当前位置:文档之家› pwm波信号发生器

pwm波信号发生器

pwm波信号发生器
pwm波信号发生器

电子技术综合训练

设计报告

题目:PWM信号发生器的设计

姓名:

学号:

班级:

同组成员:

指导教师:

日期:

摘要

本次课程设是基于TTL系列芯片的简易PWM信号发生器,PWM信号发生器应用所学的数字电路和模拟电路的知识进行设计。在设计过程中,所有电路仿真均基于Multisim10仿真软件。本课程设计介绍了PWM信号发生器的设计方案及其基本原理,并着重介绍了PWM 信号发生器各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于测试设计是否符合任务要求。三是是对本次课程设计的总结。

关键字:

目录

1 设计任务和要求…………………………………………………………?

1.1设计任务……………………………………………………………?

1.2设计要求…………………………………………………………….?

2 系统设计…………………………………………………………………?

2.1系统要求…………………………………………………………….?

2.2方案设计……………………………………………………………?

2.3系统工作原理……………………………………………………….?

3 单元电路设计……………………………………………………………?

3.1 单元电路A(单元电路的名称) ……………………………………?

3.1.1电路结构及工作原理……………………………………………?

3.1.2电路仿真…………………………………………………………? 3.1.3元器件的选择及参数确定……………………………………………?

3.2单元电路B(单元电路的名称) ……………………………………?

3.2.1电路结构及工作原理…………………………………………?

3.2.2电路仿真…………………………………………………………? 3.2.3元器件的选择及参数确定…………………………………………….?

……

4 系统仿真……………………………………………………………………?.

5 电路安装、调试与测试……………………………………………………?

5.1电路安装………………………………………………………………?

5.2电路调试………………………………………………………………?

5.3系统功能及性能测试…………………………………………………?

5.3.1测试方法设计………………………………………………………?

5.3.2测试结果及分析……………………………………………………?

6 结论…………………………………………………………………………?

7 参考文献……………………………………………………………………?

8 总结、体会和建议

附录

1、设计任务和要求

1.1设计任务

设计具有死区时间的PWM信号产生的电子线路,并且设计数码显示电路,实时显示PWM信号的频率。

1.2设计要求

脉冲宽度调制是利用微处理器的数字输出对模拟电路进行控制的一种有效

的技术,因为设计是基于模拟电子技术和数字电子技术的,所以设计时应该考

虑进各个器件的适用范围。设计双输出PWM电路,两路输出互相反相,并且

第一路的上升沿总比第二路的下降沿延迟5微秒(死区时间)。频率测量电路需

要考虑测量精度以及分辨率。最后线路经过放大隔离后输出。

2、系统设计

2.1 系统要求

PWM信号发生器包括两部分:PWM信号发生部分和频率测量部分。

2.2方案设计

PWM信号发生部分

直流电机调速中广泛使用PWM方式,设该脉冲的频率为1000Hz,脉冲的宽度(占空比)由输入的直流参考电压大小决定,范围为0%~100%。PWM波常用锯齿波和参考电压相比较的方式,或者是直接用由555电路构成的多谢振荡器产生。锯齿波产生电路包括同相输入迟滞比较器和充放电时间常数不等的积分器两部分,输出的锯齿波和比较电压同时输入迟滞比较器便可得到宽度可调的

锯齿波,此为模拟电路产生PWM。用555组成占空比连续可调的多谢振荡器如图1-1-1。

图1—1—1

调节图中的可变电阻,就可以控制产生脉冲的占空比。

对比两种方案,一种是由模拟电路的方法产生pwm,另一种是由数电方法产生pwm。先然后一种方法比较简便可行,而且电压幅值可控。

频率测量部分

信号的频率就是信号在单位时间内所产生的脉冲个数,其表达式为f=N/T,其中f为被测信号的频率,N为计数器所累计的脉冲个数,T为产生N个脉冲所需的时间。计数器所记录的结果,就是被测信号的频率。如在1s内记录1000个脉冲,则被测信号的频率为1000HZ。

测量频率的基本方法有两种:计数法和计时法,或称测频法和测周期法。

1、计数法

计数法是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为T,计数器得到的计数值为N1,则被测频率为f=N1/T。改变时间T,则可改变测量频率

设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N1=N+1,N1的相对误差为δN1=(N1-N)/N=1/N。由N1的相对误差可知,N的数值愈大,相对误差愈小,成反比关系。因此,在f以确定的条件下,为减少N的相对误差,可通过增大T的方法来降低测量误差。当T为某确定值时(通常取1s),则有f1=N1,而f=N,故有f1的相对误差:δf1=(f1-f)/f=1/f

从上式可知f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。因此测频法适合用于对高频信号的测量,频率越高,测量精度也

