当前位置:文档之家› 电动力学习题解答3

电动力学习题解答3

电动力学习题解答3
电动力学习题解答3

第三章 静磁场

1. 试用A 表示一个沿z 方向的均匀恒定磁场0B ,写出A 的两种不同表示式,证明二者之差为无旋场。

解:0B 是沿 z 方向的均匀恒定磁场,即 z B e B 00=,由矢势定义B A =??得

0//=??-??z A y A y z ;0//=??-??x A z A z x ;0//B y A x A x y =??-??

三个方程组成的方程组有无数多解,如:

10==z y A A ,)(0x f y B A x +-= 即:x x f y B e A )]([0+-=; ○20==z x A A ,)(0y g x B A y += 即:y y g x B e A )]([0+= 解○1与解○2之差为y x y g x B x f y B e e A )]([)]([00+-+-=? 则 0)//()/()/()(=??-??+??+?-?=???z x y y x x y y A x A z A z A e e e A 这说明两者之差是无旋场

2. 均匀无穷长直圆柱形螺线管,每单位长度线圈匝数为n ,电流强度I ,试用唯一性定理

求管内外磁感应强度B 。

解:根据题意,取螺线管的中轴线为 z 轴。本题给定了空间中的电流分布,故可由

??=

'43

0dV r r

J B πμ 求解磁场分布,又 J 只分布于导线上,所以

??=3

04r Id r l B πμ

1)螺线管内部:由于螺线管是无限长理想螺线管,所以其内部磁场是均匀强磁场,故只须求出其中轴 线上的磁感应强度,即可知道管

内磁场。由其无限长的特性,不z y x z a a e e e r ''sin 'cos ---=φφ, y x ad ad d e e l 'cos ''sin 'φφφφ+-= )''sin 'cos ()'cos ''sin '(z y x y x z a a ad ad d e e e e e r l ---?+-=?φφφφφφ

z y x d a d az d az e e e '''sin '''cos '2φφφφφ+--= 取''~'dz z z +的一小段,此段上分布有电流'nIdz

?++--=∴2

/3222

0)

'()'''sin '''cos '('4z a d a d az d az nIdz z y x e e e B φφφφφπμ ???+∞

-+∞

-=+=+=z z I n a z a z d nI nI z a dz a d e e 02/3202/3222200

])/'(1[)

/'(2)'('

'4μμφπ

μπ

2)螺线管外部:由于螺线管无限长,不妨就在过原点而垂直于轴线的平面上任取一点

)0,,(φρP 为场点,其中a >ρ。

222')'sin sin ()'cos cos ('z a a r +-+-=-=φφρφφρx x

)'cos(2'222φφρρ--++=a z a

z y x z a a e e e x x r ')'sin sin ()'cos cos ('+-+-=-=φφρφφρ

y x ad ad d e e l 'cos ''sin 'φφφφ+-=

z y x d a a d az d az d e e e r l ')]'cos([''sin '''cos '2φφφρφφφφ--+--=?

??

????--+-+-=∴??????+∞∞-+∞∞-+∞∞-')'cos('''sin ''''cos ''432

203203200

dz r a a d dz r az d dz r az d nI z y x φφρφφφφφπ

μπππe e e B 0=

3. 设有无限长的线电流I 沿z 轴流动,在z<0空间充满磁导率为μ的均匀介质,z>0区域为真空,试用唯一性定理求磁感应强度B ,然后求出磁化电流分布。

解:设z>0区域磁感应强度和磁场强度为1B ,1H ;z<0区域为2B ,2H ,由对称性可知1H

和2H 均沿θe 方向。由于H 的切向分量连续,所以θe H H H ==21。由此得到

021==n n B B ,满足边值关系,由唯一性定理可知,该结果为唯一正确的解。

以 z 轴上任意一点为圆心,以 r 为半径作一圆周,则圆周上各点的H 大小相等。根

据安培环路定理得:I rH =π2,即r I H π2/=,()θπe H H r I 2/21== ()θπμμe H B r I 2/0111==∴,(z >0);

()θπμμe H B r I 2/222==,(z <0)。

在介质中 ()()θμμπμe H B M 1/2//0202-=-=r I 所以,介质界面上的磁化电流密度为:

()()()()r z r I r I e e e n M α1/2/1/2/00-=?-=?=μμπμμπθ

总的感应电流:()()()1/1/2/020

-=?-=?=

??μμ?μ

μππ

θθI rd r I d I e e l M ,

电流在 z<0 区域内,沿 z 轴流向介质分界面。 4. 设x<0半空间充满磁导率为μ的均匀介质,x>0空间为真空,今有线电流I 沿z 轴流动,

求磁感应强度和磁化电流分布。

解:假设本题中的磁场分布仍呈轴对称,则可写作

φπμe B )2/'(r I =

它满足边界条件:0)(12=-?B B n 及0)(12==-?αH H n 。由此可得介质中:

φπμμμe B H )2/'(/2r I ==

由 M B H -=02/μ得:

在x <0 的介质中 φμμμμπμe M 0

2'-=

r I ,

则: 0

020002)('02'μμμμμφφμμμμπμπππ

-=+-=?=???I d d r r I d I M l M 再由 φφπμπμe e B )2/'(2/)(0r I r I I M =+= 可得)/(2'00μμμμμ+=,所以

r I πμμμμφ)/(00+=e B ,)/()(00μμμμ+-=I I M (沿 z 轴)

5. 某空间区域内有轴对称磁场。在柱坐标原点附近已知)2/(2

20ρ--≈z C B B z ,其中

0B 为常量。试求该处的ρB 。

提示:用0=??B ,并验证所得结果满足0=??H 。

解:由于B 具有对称性,设z z B B e e B +=ρρ, 其中 )2/(2

20ρ--=z C B B z

0=??B Θ,0)(1=??+??∴

z B z B ρρρρ,即:02)(1=-??

cz B ρρρ

ρ, a cz B +=∴2ρρρ(常数)。

当0→ρ时,ρB 为有限,所以 0=a ;ρρcz B =,即:

z z c B cz e e B )]2/([220ρρρ--+= (1)

因为0=J ,0=D ,所以 0=??B ,即0)//(=??-??θρρρe B z B (2) 直接验证可知,(1)式能使(2)式成立,所以ρρcz B =,(c 为常数)

6. 两个半径为a 的同轴圆形线圈,位于L z ±=面上。每个线圈上载有同方向的电流I 。

(1)求轴线上的磁感应强度。

(2)求在中心区域产生最接近于均匀常常时的L 和a 的关系。 提示:用条件0/2

2

=??z B z

解:1) 由毕—萨定律,L 处线圈在轴线上 z 处产生的磁感应强度为

z z B e B 11=,

2

/3222

2/3222030

1])[(121])([4sin 4a L z Ia d L z a Ia r Id B z +-=-+=?=??

