* num/2+j)=1; % y((i*2-1)*num/2+j)=0; % end else for j=1: num; y((i-1)*num+j)=0; % end end end y=[y,x(i)]; % 个码元包含的点 对1而言,前半部分时间值为1 对1而言,后半部分时间值为0 对应的点赋值为0 为了绘制图形,注意要将 y 序列加最后一位 单极性非归零码1 0 0 1 0 1 图1单极性不归零码

通信原理实验 CMI码型变换 实验报告

姓名:学号:班级: 第周星期第大节 实验名称:CMI码型变换 一、实验目的 1.掌握CMI编码规则。 2.掌握CMI编码和解码原理。 3.了解CMI同步原理和检错原理。 二、实验仪器 1.ZH5001A通信原理综合实验系统 2.20MHz双踪示波器 三、实验内容 1.CMI码编码规则测试 (1)7位m序列输入,无加错,CMI输出。用示波器观测如下数据: 2.“1”码状态记忆测试 (2)7位m序列输入。用示波器观测如下数据: ?CMI编码输入数据(TPX01),1码状态记忆输出(TPX03)

3.CMI码编解码波形测试 用示波器观测如下数据: 4.CMI码编码加错波形观测 用示波器观测4个加错点加错时和不加错时的输出波形

加错无错 加错无错 加错无错

5.CMI码检错功能测试 (1)输入数据为Dt,人为加入错码。用示波器观测如下波形 (2)输入数据为M,人为加入错码。用示波器观测如下波形 ?加错指示点(TPX06),检测错码检测点(TPY05)

有些加错点对应的检错点都没有影响,说明输入M序列有些加错点没有 6.CMI译码同步观测 (1)输入Dt,不经过CMI编码。错码。用示波器观测如下波形 (2)输入Dt,经过CMI编码。错码。用示波器观测如下波形 ?检测错码检测点(TPY05)

经过CMI编码后处在同步状态,因为周期的输入加错,所以示波器中出 7.抗连0码性能测试 (1)输入全0。用示波器观测如下波形 (2)看输入数据和输出数据是否相同。用示波器观测如下波形 ?CMI编码输入数据(TPX01),输出编码数据(TPY07)

基带传输常用码型及基带信号频谱实验

基带传输常用码型及基带信号频谱实验 一、实验目的 1、熟悉通信基带信号功率谱基本原理 2、熟悉SYSTEMVIEW软件的信号谱分析应用 3、掌握使用SYSTEMVIEW软件生成最常用基带信号与数字双相传输码的基本方法 二、实验原理: 1、数字基带信号的频谱特性 数字基带信号是随机的脉冲序列,只能用功率谱来描述它的频谱特性。研究好数字基带信号的功率谱,就可以了解信号带宽,有无直流分量,有无定时分量。这样才能选择匹配的信道,确定是否可提取定时信号。 经过合理假设下的严格数学推导,可以得到以下主要结论: (1)随机脉冲序列功率谱包括连续谱和离散谱; (2)单极性信号中有无离散谱取决于矩形脉冲的占空比,归零信号中有定时分量。不归零信号中无定时分量。0、1等概的双极性信号没有离散谱,即同时没有直流分量和定时分量。 (3)随机序列的带宽主要依赖单个码元波形的频谱函数G1(f)或G2(f),通常以谱的第一个零点作为矩形脉冲的近似带宽,它等于脉宽τ的倒数。 2、传输系统发射与信道部分的基本结构如图2—1所示。如果系统直接传送基带信号,称之为基带传输系统。 图2—1 在基带传输系统中,系统的输入是数字基带信号,它不一定适合直接在信道中传输。信道信号形成器的作用就是把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。称此信号形成器为数字基带调制器;与此对应的,在接收端将信道基带信号变换成原始数字基带信号,称之为基带解调器。 3、数字基带调制器中的波形变换与码型变换 在数字基带调制器中,波形变换后传输电波形常见的有矩形脉冲、三角波、高斯脉冲和升余弦脉冲波形等。最常用的是矩形脉冲波形,正如我们在前面通原

基带信号常用码型转换

通信原理大作业 用matlab仿真 1.幅频失真 S(t)=sint+1/3sin3t, S’(t)=sint+sin3t; 相频失真 S(t)=sint+1/3sin3t, S’(t)=sin(t+2pi)+1/3sin(3t+3pi). 程序: x=0:pi/20:3*pi; y1=sin(x)+(sin(3*x))/3; y2=sin(x)+sin(3*x); y3=sin(x+2*pi)+(sin(3*x+3*pi))/3; figure(1) plot(x,y1); hold on plot(x,y2,'r-'); legend('S(t)=sint+1/3sin3t','S(t)=sint+sin3t') figure(2) plot(x,y1); hold on plot(x,y3,'r-'); legend('S(t)=sint+1/3sin3t','S(t)=sin(t+2*pi)+1/3sin(3t+3*pi)')

幅频失真 相频失真

2. 将输入的一串0,1编码 1) 转换成AMI 码 2) 转换成HDB3码 3) 转换成双相码 4) 转换成Miller 码 5) 转换成CMI 码 总流程 开始 输入数组 依次显示五种码形 结束 转换成AMI 码 转换成CMI 码 转换成 HDB3 码 转换成双相码 转换成Miller 码