越高。

2、计时法

计时法又称为测周期法,测周期法使用被测信号来控制闸门的开闭,而将标准时基脉冲通过闸门加到计数器,闸门在外信号的一个周期内打开,这样计数器得到的计数值就是标准时基脉冲外信号的周期值,然后求周期值的倒数,就得到所测频率值。

首先把被测信号通过二分频,获得一个高电平时间是一个信号周期T的方波信号;然后用一个一直周期T1的高频方波信号作为计数脉冲,在一个信号周期T的时间内对T1信号进行计数,如图(1-1-2)

图 1-1-2 计时法测量原理

若在T时间内的计数值为N2,则有:

T2=N2*T1 f2=1/T2=1/(N2*T1)=f1/N2

N2的绝对误差为N2=N+1

N2的相对误差为δN2=(N2-N)/N=1/N

T2的相对误差为δT2=(T2-T)/T=(N2*T1-T)/T=f/f1

从T2的相对误差可以看出,周期测量的误差与信号频率成正比,而与高频标准计数信号的频率成反比。当f1为常数时,被测信号频率越低,误差越小,测量精度也就越高。

根据本设计要求的性能与技术指标,首先需要确定能满足这些指标的频率测量方法。由上述频率测量原理与方法的讨论可知,计时法适合于对低频信号的测量,而计数法则适合于对较高频信号的测量。但由于用计时法所获得的信号周期数据,还需要求倒数运算才能得到信号频率,而求倒数运算用中小规模数字集成电路较难实现,因此,计时法不适合本实验要求。测频法的测量误差与信号频率成反比,信号频率越低,测量误差就越大,信号频率越高,其误差就越小。但用测频法所获得的测量数据,在闸门时间为一秒时,不需要进行任何换算,计数器所计数据就是信号频率。因此,本实验所用的频率测量方法是测频法。

2.3系统工作原理

3、单元电路设计

3.1PWM信号发生

3.1.1电路结构及工作原理

如图,由555定时器和外接元件R1、R2、C构成多谐振荡器,脚2与脚6直接相连。电路没有稳态,仅存在两个暂稳态,电路亦不需要外加触发信号。对C 充电时,充电电流通过R1和D1;放电时,通过R2、D2。当R1=R2时,可调电阻触头位于中心点,因充放电时间基本相等,其占空比约为50%,此时调节电阻,可调节多谢振荡器的占空比。另外,调节R1和R2还可以改变输出矩形波的周期和频率。

输出的时间参数如下:

周期T=Tw1+Tw2;振荡频率f=1/T=1/(T1+T2)=1.44(R1+R2)C,式中:

Tw1=0.7(R1+R2)C;Tw2=0.7R2C。

占空比q=Tw1/(Tw1+Tw2),当R2>>R1,占空比近似为50%。

通过计算,取三个电阻都为5kΩ,C1=100nF,C2=10nF,使得输出频率f=1000Hz。

3.1.2电路仿真

3.2制造死区时间

3.2.1电路结构及工作原理

如图所示是用施密特触发器构成的脉冲展宽器的电路和工作波形图。在图a中所示电路中,当输入电压u1为低电平UIL时,集电极开路门输出三极管是截止的,施密特触发反相器的输入特性,可以保证A点电位uA为高电平,因此输出电压u0为低电平UOL。

当ui条编导高电平UIH时,三极管饱和导通,电容C迅速放电,uA很快下降到低电平,uO跳变到高电平UOH。

当uI由UIH跳变到UIL时,三极管截止,电源Vcc通过施密特触发器反相器的输入端电

路对电容C充电,uA缓慢上升,当uA升高到UT+时,UO才会由UOH跳变到UOL。因此,输出电压UO的脉冲展宽,比输入电压u1的脉冲宽度显然要宽,而且改变电容C的大小,可方便地调节展宽的程度。图b是uI、uA、uO的波形图。

3.2.2电路仿真

5kΩKey=A

3.3频率计

3.3.1电路结构及工作原理

频率计由时基电路,控制电路组成

1时基电路

由两部分组成,第一部分为由石英晶体组成的多谐振荡器电路;第二部分为分频电路。

(1)石英晶体多谐振荡器电路

石英晶体一种具有较高频率稳定性的选频器件,广泛用于通信、定时等频率要求高的场合,石英晶体的谐振频率由石英晶体的晶体方向和外形尺寸决定,具有极高的稳定性。由于频率计数器是一种需要频率稳定性高的器件,故此方案选用石英晶体多谐振荡器。如图(2-3-1)所示

100HZ—9999HZ 闸门时间 10ms;

1KHZ—100KHZ 闸门时间 1ms

取c=10uf(1F(法)=10^3mF(毫法)=10^6uF(微法)=10^9nF(纳法)