μθπμαπ

μr l 同理,-L 处线圈在轴线上 z 处产生的磁感应强度为:

z z B e B 22=,2/322202]

)[(121a L z Ia B z ++=

μ。 所以,轴线上的磁感应强度:

??????++++-=

=2/3222/32220])[(1]

)[(121a L z a L z Ia B z z μe B (1) 2)因为 0=??B ,所以 0)()(2

=?-???=????B B B ;

又因为0=??B ,所以 02

=?B ,0/2

2

=??z B z 。代入(1)式并化简得:

-

+++++--+-----2/72222/5222/7222])[()(5])[(])[()(5a z L z L a z L a z L z L 0]

)[(2

/522

=++--a z L

将 z=0 带入上式得:2

2

2

5a L L +=, 2/a L =∴

7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方

程。设导体的磁导率为0μ,导体外的磁导率为μ。 解:矢势所满足的方程为:

?????>=?<-=?)

(,0)(,2

02a r a r 外内A J

A μ 自然边界条件:0→r 时,内A 有限。

边值关系:a

r a

r ===外

A A ;

a r a r ==??=

??|1

|1

外内A A μ

μ

选取柱坐标系,该问题具有轴对称性,且解与 z 无关。令

z r A e A )(内内=,z r A e A )(外外=, 代入微分方程得:

J r r A r r r 0))((1μ-=????内;0))

((1=????r

r A r r r 外 解得:212

0ln 4

1)(C r C Jr r A ++-=μ内;43ln )(C r C r A +=外

由自然边界条件得01=C ,

由 a r a r ==??=??|1|10外内A A μμ 得:232

Ja C μ

-=, 由 a r a

r ===外内A A 并令其为零,得:2

0241Ja C μ=,a Ja C ln 2

24μ=。 )(41220r a -=∴J A μ内;r

a

a ln 212J A μ=外

8. 假设存在磁单极子,其磁荷为m Q ,它的磁场强度为3

04/r Q m πμr H =。给出它的矢

势的一个可能的表示式,并讨论它的奇异性。 解:r

m m r

Q r Q e r H 20301

44πμπμ==

由 r

m

r Q e H B A 204πμ===?? 得: ??????

???=??-??=??

-??=??-??0]([10)](sin 1[

14])(sin [sin 1

2

θφθπφθθθθ

φθφr

r m A rA r

r rA r A r r Q A A r (1) 令 0==θA A r ,得: r

Q A m πθθθφ4sin )(sin =??

?=∴θφθπθθ04sin sin d r Q A m , θ

θ

πφsin cos 14r Q A m -= (2)

显然 φA 满足(1) 式,所以磁单极子产生的矢势φθ

θ

πe A sin cos 14r Q m

-= 讨论: 当0→θ时,0→A ;

当2/πθ→时,r Q m πφ4/e A →;

当πθ→时,∞→A ,故A 的表达式在πθ=具有奇异性,此时A 不合理。

9. 将一磁导率为μ,半径为0R 的球体,放入均匀磁场0H 内,求总磁感应强度B 和诱导磁矩m 。(对比P49静电场的例子。)

解:根据题意,以球心为原点建立球坐标,取H 0的方向为z e ,此球体被外加磁场磁化后,

产生一个附加磁场,并与外加均匀场相互作用,最后达到平衡,呈现轴对称。 本题所满足的微分方程为:

?????>=?<=?)

(,0

)(,0022012R R R R m m ?? (1)

自然边界条件:0

1=R m ?为有限;θ?cos 02

R H R m -=∞

=。

衔接条件:在0R R =处满足 21m m ??= 及 R R m m ??=??//201?μ?μ 由自然边界条件可确定方程组(1)的解为:

∑∞==0

1)(cos n n n

n m P R a θ?; ∑∞

=+-+-=0

)1(02)(cos cos n n n n m P R d R H θθ?

由两个衔接条件,有:

∑∑∞

=+-∞

=+-=0

)1(00

)(cos cos )(cos n n n n n n n

n

P R d R H P R a

θθθ

∑∑∞

=+-∞

=-+--=0

)2(0000

1

)(cos )1(cos )(cos n n n n n n n n P R d n H P nR

a θμθμθμ

比较)(cos θn P 的系数,解得:)2/(30001μμμ+-=H a ;

)2/()(030001μμμμ+-=R H d ; 0==n n d a ,)1(≠n

即:)2/(cos 30001μμθμ?+-=R H m ,(0R R <)

20300002)2/(cos )(cos R R H R H m μμθμμθ?+-+-=,(0R R >) )2/(300011μμμ?+=-?=∴H H m

])(3[2)(30

503000022R

R R m H R R H H H -?+-+=-?=μμμμ?

??

?

??<-?+-+=<+==)(,])(3[2)()(,)2/(30305030000002

000001R R R R R R R H R R H H H H H B μμμμμμμμμμμμ 在R

)2/()(4)3/4(003

0030μμμμππ+-===∴?H M M m R R dV V

10. 有一个内外半径为1R 和2R 的空心球,位于均匀外磁场0H 内,球的磁导率为μ,求空

腔内的场B ,讨论0μμ>>时的磁屏蔽作用。

解:根据题意,以球心为原点,取球坐标,选取H 0的方向为z e ,在外场H 0的作用下,空

心球被磁化,产生一个附加磁场,并与原场相互作用,最后达到平衡,B 的分布呈现轴对称。磁标势的微分方程为:

012=?m ? )(1R R < ;022=?m ? )(21R R R << ;032=?m ? )(2R R >

自然边界条件:0

1=R m ?为有限;θ?cos 03

R H R m -=∞

=。

衔接条件:1

211

R R m R R m ===?? ; 12110//R R m R R m R R ==??=???μ?μ; 2

3

2

2

R R m R R m ===??; 22230//R R m R R m R R ==??=???μ?μ

由轴对称性及两个自然边界条件,可写出三个泛定方程的解的形式为:

∑∞==0

1)(cos n n n

n m P R a θ?; ∑∞

=+-+=0

)1(2)(cos ][(n n n n n n m P R c R b θ?;

∑∞

=+-+-=0

)1(03)(cos cos n n n n m P R d R H θθ?

因为泛定方程的解是把产生磁场的源H 0做频谱分解而得出的,分解所选取的基本函数系是其本征函数系)}(cos {θn P 。在本题中源的表示是:

)(cos cos 100θθRP H R H -=-

所以上面的解中, 0====n n n n d c b a ,)1(≠n 解的形式简化为: θ?cos 11R a m =;

θ?cos )(2112-+=R c R b m ;

θθ?cos cos 2103-+-=R d R H m

代入衔接条件得:2

111111-+=R c R b R a , 2212022121--+-=+R d R H R c R b ,

)2(311110--=R c b a μμ, 32100032112)2(----=-R d H R c b μμμ。

解方程组得:

3

20031203

2

001)2)(2()(26R R R H a μμμμμμμμ++--=, 3

2

0031203

2

0001)2)(2()(2)2(3R R R H b μμμμμμμμμ++--+=,

3

2

0031203

2

310001)2)(2()(2)(3R R R R H c μμμμμμμμμ++---=, 3

2

0031203

2

03231001)2)(2()(2))()(2(R R R H R R d μμμμμμμμμμ++----+=。

从而,空间各点磁标势均可确定。空腔内:

z r m a a a e e e H B 101110101sin cos μθθ?μμθ-=-=?-==

当0μμ>>时,01≈a ,所以01≈B 。即空腔中无磁场,类似于静电场中的静电屏蔽。 11. 设理想铁磁体的磁化规律为00M H B μμ+=,其中0M 是恒定的与H 无关的量。今将