转化成五种码具体流程 思路:数组xn 中0保持不变;并统计1个数,当为偶数1保持不变;当为奇数1变换为-1 1) 转换成AMI 码 no no no 得到数组xn Xn (i )是否=1 num=num+1 num 是否为偶数 得到数组xn 长度k i=1; num=0 yn(i)=xn(i) yn(i)=xn(i) yn(i)= -xn(i) i 是否=k 得到数组yn i=i+1

数字基带传输常用码型的MATLAB表示

数字基带传输常用码型的MATLAB表示 在某些具有低通特性的有线信道中,特别是传输距离较近的情况下,数字基带信号不经调制可以直接传输,这种系统称为数字基带系统。而具有调制解调过程的数字系统称为数字带通传输系统。在第七章中,将列举数字带通传输系统仿真的例子,在本章中,我们重点讨论数字基带常用码型的产生,即数字基带信号的产生。教材中,我们以单极性不归零码和单极性不归零码的实现作为参考。 单极性不归零码MA TLAB程序如下: function y=snrz(x) % 本函数实现输入二进制码,输出编号的单极性非归零码 % 输入x为二进制码,输出y为单极性非归零码 num=200; % 单极性非归零码每一个码元包含的点 t=0:1/num:length(x); for i=1:length(x); if x(i)==1; for j=1:num; y((i-1)*num+j)=1; % 对应的点赋值为1 end else for j=1:num; y((i-1)*num+j)=0; % 对应的点赋值为0 end end end y=[y,x(i)]; % 为了绘制图形,注意要将y序列加最后一位 plot(t,y); grid on; axis([0 i -0.2 1.2]); title('单极性非归零码1 0 0 1 0 1'); % 绘图 在MATLAB命令行窗口中键入x的值,并调用函数snrz(x),就可以得到对应的单极性不归零码。如输入以下指令,将出现图1所示的结果。

单极性非归零码 1 0 0 1 0 1 0123456 图1 单极性不归零码 单极性不归零码MA TLAB程序如下: function y=srz(x) % 本函数实现输入二进制码,输出编号的单极性归零码 % 输入x为二进制码,输出y为单极性归零码 num=200; % 单极性非归零码每一个码元包含的点 t=0:1/num:length(x); for i=1:length(x); if x(i)==1; for j=1:num/2; y((i*2-2)*num/2+j)=1; % 对1而言,前半部分时间值为1 y((i*2-1)*num/2+j)=0; % 对1而言,后半部分时间值为0 end else for j=1:num; y((i-1)*num+j)=0; % 对应的点赋值为0 end end end y=[y,x(i)]; % 为了绘制图形,注意要将y序列加最后一位 plot(t,y); grid on; axis([0 i -0.2 1.2]); title('单极性非归零码1 0 0 1 0 1'); 同上,在MATLAB命令行窗口中键入x的值,并调用函数srz(x),就可以得到对应的单极性归零码。如输入以下指令,将出现图2所示

实验3基带信号的常见码型变换

信息院 14电本 基带信号的常见码型变换实验 一、实验目的 1.熟悉RZ 、BNRZ 、BRZ 、CMI 、曼彻斯特、密勒、PST 码型变换原理及工作过程; 2.观察数字基带信号的码型变换测量点波形。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.20M 双踪示波器1台 三、实验工作原理 在实际的基带传输系统中,传输码的结构应具有下列主要特性: 1) 相应的基带信号无直流分量,且低频分量少; 2) 便于从信号中提取定时信息; 3) 信号中高频分量尽量少,以节省传输频带并减少码间串扰; 4) 不受信息源统计特性的影响,即能适应于信息源的变化; 5) 编译码设备要尽可能简单 1.1 单极性不归零码(NRZ 码) 单极性不归零码中,二进制代码“1”用幅度为E 的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。 0000 E +1111 图16-1 单极性不归零码 1.2 双极性不归零码(BNRZ 码) 二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。 10111000E +E -0 图 16-2 双极性不归零码 1.3 单极性归零码(RZ 码) 单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。单极性码可以直接提取定时信息,仍然含有直流成分。

0000 1111E +0 图 16-3 单极性归零码 1.4 双极性归零码(BRZ 码) 它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。 0000 1111E +0E - 图 16-4 双极性归零码 1.5 曼彻斯特码 曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。 例如: 消息代码: 1 1 0 0 1 0 1 1 0… 曼彻斯特码:10 10 01 01 10 01 10 10 01… 曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。 0000 1111E +E -0 图 16-5 曼彻斯特编码 1.6 CMI 码 CMI 码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则: “1”码交替的用“11“和”“00”两位码表示; “0”码固定的用“01”两位码表示。 例如: 消息代码:1 0 1 0 0 1 1 0… CMI 码: 11 01 00 01 01 11 00 01… 或: 00 01 11 01 01 00 11 01…

AMI码型变换实验报告

实验一AMI码型变换实验 一、实验目的 1、了解几种常用的数字基带信号的特征和作用。 2、掌握AMI码的编译规则。 3、了解滤波法位同步在的码变换过程中的作用。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、AMI编译码实验原理框图 AMI编译码实验原理框图 2、实验框图说明

AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。 AMI译码只需将所有的±1变为1,0变为0即可。实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。 四、实验步骤 实验项目一AMI编译码(256KHz归零码实验) 概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【256K 归零码实验】。将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。 3、此时系统初始状态为:编码输入信号为256K的PN序列。 (1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。

注:观察时注意码元的对应位置。 (2)用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。 思考:译码过后的信号波形与输入信号波形相比延时多少? 编译码延时小于3个码元宽度 实验项目二AMI编译码(256KHz非归零码实验)

相关主题
文本预览
相关文档 最新文档