=10^12pF(皮法)

所以:1uF(微法)=10^3nF(纳法)=10^6pF(皮法)最基本的关系)

图 2-3-1

矩形周期的振荡周期为 T≈1.4RfC 当取Rf=1kΩ,C=100pF~100μF时,则该电路的振荡频率则在几赫到几兆赫的频率范围内变化。在此选C=10nf的电容及固有频率为10kHZ的石英晶体。

(2)分频电路

振荡器产生10khz的脉冲,闸门时间为1s 0.1s 1ms 10ms选用4518x4作为分频电路。4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。计数器在脉动模式可级联,通过将Q3连接至下一计数器的EN 输入端可实现级联,同时后者的CP输入保持低电平。分频电路如图(2-3-2)所示

图 2-3-2 分频电路

2控制电路

控制电路需要控制几个模块。包括计数电路,锁存电路,和译码显示电路。通过产生控制信号控制所要控制的模块,同时会产生清零信号和锁存信号,使显示器显示的测量结果稳定。

(1)计数电路

采用3个74LS192十进制计数器,该芯片无需额外的元器件就可实现十进制计数,所以首选。计数器依次从个位开始计数,向上为发出进位信号而是高位开始计数。

(2)锁存电路

在确定的时间内(1s),计数器的计数结果必须经锁定后才能获得稳定的显示值.锁存器的作用通过触发脉冲控制.将测得的数据寄存起来,送显示译码器.锁存器可以采用4位并行输入寄存器.为使数据稳定,采用边沿触发方式的器件.

选用3个4位锁存器74LS175完成上述功能.当锁存信号CP的正跳变来到时,锁存的输出等于输入,从而将计数器的输出值送到锁存器的输出端,.高电平结束后,无论D是何值,输出端状态保持不变,所在计数期间内,计数器的输出不会送到译码显示器。

(3)译码电路

采用4511BD集成共阴七段LED数码管。译码显示器的作用是把用BCD码表示的十进制数转化成能驱动数码管正常显示的段信号,从而获得数字显示.

选取显示译码器时其输出方式必须与数码管相比配。

VCC

4、系统仿真

VCC

5电路安装、调试与测试

电路安装

在统装图上标好芯片号和引脚号,不用功能脚的逻辑电平。合理布置芯片和其它元件的位置。

布线:安排好电源线和地线。

线紧贴面包板、横平、竖直、不交叉、不重叠

在芯片两侧走线,不可跨芯片

原件横平、竖直

安装顺序:按信号流向,先主电路,后铺住电路。

边安装边调试

基于FPGA的PWM控制器设计

FPGA实验报告

基于FPGA勺PWM控制器设计 1设计任务与要求 1.1掌握PWM fe术原理;了解PWM控制方法及应用;完成基于FPGA勺PWM控制器设计。 1.2通过课程设计的实践,进一步理解和掌握硬件描述语言(VHDL或VerilOg )和TOP-DOWN设计流程,提高对实际项目的分析和设计能力,体会FPGA项目的过程,熟悉实验报告的编写规范。 2设计原理分析 2.1利用FPGA语言编写程序实现对50MHZ勺硬件晶振进行分频和调节占空比。对硬件晶振的上升沿就行计数,当2nHZ频率利用高低电平进行分频时,当计数到n-1是对原电平进行反向就可以实现分频。占空比是对上升沿的计数是两个不同的数值时进行反向。 2.2脉宽调制(PWM基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏∕n ,但幅值不等,且脉冲顶 部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM fe形。可以看出,各脉冲宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦的负半周,也可以用同样的方法得到PWM波形。 在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交一直一交变频器中,PWM 逆变电路输出的脉冲电压就是直流侧电压的幅值。

PWM信号发生器的设计程序(veriloghdl)

PWM信号发生器的设计程序 module pwmgen(clk,rst,ce,addr,write,wrdata,read,bytesel,rddata,pwm); input clk,rst,ce; input [1:0]addr; input write,read; input[31:0]wrdata; output[31:0]rddata; input[31:0]bytesel; output pwm; reg[31:0]clk_div_reg,duty_cycle_reg; reg control_reg; reg clk_div_reg_sel,duty_cycle_reg_sel,control_reg_sel; reg[31:0]pwm_cnt,rddata; reg pwm; wire pwm_ena; always@(addr) begin clk_div_reg_sel<=0;duty_cycle_reg_sel<=0;control_reg_sel<=0; case(addr) 2'b00:clk_div_reg_sel<=1; 2'b01:duty_cycle_reg_sel<=1; 2'b10:control_reg_sel<=1; default: begin clk_div_reg_sel<=0; duty_cycle_reg_sel<=0; control_reg_sel<=0; end endcase end always@(posedge clk or negedge rst) begin if(rst==1'b0) clk_div_reg=0; else begin if(write & ce & clk_div_reg_sel) begin if(bytesel[0]) clk_div_reg[7:0]=wrdata[7:0]; if(bytesel[1]) clk_div_reg[15:8]=wrdata[15:8];