一个理想铁磁体做成的均匀磁化球(0M 为常值)浸入磁导率为'μ的无限介质中,求磁感应强度和磁化电流分布。

解:根据题意,取球心为原点,建立球坐标系,以M 0的方向为z e ,本题具有轴对称的磁场

分布,磁标势的微分方程为:

012=?m ? )(0R R < ; 022=?m ? )(0R R >

自然边界条件:0

1=R m ?为有限;02

=∞

=R m ?。

衔接条件: 0

2

1

R R m R R m ===?? ;

θμ?μ?μcos /'/000201M R R R R m R R m =??-??==;

由轴对称性及两个自然边界条件,可写出拉普拉斯方程通解的形式为:

∑∞==0

1)(cos n n n

n m P R a θ?; ∑∞

=+-=0

)1(2)(cos n n n n m P R b θ?;

代入衔接条件,比较)(cos θn P 各项的系数,得:

0==n n b a ,)1(≠n ;)'2/(001μμμ+=

M a ;)'2/(30001μμμ+=R M b

)'2/(cos 001μμθμ?+=∴R M m , )(0R R <

23

0002)'2/(cos R R M m μμθμ?+=,)(0R R >

由此 )'2/('20000101μμμμμμ+=+=M M H B

])(3['2''30

5

03

0022R

R R m M R R M B -?+=?-=μμμμ?μ ??

???>-?+<+=)(])(3['2')()

'2/('2030

5

03

00000R R R R R R R M M R R M B μμμμμμμμ 又 )()(0012ααB B n +=-?M R μ,(其中0=α)将B 的表达式代入,得:

)'2/(sin '300μμθμφ+-=M M e α

12. 将上题的永磁球置入均匀外磁场0H 中,结果如何?

解:根据题意假设均匀外场0H 的方向与M 0的方向相同,定为坐标 z 轴方向。磁标势的微

分方程为:

012=?m ? )(0R R < ; 022=?m ? )(0R R >

自然边界条件:0

1=R m ?为有限;θ?cos 02

R H R m -=∞

=。

衔接条件: 0

2

1

R R m R R m ===?? ;

θμ?μ?μcos //0002001M R R R R m R R m =??-??==;

解得满足自然边界条件的解是:

θ?cos 11R a m =,)(0R R <

θθ?cos cos 2102-+-=R d R H m ,)(0R R >

代入衔接条件,得:2

010001-+-=R d R H R a

0013010002M a R d H μμμμ=++-

解得: )2/()3(000001μμμμ+-=H M a

)2/(])([03

000001μμμμμ+-+=R H M d

)2/(cos )3(000001μμθμμ?+-=∴R H M m ,)(0R R <

])2/[(cos ])([cos 203

0000002R R H M R H m μμθμμμθ?+-++-=,)(0R R > )2/()3(000011μμμ?+--=-?=H M H m

)2/(2)2/(3002

00000011μμμμμμμμμ+++=+=M H M H B ,)(0R R <

35022//)(3R R m m R R m H H -?+=-?=?,

其中 )2/(])([03

00000μμμμμ+-+=R H M m

]//)(3[3500202R R m R R m H H B -?+==μμ,)(0R R >

13. 有一个均匀带电的薄导体壳其半径为0R ,总电荷为Q ,今使球壳绕自身某一直径以角

速度ω转动,求球内外的磁场B 。

提示:本题通过解A 或m ?的方程都可以解决,也可以比较本题与§5例2的电流分布得到结果。

解:根据题意,取球体自转轴为 z 轴,建立球坐标系。磁标势的微分方程为:

012=?m ? )(0R R < ; 022=?m ? )(0R R >

自然边界条件:0

1

=R m ?为有限;02

=∞

=R m ?。

衔接条件: 00124/sin /)//(R Q R R R m m πθωσθ?θ?-=-=??-??= ;

02001//R R m R R m R R ==??=???μ?μ;

其中 04/sin R Q πθωσ= 是球壳表面自由面电流密度。

解得满足自然边界条件的解是:

θ?cos 11R a m =,)(0R R <

θ?cos 212-=R b m ,)(0R R >

代入衔接条件,得:0201014/R Q R b R a πω-=--; 023

011=+-R b a 解得: 016/R Q a πω-=, πω12/2

01R Q b =

016/cos R R Q m πθω?-=∴,)(0R R <

220212/cos R R Q m πθω?=,)(0R R > 0116/R Q m π?ωH =-?=∴

001016/R Q πμμωH B ==,)(0R R <

π?4/]//)(3[3522R R m m R R m H -?=-?=,

其中 3/2

0ωm QR =

πμμ4/]//)(3[350202R R m R R m H B -?==,)(0R R >

14. 电荷按体均匀分布的刚性小球,其总电荷为Q ,半径为0R ,它以角速度ω绕自身某一

直径转动,求(1)它的磁矩;(2)它的磁矩与自转角动量之比(设质量M 0是均匀分布的)。 解:1)磁矩dV ??=

)(2

1

x J x m

又 r R e R x ==,)()3/4()(3

R ωv x J ?=

=R Q

πρ φθθπωφθθπφd dRd R R Q d dRd R R Q r 2

430

230sin )(4321sin )(4321???=??=e e R ωR m 又 )sin cos (cos sin y x z r e e e e e e φφθθθφ--+=-=?

???

--+=

∴0

240

20

30

sin )sin cos (cos [sin 83R y x z dR R d d R Q θφφθθθφπω

π

π

e e e m

ωe 5sin 832

003

402030

0QR dR R d d R Q R z ==???θθφπωππ 2)自转动量矩:

??????=?=?==dV R M dm d d )(4330

R ωR v R P R L L π ???=

φθθωπd dRd R R R M r z r sin )(432

230

0e e e ??-=φθθθωπφd dRd R R M z sin )sin (43430

0e e ?-=φθθθωπθd dRd R R M sin )(sin 43430

0e ???--+=002

402030

0sin )sin cos (cos [sin 43R y x z dR R d d R M θφφθθθφπωππe e e ωω52sin 432

0003

402030

00R M dR R d d R M R ==???θθφπππ 02//M Q =∴L m

15. 有一块磁矩为m 的小永磁体,位于一块磁导率非常大的实物的平坦界面附近的真空中,

求作用在小永磁体上的力F 。 解:根据题意,因为无穷大平面的μ很大,则在平面上所有的H 均和平面垂直,类比于静电

场,构造磁矩m 关于平面的镜像'm ,则外场为:

m e ?μ?-=0B

而 2

34cos 4r

m r m πθ

π?=?=R m )sin cos 2(4)sin cos 2(43

0330θθθθπμθ

θπμe e e e B +=---=∴r r e r

m r r m m 受力为:

z a

r e

a

m e B m F )cos 1(643)(24

2

02απμα

θ+-=??===

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什 么? 3.请写出相对论中能量、动量的表达式以及能量、动量和静止质量的关 系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 21 2εεθθ= t a n t a n ,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两 侧电力线与法线的夹角。(15分) 四. 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,介电常数为1ε和 2ε,今在两板上接上电动势为U 的电池,若介质是漏电的,电导率分别为1 σ和2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω和介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔内的电场(分离变量法)。(15分)