PWM的含义

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM 进行编码。 多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:

* 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC 网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 如果您认为本词条还有待完善,需要补充新内容或修改错误内容

PWM信号发生电路

1.PWM信号概述 脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)与AC-DC变换(功率因数校正)。 产生PWM信号的方法有多种,现分别论述如下: 1)普通电子元件构成PWM发生器电路 基本原理就是由三角波或锯齿波发生器产生高频调制波,经比较器产生PWM信号。三角波或锯齿波与可调直流电压比较,产生可调占空比PWM信号;与正弦基波比较,产生占空比按正弦规律变化的SPWM信号。 此方法优点就是成本低、各环节波形与电压值可观测、易于扩展应用电路等。缺点就是电路集成度低,不利于产品化。 2)单片机自动生成PWM信号 基本原理就是由单片机内部集成PWM发生器模块在程序控制下产生PWM 信号。 优点就是电路简单、便于程序控制。缺点就是不利于学生观测PWM产生过程,闭环控制复杂与使用时受单片机性能制约。 3)可编程逻辑器件编程产生PWM信号 基本原理就是以复杂可编程逻辑器件(CPLD)或现场可编程门阵列器件(FPGA)为硬件基础,设计专用程序产生PWM信号。 优点就是电路简单、PWM频率与占空比定量准确。缺点就是闭环控制复杂,产生SPWM信号难度大。 4)专用芯片产生PWM信号 就是生产厂家设计、生产的特定功能芯片。 优点就是使用方便、安全,便于应用到产品设计中。缺点就是不利于学生观测PWM产生过程与灵活调节各项参数。 2.电子元件构成PWM发生器电路

图1电子元件构成PWM发生器电路 3.集成芯片SG3525构成PWM发生器电路 一、PWM信号发生电路说明 实验电路中,驱动开关管的PWM信号由专用PWM控制集成芯片SG3525产生(美国Silicon General公司生产),PWM信号发生器电路如图2所示。 图2 PWM信号发生器电路图 SG3525采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器与保护电路等。调节Ur的大小,在OUTA、OUTB

基于PWM控制器芯片的AC-DC电源设计

基于PWM控制器芯片的AC/DC电源设计 目前,在100W以下电源方案中,一般都使用脉冲宽度调制(PWM)控制芯片来实现PWM的调制,开关控制模式相对直流工作模式有很高的工作效率,使用反激离线工作模式,提高了系统工作的安全性,非常适合应用在便携式充电设备及电源适配器,比如,手机充电器,电源适配器等,因此,AC/DC PWM开关电源芯片在市场上的需求量非常大。不过传统的AC/DC电源方案都是使用变压器次级线圈反馈模式(SSR),变压器次级反馈工作模式都需要低压端的恒压-恒流控制芯片协助完成电压的转换和实现恒流,此类应用方案增加了系统应用复杂程度,同时还增加系统方案的设计成本,本文要介绍的AC/DC电源控制芯片是思旺电子的SE3910,这是一款变压器原边线圈反馈模式(PSR)的PWM控制芯片。 SE3910技术特点 SE3910是一款绿色模式PWM控制器芯片,适用于小功率AC/DC充电器,适配器及LED驱动方案;该芯片为SOP-8封装,PWM模式工作时开关频率固定在40KHz,其内部集成了恒压恒流控制模块,应用方案使用PSR模式,省略了传统方案中的光耦合器、恒压/恒流控制芯片及其周围电路,大大简化了芯片的应用成本,降低了系统应用的复杂度。 芯片设计时特别考虑了EMI,对开关频率模块特别设计有频率抖动功能,每3.2ms 的周期内按所设计的顺序出现8种不同的开关频率,将电磁干扰频谱转移到一个相对较宽的频率带宽,从而达到优化系统EMI的目的。 同时SE3910的工作状态使用多模式调节功能,在空载或轻负载时,芯片会自动进入PFM工作模式,保证电源系统输入能量和输出能量精确守恒,防止了轻载或空载时能量过大,当负载升高到芯片所设置的重载设计值时,芯片会控制系统自动进入PWM工作模式,大幅度的优化了系统的工作效率,使系统效率能够达到80%以上,也减小了空载和轻载工作状态下的输出纹波。 芯片设计有软启动功能,很好的抑制了系统上电时的大电流,保护了电路板的损坏,减小了系统启动时的大电流对系统功耗的影响;芯片还具有电源欠压保护功能,LEB 功能、过温度保护功能等,最大程度的提高了芯片工作时的可靠性和安全性;芯片适合应用在5W及5W以下的电源方案中。 典型应用方案 SE3910能广泛应用在各种低功率AC/DC开关电源方案中,比如手机充电器,电源适配器等,除此之外,由于芯片集成有恒流功能,所以也可广泛应用在小功率LED驱动方案中。 图1是SE3910基本的应用电路,其中由变压器/输出级/R3/R4/SE3910等组成负反馈通路,通过调整GATE端的开关信号占空比来控制变压器的转换能量,使系统稳定在设置的工作状态。交流电压先经过一个桥式整流电路将交流转换成高压直流信号,R1和C2组成系统启动电路,VIN是SE3910的启动PIN,COMV PIN上的R5、C6和C7组成系统补偿电路,确保系统具有稳定的频率响应,FB是输出电压检测PIN,通过设置R3/R4就可以调整变压器副边上的电压,根据变压器电压比与匝数比成正比的原理,来实现对直流输出电压的调整;GATE是PWM输出PIN,它用来控制功率管13003来实现控制变压器原边的峰值电流,来达到对变压器转换能量的控制,CS PIN用来检测变压器峰值电流,当系统工作在恒流模式时,CS PIN上的电压会被固定在设置的最大值,也就确定了变压器原边最大峰值电流,从而实现输出也恒流,通过调整R6电阻就可以灵活调整输出恒流值。

PWM信号发生器的设计报告

前言 脉冲宽度调制(Pulse Width Modulation.PWM)控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术和模拟信号数字传输通信领域最广泛应用的控制方式,因此研究基于PWM技术的脉冲宽度及周期可调的信号发生器具有十分重要的现实意义。 本文主要讨论了脉冲占空比可调信号的产生方法,采用三种不同的方案使用VHDL语言编程实现了信号的产生。其中方案一的原理是分频,即用计数器计算时钟脉冲的上升沿个数,再通过输出电平反复翻转得到计数个数(脉冲宽度)可控的PWM 信号;方案二的原理是锯齿波比较法,首先编程产生阶梯状的锯齿波,再通过锯齿波与输入占空比值(数值可控的直线)比较产生脉冲宽度随输入占空比数值变化的PWM 信号;方案三是用有限状态机产生有用信号,首先定义两个状态,再通过计数器值与输入占空比值比较控制状态的切换,产生PWM信号。本文详细介绍方案二和方案三两种方法。 通过使用QuartusII9.0软件采用VHDL语言编程并用功能仿真证实了上文提到的三种PWM信号产生方案都是可行的,都能产生切实可用的PWM信号,三种方案中均可以通过修改输入端口占空比来控制产生信号的脉宽,且可以通过在程序中修改计数器的计数上限和分频模块的分频比改变信号的周期及频率,实现了多参数可调,使整体设计具有灵活的现场可更改性和较好的可移植性。且实现功能的程序简单易懂,设计过程中思路阐述清晰,流程介绍明了,且程序易于修改,可读性好。

第一章设计要求 1.1 研究课题 PWM信号发生器的研制 1.2设计要求 用CPLD可编程模块产生下列信号(特殊芯片:EPM570T100C5) (1)采用VHDL编写相关程序,PWM信号的工作频率为500Hz(1000Hz); (2)时钟信号通过分频器后,由输入开关量控制占空比可调。

pwm波信号发生器

电子技术综合训练 设计报告 题目:PWM信号发生器的设计 姓名: 学号: 班级: 同组成员: 指导教师: 日期: 摘要 本次课程设是基于TTL系列芯片的简易PWM信号发生器,PWM信号发生器应用所学的数字电路和模拟电路的知识进行设计。在设计过程中,所有电路仿真均基于Multisim10仿真软件。本课程设计介绍了PWM信号发生器的设计方案及其基本原理,并着重介绍了PWM信号发生器各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于

测试设计是否符合任务要求。三是是对本次课程设计的总结。 关键字: 目录 1 设计任务和要求…………………………………………………………? 1.1设计任务……………………………………………………………? 1.2设计要求…………………………………………………………….? 2 系统设计…………………………………………………………………? 2.1系统要求…………………………………………………………….? 2.2方案设计……………………………………………………………? 2.3系统工作原理……………………………………………………….? 3 单元电路设计……………………………………………………………? 3.1 单元电路A(单元电路的名称) ……………………………………? 3.1.1电路结构及工作原理……………………………………………? 3.1.2电路仿真…………………………………………………………?