3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向是均匀的,求可能传播的波型和相应的截止频率.(15分) 4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,他看到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:2 2 022 1A A j c t μ??-=-? 222201c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμμ?π π ?? ?? ''-- ? ?? ?? ? ''= =?? 2、由于电磁辐射的平均能流密度为222 3 2 0sin 32P S n c R θπε= ,正比于2 sin θ,反比于 2 R ,因此接收无线电讯号时,会感到讯号大小与大小和方向有关。 3 、能量:2 m c W = ;动量:),,m iW P u ic P c μ?? == ??? ;能量、动量和静止质量的关系为:22 22 02 W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 1 ε

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案

第 40 页 电动力学答案 第一章 电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=?? A A A A )()(2 2 1??-?=???A 解:(1))()()(c c A B B A B A ??+??=?? B A B A A B A B )()()()(??+???+??+???=c c c c B A B A A B A B )()()()(??+???+??+???= (2)在(1)中令B A =得: A A A A A A )(2)(2)(??+???=??, 所以 A A A A A A )()()(2 1 ??-??=??? 即 A A A A )()(2 2 1??-?=???A 2. 设u 是空间坐标z y x ,,的函数,证明: u u f u f ?=?d d )( , u u u d d )(A A ??=??, u u u d d )(A A ? ?=?? 证明: (1) z y x z u f y u f x u f u f e e e ??+??+??= ?)()()()(z y x z u u f y u u f x u u f e e e ??+??+??=d d d d d d u u f z u y u x u u f z y x ?=??+??+??=d d )(d d e e e (2) z u A y u A x u A u z y x ??+ ??+??=??)()()()(A z u u A y u u A x u u A z y x ??+??+??=d d d d d d u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (e e e e e e ??=??+??+???++=

电动力学期末考试试题库word版本

第一章 电磁现象的普遍规律 1) 麦克斯韦方程组是整个电动力学理论的完全描述。 1-1) 在介质中微分形式为 D ρ??=r 来自库仑定律,说明电荷是电场的源,电场是有源场。 0B ??=r 来自毕—萨定律,说明磁场是无源场。 B E t ???=-?r r 来自法拉第电磁感应定律,说明变化的磁场B t ??r 能产生电场。 D H J t ???=+?r r r 来自位移电流假说,说明变化的电场D t ??r 能产生磁场。 1-2) 在介质中积分形式为 L S d E dl B dS dt =-??r r r r g g ? , f L S d H dl I D dS dt =+??r r r r g g ?, f S D dl Q =?r r g ?, 0S B dl =?r r g ?。 2)电位移矢量D r 和磁场强度H r 并不是明确的物理量,电场强E r 度和磁感应强度B r ,两者 在实验上都能被测定。D r 和H r 不能被实验所测定,引入两个符号是为了简洁的表示电磁规律。 3)电荷守恒定律的微分形式为0J t ρ ??+ =?r g 。 4)麦克斯韦方程组的积分形式可以求得边值关系,矢量形式为 ()210n e E E ?-=r r r ,()21n e H H α?-=r r r r ,()21n e D D σ?-=r r r ,() 210n e B B ?-=r r r 具体写出是标量关系 21t t E E =,21t t H H α-=,21n n D D σ-=,21n n B B = 矢量比标量更广泛,所以教材用矢量来表示边值关系。 例题(28页)无穷大平行板电容器内有两层线性介质,极板上面电荷密度为f σ±,求电场和束缚电荷分布。 解:在介质1ε和下极板f σ+界面上,根据边值关系1f D D σ+-=和极板内电场为0,0 D +=r 得1f D σ=。同理得2f D σ=。由于是线性介质,有D E ε=r r ,得

电动力学试题库十及其答案

电动力学试题库十及其答案 简答题(每题5分,共15分)。 1 .请写出达朗伯方程及其推迟势的解. 2 .当您接受无线电讯号时,感到讯号大小与距离与方向有关,这就是为什 么? 3. 请写出相对论中能量、动量的表达式以及能量、动量与静止质量的关系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足:史宜w,其中i与2分别为两种介质的介电常数,1与2分别为界面两tan 1 1 侧电力线与法线的火角。(15分) 四、综合题(共55分)。 1. 平行板电容器内有两层介质,它们的厚度分另U为11与12,介电常数为1与2,今在两板上接上电动势为U的电池,若介质就是漏电的,电导率分别为1与2,当电流达到稳包时,求电容器两板上的自由电荷面密度f与介质分界面上的自由电荷面密度f。(15分) 2. 介电常数为的均匀介质中有均匀场强为E。,求介质中球形空腔内的电场(分离变量法)。(15分) 3. 一对无限大平行的理想导体板,相距为d,电磁波沿平行丁板面的z轴方向传播,设波在x方向就是均匀的,求可能传播的波型与相应的截止频率.(15分)

电动力学试题库十及其答案 4.一把直尺相对丁坐标系静止,直尺与x轴火角为,今有一观察者以速度v 沿x轴运动,她瞧到直尺与x轴的火角' 有何变化? (10分)二、简答题r、 (2v) 1、达朗伯万程:A i 2A c t2 ,八v v 推退势的 解:A x,t v,t v,t x,t —dV v 2、由于电磁辐射的平均能流密度为S32 2 c3R2 sin2音,正比于 sin2,反比于R2, 因此接收无线电讯号时,会感到讯号大小与大小与方向有关。 2 3、能量:W :m。:. i u2c2 m 。 ,1 u2c2 v u,ic V iW …,一… P,—;能重、动重与静止 c 质量的关系为:P2W 2 c 2 2 m b c 三、证明:如图所示 在分界面处,由边值关系可得 切线方向 法线万向 v v 又DE 由⑴得: E i sin i 由⑵(3)得: i E i cos E it D in E2t D2n E2sin i 2 E2 cos (5) 由⑷(5)两式可得:

电动力学试题

1、(15分)一半径为a的不接地导体球的中心与坐标原点重合,球上总电荷为零,两个电量均为q的点电荷置于x轴上,处(b,c均大于a),求:球外空间的电势;x=b处的电荷所受到的作用力。 2、(15分)两个无限大,相互平行的平面上均有面电流流动,其面电流密度大小均为K,且方向相反。求全空间的磁矢势A和磁感应强度B. 3、(20分)长和宽分别为a和b的矩形波导管内电磁波的群速度可定义为,其中W为单位时间内通过横截面的电磁能量的周期平均值,P为单位长度波导管内的电磁能量的周期平均值。如管内为真空,对波(m n均大于零),求W和P并由此求出。 4、(15分)电磁场存在时的动量守恒定律可表示为,其中g为电磁场,T为动量流密度张量。由该等式导出相应的角动量守恒定律的表达式,并给出角动量流密度张量的表达式。 5、(20分)位于坐标原点的电偶极距为的电偶极子,以匀角速度ω绕通过其中心的z轴在x-y平面转动,求辐射场E,B,辐射场能流密度的周期平均值和平均辐射功率。 6、(15分)在惯性系S中观测到:两个宇宙飞船A和B分别在两条平行直线上匀速运动,起速度大小均为c/2,方向相反,两平行线相距为d,飞船的大小远小于d,当两飞船相距为d时,由飞船A以3c/4的速度(也是在S系测量的)沿直线抛出一小球,问: 从飞船A上的观察者来看,为使小球正好与飞船B相遇,小球应沿什么方向抛出? 在飞船A上的观察者来看,小球的速率是多少? 文章来自:人人考研网(https://www.doczj.com/doc/792408106.html,)更多详情请参考:https://www.doczj.com/doc/792408106.html,/html/kaoyanshiti/201004/21-32447.html 一)考试内容 考试范围为理科院校物理系《电动力学》课程的基本内容。以郭硕鸿著《电动力学》(第二版)(高等教育出版社)为例,内容涵盖该教材的第一至六章,麦克斯韦方程、静电场、静磁场、电磁波的传播、辐射、狭义相对论均在其中。试题重点考查的内容: 一、静电场 1.拉普拉斯方程与分离变量法 2.镜象法 3.电多极矩 二、静磁场 1.矢势 2.磁标势 3.磁多极矩 三、电磁波的传播 1.平面电磁波 2.谐振腔 3.波导

电动力学期末考试试卷及答案五

判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1. 库仑力3 04r r Q Q F πε??'=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ? 。 ( ) 4. 在介质的界面两侧,电场强度E ?切向分量连续,而磁感应强度B ? 法向分 量连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 一. 简答题(每题5分,共15分)。 1.如果0>??E ρ ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ρ,能流密度s ρ 之间的关系。

二. 证明题(共15分)。 多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体内、外空间的B ?、H ? ; (2)体内磁化电流密度M j ? ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ? ,求介质中球形空腔内的电势和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B v 以及能流密度平均值S v 。(15分) 4.在接地的导体平面有一半径为a 的半球凸部,半球的球心在导体平面上,如图所示。点电荷Q 位于系统的对称轴上,并与平面相距为b (a b >)。试用电像法求空间电势。(10分) Q a b ?

电动力学试题及其答案(3)

电动力学(C) 试卷 班级 姓名 学号 题号 一 二 三 四 总 分 分数 一、填空题(每空2分,共32分) 1、已知矢径r ,则 ×r = 。 2、已知矢量A 和标量 ,则 )(A 。 3、一定频率ω的电磁波在导体内传播时,形式上引入导体的“复电容率”为 。 4、在迅变电磁场中,引入矢势A 和标势 ,则E = , B = 。 5、麦克斯韦方程组的积分形 式 、 、 、 。 6、电磁场的能流密度为 S = 。 7、欧姆定律的微分形式为 。 8、相对论的基本原理 为 , 。 9、事件A ( x 1 , y 1 , z 1 , t 1 ) 和事件B ( x 2 , y 2 , z 2 , t 2 ) 的间隔为 s 2 = 。

10、位移电流的表达式为 。 二、判断题(每题2分,共20分) 1、由j B 0 可知,周围电流不但对该点的磁感应强度有贡献,而且对该点磁感应强度的旋度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波可以是横电波,也可以是横磁波。( ) 4、任何相互作用都是以有限的速度传播的。( ) 5、由0 j 可知,稳定电流场是无源场。。( ) 6、如果两事件在某一惯性系中是同时同地发生的,在其他任何惯性系中它们必同时发生。( ) 7、平面电磁波的电矢量和磁矢量为同相位。( ) 8、E 、D 、B 、H 四个物理量中只有E 、B 为描述场的基本物理量。( ) 9、由于A B ,虽然矢势A 不同,但可以描述同一个磁场。( ) 10、电磁波的亥姆霍兹方程022 E k E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性和微分性,证明 )cos()]sin([00r k E k r k E 式中r 为矢径,k 、0E 为常矢量。 2、已知平面电磁波的电场强度j t z c E E )sin(0 ,求证此平面电磁波的 磁场强度为 i t z c c E B )sin(0 四、计算题(每题10分,共30分) 1、迅变场中,已知)(0t r k i e A A , ) (0t r k i e ,求电磁场的E 和B 。 2、一星球距地球5光年,它与地球保持相对静止,一个宇航员在一年

太原理工2014《电动力学》试卷B

第 1 页 共 8 页 考试方式: 闭 卷 太原理工大学《电动力学》试卷B 一. 判断题(每小题3分,共15分;正确的打√,错误的打×,将正确答案填入下面的表格内。) 1. 在两种不同介质的分界面上,电场强度的切向分量不一定连续; ( ) 2. 麦克斯韦方程组与洛伦兹力公式是电动力学的理论基础; ( ) 3. 严格地说,电磁波具有波粒二象性。因此,用经典电磁理论研究微观电磁现象问题是不完善的。 ( ) 4. 均匀平面电磁波在金属导体内传播时,仍然是等幅(振幅无衰减)的均匀平面波 ;( ) 5. 不论是静态场还是时变电磁场,磁力线总是闭合曲线; ( ) 二. 选择题(每小题3分,共15分;将正确答案的字母填入下面的表格内。) 1. 一载有电流为I 的无限长的通电直导线处于磁导率为μ的介质中,若电流沿z 方向, 则距离该直导线任一位置处的矢势A ( ) A . 方向沿z e ; B . 方向沿?e ; C . 方向沿r e ; D . 以上都不对. 2.一角频率为ω的电磁波其电位移矢量为x t e E D ωεi 00e -=,则位移电流密度为( ) A. x e E 00i ωε; B . x t e E ωωεj 00e i -; C. x t e E ωωεi 00e i -- ; D. x t e E ωωi 0e i -.