3.1.3元器件的选择及参数确定……………………………………………? 3.2单元电路B(单元电路的名称) ……………………………………? 3.2.1电路结构及工作原理…………………………………………? 3.2.2电路仿真…………………………………………………………? 3.2.3元器件的选择及参数确定…………………………………………….? …… 4 系统仿真……………………………………………………………………?. 5 电路安装、调试与测试……………………………………………………? 5.1电路安装………………………………………………………………? 5.2电路调试………………………………………………………………? 5.3系统功能及性能测试…………………………………………………? 5.3.1测试方法设计………………………………………………………? 5.3.2测试结果及分析……………………………………………………? 6 结论…………………………………………………………………………?

PWM控制器的设计—课程设计.doc

前言 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。习惯上,DC-DC变换器包括以上两种情况。 直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。 利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET的优点,具有良好的特性。目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。 MATLAB是矩阵实验室Matrix Laboratory的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,SIMULINK是MATLAB软件的扩展它是实现动态系统建模和仿真的一个软件包,本课程设计的仿真即需要在SIMULINK中来完成电路的仿真与计算。通过系统建模和仿真,掌握和运用MATLAB/SIMULINK工具分析系统的基本方法。

基于CPLD的PWM发生器设计

第32卷 第6期 2010-6 【151】 基于CPLD的PWM发生器设计 A PWM generator designed with CPLD 耿伟松,于海东 GENG Wei-song, YU Hai-dong (扬州大学 能源与动力工程学院,扬州 225009) 摘 要:H形桥式变换器在多种动力系统中有着广泛的应用。在电机控制中,H桥中开关的控制一般采 用PWM控制技术。采用VHDL硬件描述语言设计了基于CPLD的PWM发生器,并使用Max+PlusⅡ进行仿真验证,仿真结果验证了设计的正确性。设计中采用了一种巧妙的方法来实现,其原理简单。基于CPLD的PWM发生器将会简化控制系统的硬件和软件设计,获得更高的开关频率,其应用这将大大简化直流电机控制系统的设计并且改善系统的控制性能。 关键词:H桥;PWM发生器;CPLD;VHDL;Max+ Plus Ⅱ 中图分类号:TM383.6 文献标识码:B 文章编号:1009-0134(2010)06-0151-03Doi: 10.3969/j.issn.1009-0134.2010.06.50 0 引 言 自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了直流P W M 调速系统[1]。脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而改变平均输出电压的大小,以调节电机转速。 PWM变换器电路有多种形式,可分为可逆和不可逆两大类。其中可逆PWM变换器主电路有多种形式,最常用的是桥式(H形)电路。桥式变换器在许多动力系统中得到了广泛的应用(如直流驱动,直流-交流逆变器,开关电源等等)。 1 PWM 发生器的设计 桥式变换器应用在直流电机调速系统中的主要电路结构如图1所示,开关控制基本上采用 PWM技术。 图1 桥式变换器原理图 PWM信号发生器一般是通过模拟电路或者是 基于微处理器的软件控制技术来实现,但随着高速开关器件的涌现,对于复杂的调制技术,即使采用最先进的DSP(数字信号处理器)也很难实现。 随着超大规模集成电路的集成度和工艺水平的不断提高,专用集成电路ASIC的设计成本在不断降低。CPLD/FPGA是实现ASIC的主流器件,它们具有极大的灵活性和通用性,工作速度快,开发效率高,成本低,可靠性好。近年来,CPLD在电机控制系统中的应用收到了系统设计人员越来越多的重视。用CPLD来设计PWM发生器将会简化控制系统的硬件和软件设计,获得更高的开关频率,减少微处理器的计算工作量。 VHDL具有与具体硬件电路无关和与设计平台无关的特性,并且具有良好的电路行为描述和系统描述的能力,并在语言易读性和层次化、结构化设计方面表现了强大的生命力和应用潜力[2],因此本文选用VHDL语言进行编程,用一片CPLD设计了PWM发生器。 由于桥式PWM变换器的工作状态是确定的,所以采用状态机方式来编程[3]也是情有可原,虽然只有六个状态,但其程序实现起来是很复杂的。用数字比较器代替模拟比较器、用线性计数器代替锯齿波发生器来产生PWM信号[4,5]的设计方法也很繁琐。在分析了桥式PWM变换器工作原理的基础上,本文采用了一种巧妙的方法来设计,其原理简单,程序容易实现。 收稿日期:2010-03-24 作者简介:耿伟松(1990-),男,江苏连云港人,本科在读,研究方向为电气工程及自动化。