第 2 页 共 8 页 3. 角频率为ω的电磁波电场强度矢量的亥姆霍茲方程形式为 ( ) A. 022=-?E E μεω; B. 022=+?E E μεω; C. 02=+?E E ωμε; D. 0222=??-?t E E με. 4. 某一角频率的微波在b a ?的矩形波导中传播,则21T E 模的截止波长为( ) A 2 2 2b a ab +;; B 2 2 42b a ab +;C 2 2 42b a ab +; D 2 2 b a ab +. 5. 真空中,洛仑兹规范的条件式为 ( ) A 0=??A ; B 02222 c 1ερφφ-=??-?t ; C A t A A 02222 c 1μ-=??-? ; D 0c 12=??+??t A φ . 三. 填空题(每小题2分,共10分;将正确答案填入下面的空格内。) 1. _________________; 2. _________________; 3. _________________; 4. _________________; 5. _________________。 1. 空气中一无限大的金属平板位于4x =处,一点电荷Q 位于(6,3,0)点处,假设该金属平板的电势为零,则像电荷的位置为 ; 2. 若0)()()(≠'-+'-+'-=z y x e z z e y y e x x r ,则=??r _______________; 3. 相对介电常数4=r ε 、磁导率1=r μ的理想介质中有一均匀平面电磁波斜入射到 另一种相对介电常数2=r ε 、磁导率1=r μ的理想介质中,则发生全反射时临界角大小为_________________; 4. 狭义相对论的基本原理有 和 原理。 5. 空气中一根无限长载流直导线沿z 轴放置,其内通有恒定电流I ,电流方向为坐标轴正向,则任一点处的磁感应强度为_________________;

电动力学试卷

一、填空题(每小题4分,共40分): 1、稳恒电磁场的麦克斯韦方程组为: ; ; ; 。 2、介质的电磁性质方程为: ; ; 。 3、一般情况下电磁场法向分量的边值关系为: ; 。 4、无旋场必可表为 的梯度。 5、矢势A 的物理意义是: 。 6、根据唯一性定理,当有导体存在时,为确定电场,所需条件有两类型:一类是给定 ,另一类是给定 。 7、洛伦兹规范的辅助条件为: 。 8、根据菲涅耳公式,如果入射电磁波为自然光,则经过反射或折射后,反射光为 光,折射光为 光。 9、当用矢势A 和标势?作为一个整体来描述电磁场时,在洛仑兹规范的条件下,A 和?满足的微分方程称为达朗贝尔方程,它们分别为: 和 。 10、当不同频率的电磁波在介质中传播时,ε和μ随频率而变的现象称为介质的 。 二、选择题(单选题,每小题3分,共18分): 1、一般情况下电磁场切向分量的边值关系为:< > A: ()210n D D ?-=;()210n B B ?-=; B: ()21n D D σ?-=;()210n B B ?-= ; C: ()210n E E ?-=;()210n H H ?-=; D: ()210n E E ?-=;()21n H H α?-=。

2、微分方程?×J+ =0?t ρ ?表明:< > A :电磁场能量与电荷系统的能量是守恒的; B :电荷是守恒的; C :电流密度矢量一定是有源的; D :电流密度矢量一定是无源的。 3、电磁场的能流密度矢量S 和动量密度矢量g 分别可表示为:< > A :S E H =?和0g E B ε=?; B :S E B =?和00g E B με=?; C :0S E H μ=?和g E B =?; D :0S E B ε=?和g E H =?。 4、用电荷分布和电势表示出来的静电场的总能量为:< > A: 012W dV ερ?= ?; B: 212 W dV ρ?=?; C: 212W dV ρ?=?; D: 1 2 W dV ρ?=?。 5、在矩形波导中传播的10TE 波:< > A :在波导窄边上的任何裂缝对10TE 波传播都没影响; B: 在波导窄边上的任何裂缝对10TE 波传播都有影响; C :在波导窄边上的任何纵向裂缝对10TE 波传播都没影响; D :在波导窄边上的任何横向裂缝对10TE 波传播都没影响; 6、矩形谐振腔的本征频率:< > A :只取决于与谐振腔材料的μ和ε; B :只取决于与谐振腔的边长; C :与谐振腔材料的μ、ε及谐振腔的边长都无关; D :与谐振腔材料的μ、ε及谐振腔的边长都有关。 三、计算(证明)题(共42分) 1、(本题8分)设u 为空间坐标x,y,z 的函数。证明: ()df f u u du ?= ? 2、(本题8分)试用边值关系证明:在绝缘介质与导体的分界面上,在静 班 级: 姓名: 学号: 密 封

电动力学试题库一及答案

福建师范大学物理与光电信息科技学院 20___ - 20___ 学年度学期____ 级物理教育专业 《电动力学》试题(一) 试卷类别:闭卷 考试时间:120分钟 姓名______________________ 学号____________________ 一.判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1.电磁场也是一种物质,因此它具有能量、动量,满足能量动量守恒定律。 ( ) 2.在静电情况,导体内无电荷分布,电荷只分布在表面上。 () 3.当光从光密介质中射入,那么在光密与光疏介质界面上就会产生全反射。

() 4.在相对论中,间隔2S在任何惯性系都是不变的,也就是说两事件时间先后关系保持不变。 () 5.电磁波若要在一个宽为a,高为b的无穷长矩形波导管中传播,其角 频率为 2 2 ? ? ? ? ? + ? ? ? ? ? ≥ b n a m με π ω () 二.简答题。(每题5分,共15分) 1.写出麦克斯韦方程组,由此分析电场与磁场是否对称为什么 2.在稳恒电流情况下,有没有磁场存在若有磁场存在,磁场满足什么方程 3.请画出相对论的时空结构图,说明类空与类时的区别.

三. 证明题。(共15分) 从没有电荷、电流分布的麦克斯韦方程出发,推导真空中的E 、B 的波动方程。 四. 综合题。(共55分) 1.内外半径分别为1r 和2r 的无穷长空心导体圆柱,沿轴向流有稳恒均 匀自由电流f j ,导体的磁导率为μ,求磁感应强度和磁化电流。(15分) 2. 有一个很大的电解槽中充满电导率为2σ的液体,使其中流着均匀 的电流f j ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和 面电荷分布。(分离变量法)(15分) 3. 有带电粒子沿z 轴作简谐振动t i e z z ω-=0,设c z <<ω0,求它的辐 射场E 、B 和能流S 。(13分) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物 时,看见其避雷针跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时间差。该建筑

电动力学期末考试试卷及答案五

. . 20___ - 20___ 学年度 学期 ____ 级物理教育专业 《电动力学》试题(五) 试卷类别:闭卷 考试时间:120分钟 ______________________ 学号____________________ 一. 判断以下概念是否正确,对的打(√),错的打(×)(共15分,每 题3分) 1. 库仑力3 04r r Q Q F πε '=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ 。 ( )

. . 4. 在介质的界面两侧,电场强度E 切向分量连续,而磁感应强度B 法向分 量 连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 二. 简答题(每题5分,共15分)。 1.如果0>??E ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ,能流密度s 之间的关系。 三. 证明题(共15分)。

多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体、外空间的B 、H ; (2)体磁化电流密度M j ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔的电势 和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B 以及能流密度平均值S 。(15分)

电动力学复习题

电动力学复习题 填空题 1.电荷守恒定律的微分形式可写为0=??+??t J ρ 。 2.一般介质中的Maxwell 方程组的积分形式为???-=?S l S d B dt d l d E 、 ???+=?S f l S d D dt d I l d H 、f s Q S d D =?? 、?=?S S d B 0 。 3.在场分布是轴对称的情形下,拉普拉斯方程在球坐标中的通解为 ()().cos ,01θθψn n n n n n P r b r a r ∑∞ =+??? ? ? +=。 4.一般坐标系下平面电磁波的表示式是()() t x k i e E t x E ω-?= 0,。 5.在真空中,平面电磁波的电场振幅与磁场振幅的比值为光速C 。 6.引入了矢势和标势后,电场和磁场用矢势和标势表示的表达式为 ,A B A t E ??=??--?=和?. 7. 核能的利用,完全证实了相对论质能关系。 8.洛仑兹规范条件的四维形式是 0=??μ μx A 。 9.真空中的Maxwell 方程组的微分形式为t ??- =??、 ε ρ = E ??、0=B ??、t J ??+=B ??εμμ000。 10.引入磁矢势A 和标量势Φ下,在洛伦兹规范下,Φ满足的波动方程是 02 222 1ερ- =?Φ?-Φ?t c 。

11.电磁场势的规范变换为t A A A ??- ='→?+='→ψ???ψ 。 12.细导线上恒定电流激发磁场的毕奥-萨伐尔定律可写为()??=3r r l Id x B . 13.介质中的Maxwell 方程组的微分形式为 t B E ??-=?? 、 f D ρ =?? 、0=??B 、t D J H f ??+=?? 。 14.时谐电磁波的表达式是()()t i e x E t x E ω-= ,和()()t i e x B t x B ω-= ,。 15.在两介质界面上,电场的边值关系为()f D D n σ=-?12 和 ()01 2 =-?E E n . 16.库仑规范和洛伦兹规范的表达式分别为 0=??A 和012 =??+??t c A ? 。 17.狭义相对论的二个基本原理分别是狭义相对性原理和光速不变原理。 18.狭义相对论的质速关系是 2 2 1c v m m -= 。 19.真空中位移电流的表达式可写为t E J D ??= 0ε。 20.在场分布球对称的情形下,拉普拉斯方程在球坐标中的通解为().,?? ? ??+=r b a r θψ 21.满足变换关系νμνμV a V ='的物理量称为相对论四维矢量。 22.揭示静电场是保守力场的数学描述是?=?=??0,0l d E E 或者。 23.介质中的Maxwell 方程组的边值关系为()012=-?E E n 、()α =-?12H H n 、 ()σ=-?12D D n 、()012=-?B B n 。 24.介质的极化现象是当介质置于外电磁场中,分子中的电荷将发生相对位移,分

电动力学习题集答案

电动力学第一章习题及其答案 1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普 适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y y ')j (z z ')k 为从源点指向场点的矢量 , E , k 为常矢量,则 ! (r 2 a ) =(r 2 a ) (r a 2r a , )a ) ddrr r a 2r r r 2 r i j — k (x x ') (y y ') (z z ') i j k — ! 2(x x ') (x x ') ,同理, ? x (x x ') 2 (y y ') 2 (z z ') 2 / r 2 (x x ')(y y ')(z z ') (y y ') (x x ') ( (y y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') # 2 , z 2 2 (z z ') r 【 r e e e x x x ! r (x-x') r (y-y') y (z-z') 3 z , ' x y z x x ' y y ' z z ' 0, x (a r ) a ( r ) 0 , : ) r r r r r r r 0 r rr ( r 1 1 r 《 a , , ( ) [ a (x -x' )] [ a (y - y')] … j [a (z -z')] a r i k x y z * r r r r 1 r 1 r … r 3 r 2 3 r , ( A ) __0___. r r , [E sin(k r )] k E 0 cos(k r ) __0__. (E 0e ik r ) , 当 r 0 时 , ! (r / r ) ik E 0 exp(ik r ) , [rf (r )] _0_. [ r f ( r )] 3f (r )r # s 3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内, 若已知矢量场在V 内各点的旋度和散 度,以及该矢量在边界上的切向或法向分量,则 在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满足 4. 电荷守恒定律的微分形式为 — J t J 0 . 5. 场强与电势梯度的关系式为, E .对电偶极子而言 ,如已知其在远处的电势为

电动力学期终总复习及试题

总复习试卷 一.填空题(30分,每空2分) 1. 麦克斯韦电磁场理论的两个基本假设是( )和( )。 2. 电磁波(电矢量和磁矢量分别为E 和H )在真空中传播,空间某点处的能流密度 =S ( )。 3. 在矩形波导管(a, b )内,且b a >,能够传播TE 10型波的最长波长为( ); 能够传播TM 型波的最低波模为( )。 4. 静止μ子的平均寿命是6 102.2-?s. 在实验室中,从高能加速器出来的μ子以0.6c (c 为真空中光速)运动。在实验室中观察,(1)这些μ子的平均寿命是( )(2)它们在衰变前飞行的平均距离是( )。 5. 设导体表面所带电荷面密度为σ,它外面的介质电容率为ε,导体表面的外法线方向 为n 。在导体静电条件下,电势φ在导体表面的边界条件是( )和( )。 6. 如图所示,真空中有一半径为a 的接地导体球,距球心为d (d>a )处有一点电荷q ,则 其镜像电荷q '的大小为( ),距球心的距离d '大小为( )。 7. 阿哈罗诺夫-玻姆(Aharonov-Bohm )效应的存在表明了( )。 8. 若一平面电磁波垂直入射到理想导体表面上,则该电磁波的穿透深度δ为( )。 9. 利用格林函数法求解静电场时,通常根据已知边界条件选取适当的格林函数。若r 为源 点x ' 到场点x 的距离,则真空中无界空间的格林函数可以表示为( )。 10. 高速运动粒子寿命的测定,可以证实相对论的( )效应。 二.判断题(20分,每小题2分)(说法正确的打“√”,不正确的打“”) 1. 无论稳恒电流磁场还是变化的磁场,磁感应强度B 都是无源场。 ( ) 2. 亥姆霍兹方程的解代表电磁波场强在空间中的分布情况,是电磁波的基本方程,它在任 何情况下都成立。 ( ) 3. 无限长矩形波导管中不能传播TEM 波。 ( ) 4. 电介质中,电位移矢量D 的散度仅由自由电荷密度决定,而电场E 的散度则由自由电 荷密度和束缚电荷密度共同决定。 ( ) 5. 静电场总能量可以通过电荷分布和电势表示出来,即dV W ρ??=21,由此可见ρ? 21的 物理意义是表示空间区域的电场能量密度。 ( ) 6. 趋肤效应是指在静电条件下导体上的电荷总是分布在导体的表面。 ( ) 7. 若物体在S '系中的速度为c u 6.0=',S '相对S 的速度为c v 8.0=,当二者方向相同时, 则物体相对于S 的速度为1.4c 。 ( ) 8. 推迟势的重要意义在于它反映了电磁作用具有一定的传播速度。 ( )