高性能电流模式PWM控制器MXT7208

High Precision CC/CV Primary-Side PWM Power Switch GENERAL DESCRIPTION is a high performance offline PWM Power switch for low power AC/DC charger and adapter applications. It operates in primary-side sensing and regulation. Consequently, opto-coupler and TL431 could be eliminated. Proprietary Constant Voltage (CV) and Constant Current (CC) control is integrated as shown in the figure below. In CC control, the current and output power setting can be adjusted externally by the sense resistor Rs at CS pin. In CV control, multi-mode operations are utilized to achieve high performance and high efficiency. In addition, good load regulation is achieved by the built-in cable drop compensation. Device operates in PFM in CC mode as well at large load condition and it operates in PWM with frequency reduction at light/medium load. offers power on soft start control and protection coverage with auto-recovery features including Cycle-by-Cycle current limiting, VDD OVP, VDD clamp and UVLO. Excellent EMI performance is achieved with Power-Source proprietary frequency shuffling technique. High precision constant voltage (CV) and constant current (CC) can be achieved by FEATURES ?±5% Constant Voltage Regulation at Universal AC input ?High Precision Constant Current Regulation at Universal AC input ?Primary-side Sensing and Regulation Without TL431 and Opto-coupler ?Programmable CV and CC Regulation ?Adjustable Constant Current and Output Power Setting ?Built-in Secondary Constant Current Control with Primary Side Feedback ?Built-in Adaptive Current Peak Regulation ?Built-in Primary winding inductance compensation ?Programmable Cable drop Compensation ?Power on Soft-start ?Built-in Leading Edge Blanking (LEB)?Cycle-by-Cycle Current Limiting ?VDD Under Voltage Lockout with Hysteresis (UVLO)?VDD OVP ?VDD Clamp APPLICATIONS ?Low Power AC/DC offline SMPS for ?Cell Phone Charger ?Digital Cameras Charger ?Small Power Adapter ?Auxiliary Power for PC, TV etc.?Linear Regulator/RCC Replacement is offered in SOT23-6 package. Product Specification TYPICAL APPLICATION MXT7208MXT7208MXT7208 MXT7208 MXT7208

浅谈利用单片机设计PWM脉冲信号发生器

浅谈利用单片机设计PWM脉冲信号发生器 发表时间:2014-01-09T11:41:33.297Z 来源:《中国科技教育·理论版》2013年第11期供稿作者:王雪娇胡恒铮 [导读] 除此之外,模拟电路中许多的元器件会发热,也就相对提高了电路的功耗,并且对噪声也敏感,任何干扰或噪声都会改变电流值的大小。 王雪娇胡恒铮无锡技师学院 214153 摘要脉冲宽度调制(PWM)在电子技术领域中应用十分广泛,但是利用模拟电路实现脉宽调制功能十分复杂、不经济。随着微处理器的发展,运用数字输出方式去控制实现PWM的功能就变得简单快捷,本文就如何利用89S52单片机软件编程设计出周期一定而占空比可调的脉冲波,也就是实现PWM功能进行设计,它可以代替模拟电路的PWM脉冲信号发生器。 关键词单片机 PWM 数字控制 PWM是脉冲宽度调制(Pulse Width Modulation)的英文缩写,它是开关型稳压电源中按稳压的控制方式分类中的一种,而脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。 简单的说,PWM是一种对模拟信号电平进行数字编码的方法。理论上讲就是电压或电流源以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的,通的时候就是电源被加到负载上,断的时候就是供电被断开的时候,所以PWM信号仍然是数字的。要想达到这样一种脉宽调制效果,模拟电压和电流时可以直接控制。例如音响的音量控制,在简单的模拟电路中,它的控制是由连接了一个可变电阻的旋钮来实现的,其过程是拧动旋钮,电阻值变小或变大,流过该电阻的电流也随之增加来减小,从而改变驱动扬声器的电流值,那么声音也就相应变大或变小。从这个例子来看,模拟控制是直观而简单的,但是并不是所有的模拟电路都是可行并且经济的,其中很重要的一点就是模拟电路容易随时间漂移,它的调节过程就很困难,为了解决问题就要增加很多的电路,使得电路变得复杂并且昂贵。除此之外,模拟电路中许多的元器件会发热,也就相对提高了电路的功耗,并且对噪声也敏感,任何干扰或噪声都会改变电流值的大小。 综上所述,通过数字方式来控制模拟电路可以大幅度降低系统的成本和功耗,而单片机I/O口的数字输出可以很简单地发出一个脉冲波,在配以外部元器件就可以调节脉冲波的占空比,完成PWM的功能。本文主要介绍利用89S52系列的单片机,控制某个I/O口中一个管脚的数字输出,生成相应周期的脉冲波,并利用按键控制其占空比的调节,包括了占空比自小到大和自大到校的顺序及倒序可调,其调节范围广,操作简便,各元器件间的干扰较小,对模拟电路的控制十分有效。 1.PWM波的生成 PWM波既为数字输出,就是其幅值只有高电平(ON)和低电平(OFF)之分,所以只要使单片机中作为PWM波输出端的那个管脚输出“1”和“0”,并且搭配不同的时间段,就可以形成不同周期的PWM波。举例说明:若要生成周期为10ms的脉冲,就可以利用单片机编程指令控制其输出端输出“1”,并且保持一段时间tp,然后再输出“0”,同样使其保持一段时间tr,两种数字输出保持的时间必须要满足,现就已生成10ms周期的脉冲波,而PWM波与该脉冲波的区别就是还要能够调节占空比。占空比是指正半周脉宽占整个周期的比例,即高电平保持时间于周期的比值,该比值为百分数(),因此在周期一定的情况下,调节占空比就是调节高电平保持的时间。 2.应用编程 本文介绍的PWM波是利用单片机定时中断去确定脉冲波的周期,并且通过两个按键自增和自减某个变量送至中断中,通过此变量去分配高低电平各自占用的时间,形成不同的占空比,即假设一个周期满额比例值为10,则高电平保持时间的比例为该变量值,那么低电平保持时间的比例就是10减去该变量值。 如图1所示为单片机的外部接线图,其中省略了单片机最小系统,此图即可利用89SC52单片机设计出满足周期为10ms、初始占空比为50%、占空比调节范围为0~100%的PWM脉冲信号发生器。占空比调节范围是指高电平保持时间为0~10ms,那么低电平保持时间就是10ms~0。P0.7脚为PWM波输出口,作为PWM脉冲信号发生器可连接其它电路,本文仅连接示波器去观察波形的占空比变化情况,P2.0脚为自增按钮控制端,每按一次高电平保持时间增加1ms,P2.1脚为自减按钮控制端,每按一次高电平保持时间减少1ms。图2所示为初始