电动力学试题及其答案

一、填空题(每空2分,共32分) 1、已知矢径r ,则 r = 。 2、已知矢量A 与标量 ,则 )(A 。 3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。 4、在迅变电磁场中,引入矢势A 与标势 ,则E = , B = 。 5、麦克斯韦方程组的微分形式 、 、 、 。 6、电磁场的能量密度为 w = 。 7、库仑规范为 。 8、相对论的基本原理为 , 。 9、电磁波在导电介质中传播时,导体内的电荷密度 = 。 10、电荷守恒定律的数学表达式为 。 二、判断题(每题2分,共20分) 1、由0 E 可知电荷就是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波就是横电磁波。( ) 4、任何相互作用都不就是瞬时作用,而就是以有限的速度传播的。( ) 5、只要区域V 内各处的电流密度0 j ,该区域内就可引入磁标势。( ) 6、如果两事件在某一惯性系中就是同时发生的,在其她任何惯性系中它们必不同时发生。( ) 7、在0 B 的区域,其矢势A 也等于零。( ) 8、E 、D 、B 、H 四个物理量均为描述场的基本物理量。( ) 9、由于A B ,矢势A 不同,描述的磁场也不同。( ) 10、电磁波的波动方程012222 E t v E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性与微分性,证明 0)( r 式中r 为矢径, 为任一标量。 2、已知平面电磁波的电场强度i t z c E E )sin(0 ,求证此平面电磁波的磁场强度为 j t z c c E B )sin(0 四、计算题(每题10分,共30分) 1、迅变场中,已知)cos(0t r K A A , )cos(0 t r K ,求电磁场的E 与B 。 2、一长度为80厘米的杆,沿其长度方向以0、8 c 的速率相对观察者运动,求该杆首、尾端通过观察者 时的时间间隔。

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当您接受无线电讯号时,感到讯号大小与距离与方向有关,这就是为什么? 3.请写出相对论中能量、动量的表达式以及能量、动量与静止质量的关系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 2 12εεθθ=tan tan ,其中1ε与2ε分别为两种介质的介电常数,1θ与2θ分别为界面两侧电力线与法线的夹角。(15分) 四、 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 与2l ,介电常数为1ε与2ε,今在两板上接上电动势为U 的电池,若介质就是漏电的,电导率分别为1σ与2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω与介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ? ,求介质中球形空腔内的电场(分离变量法)。(15分) 3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向就是均匀的,求可能传播的波型与相应的截止频率.(15分)

4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,她瞧到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:220221A A j c t μ??-=-?v v v 2222 1c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμ μ?π π ???? ''-- ? ? ??? ?''==? ? v v v v v v 2、由于电磁辐射的平均能流密度为22 232 0sin 32P S n c R θπε= v &&v v ,正比于2sin θ,反比于2R ,因此接收无线电讯号时,会感到讯号大小与大小与方向有关。 3、能量 :2W = ;动量 :),,iW P u ic P c μ?? = = ???v v ;能量、动量与静止质量的关系为:22 22 02W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 又 D E ε=v v (3) 由(1)得: 1122sin sin E E θθ= (4) 由(2)(3)得: 111222cos cos E E εθεθ= (5) 由(4)(5)两式可得: 1 ε

电动力学期末考试试卷及答案五

20___-20___学年度学期____级物理教育专业 《电动力学》试题(五) 试卷类别:闭卷考试时间:120分钟 姓名______________________学号____________________ 一. 判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3 分) 1. 库仑力3 04r r Q Q F πε??'=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。() 2. 电磁场有能量、动量,在真空中它的传播速度是光速。() 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为:t j ??=??/ρ? 。() 4. 在介质的界面两侧,电场强度E ?切向分量连续,而磁感应强度B ? 法向分量连续。() 5.在相对论中,粒子能量,动量以及静止质量的关系为:42022c m c P W +=。()

二. 简答题(每题5分,共15分)。 1. 如果0>??E ρ ,请画出电力线方向图,并标明源电荷符号。 2. 当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3. 以真空中平面波为例,说明动量密度g ρ,能流密度s ρ 之间的关系。 三. 证明题(共15分)。 多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -=,其中122)/1(--=c v γ;v 为光源运动速度。(15 分) 四.综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体内、外空间的B ?、H ? ; (2)体内磁化电流密度M j ? ;(15分)。

电动力学答案

2.一平面电磁波以045=θ从真空入射到24=ε的介质。电场强度垂直于入射面。求反射系数和折射系数。 解:由 1 122sin sin εμεμθθ = ' ' 1r 2r 12sin sin εεεεθθ=='' 1 2 s i n s i n 450= ''∴θ 解得 030=''θ 由菲涅耳公式: θ εθεθεθε''+''-=' sin sin sin sin E E 2121 = =+= 3 12cos cos cos 2E E 211+= ''+=' 'θεθεθε 由定义:

3 2323131E E R 2 2 +-=? ??? ??+-='== 3 2321 22 223312cos cos E E T 2 1 22 +=???? ??+=''''= = εεθθ 7.已知海水的1 1m 1s ,1-?==σμ,试计算频率ν为50,9 61010和Hz 的三种电磁波在海 水中的透入深度. 解: ωμσ α δ2 1 = = , 72m 1 1042502 7 50 =????= -=ππδ γ , 5m .01 1042102 7610 r 6 =????= -=ππδ 16mm 1 1042102 7 910r 9 =????= -=ππδ

2. 设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。求站在一根尺上测量另一根尺的长度。 解:根据相对论速度交换公式可得2'∑系相对于1'∑的速度大小是 )/1/(2'22c v v v += (1) ∴在1'∑系中测量2'∑系中静长为0 l 的尺子的长度为 220/'1c v l l -= (2) 将(1)代入(2)即得: )/1/()/1(22220c v c v l l +-= (3) 此即是在1'∑系中观测到的相对于2'∑静止的尺子的长度。 3. 静止长度为l 0的车厢,以速度v 相对于地面S 运行,车厢的后壁以速度u 0向前推出一个小球,求地面观察者看到小球从后壁到前壁的运动时间。 解:根据题意取地面为参考系S ,车厢为参考系S ’,于是相对于地面参考系S ,车长为 220/1c v l l -=, (1) 车速为v ,球速为 )/1/()(200c v u v u u ++= (2) 所以在地面参考系S 中观察小球由车后壁到车前壁 l t v t u +?=? 所以 )/(v u l t -=? (3) 将(1)(2)代入(3)得:2 2 0200/1)/1(c v u c v u l t -+= ? (4) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针上跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线上的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时刻差。设建筑物及两铁塔都在一直线上,与列车前进方向一致。铁塔到建筑物的地面距离都是l 0。 解:取地面为静止的参考系∑,列车为运动的参 考系'∑。 取 x 轴与 x ′轴平行同向,与列车车速方向一致,令t=0时刻为列车经过建筑物时,并令此处为∑系与'∑的原点,如图。 在∑系中光经过c l t /0=的时间后同时照亮左 右两塔,但在'∑系中观察两塔的位置坐标为 ) /1(/1/1'2 2 02 2 0c v c v l c v vt l x --=--=右 )/1(/1/1'2 20 220c v c v l c v vt l x +--= ---= 左 即:)/1(/1'220c v c v l d --=右,)/1(/1'2 20 c v c v l d +--=左 时间差为 2220 /12''c v c vl c d c d t -= -= ?右左 5. 有一光源S 与接收器R 相对静止,距离为0l ,S-R 装置浸在均匀无限的液体介质(静止折射 率n )中。试对下列三种情况计算光源发出讯号到接收器收到讯号所经历的时间。 (1)液体介质相对于S-R 装置静止;

相关主题
文本预览
相关文档 最新文档