PWM 电机控制介绍

脉冲宽度调制 百科名片 ?? 脉冲宽度调制 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 目录 简介 基本原理 具体过程 脉冲宽度调制优点 控制方法 1. 等脉宽PWM法 2. 随机PWM 3. SPWM法 4. 等面积法 5. 硬件调制法 6. 软件生成法 7. 自然采样法 8. 规则采样法 9. 低次谐波消去法 10. 梯形波与三角波比较法 11. 线电压控制PWM 12. 马鞍形波与三角波比较法 13. 单元脉宽调制法 14. 电流控制PWM 15. 滞环比较法 16. 三角波比较法 17. 预测电流控制法 18. 空间电压矢量控制PWM 19. 矢量控制PWM 20. 直接转矩控制PWM 21. 非线性控制PWM 22. 谐振软开关PWM 脉冲宽度调制相关应用领域 具体应用 1. 简介 2. PWM软件法控制充电电流 3. PWM在推力调制中的应用 简介 基本原理 具体过程 脉冲宽度调制优点

控制方法 1. 等脉宽PWM法 2. 随机PWM 3. SPWM法 4. 等面积法 5. 硬件调制法 6. 软件生成法 7. 自然采样法 8. 规则采样法 9. 低次谐波消去法 10. 梯形波与三角波比较法 11. 线电压控制PWM 12. 马鞍形波与三角波比较法 13. 单元脉宽调制法 14. 电流控制PWM 15. 滞环比较法 16. 三角波比较法 17. 预测电流控制法 18. 空间电压矢量控制PWM 19. 矢量控制PWM 20. 直接转矩控制PWM 21. 非线性控制PWM 22. 谐振软开关PWM 脉冲宽度调制相关应用领域 具体应用 1. 简介 2. PWM软件法控制充电电流 3. PWM在推力调制中的应用 展开 编辑本段简介 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。编辑本段基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟

实验三:PWM信号发生器

实验三:PWM信号发生器 1.实验目的 (1)学习Quartus II 8.0 软件的基本使用方法。 (2)学习GW48-CK EDA实验开发系统的基本使用方法。 (3)学习VHDL程序中数据对象,数据类型,顺序语句和并行语句的综合使用。 2.实验内容 设计并调试好一个脉宽数控调制信号发生器,此信号发生器是由两个完全相同的可自加载加法计数器LCNT8组成的,它的信号的高低电平脉宽可分别由两组8位预置数进行控制。 3.实验条件 (1)开发软件:Quartus II 8.0。 (2)实验设备:GW48-CK EDA实验开发系统。 (3)拟用芯片:EPM7128S-PL84。 4.实验要求 (1)画出系统原理框图,说明系统中各主要组成部分的功能。 (2)编写各个VHDL源程序。 (3)根据系统功能,选好测试用例,画出测试输入信号波形或编好测试文件。 (4)根据选用的EDA实验开发装置编好用于硬件验证的管脚锁定表格或文件。 (5)记录系统仿真、逻辑综合及硬件验证结果。 (6)记录实验过程中出现的问题及解决办法。 5.实验过程 (1)PWM即脉冲宽度调制,就是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。PWM从处理器到被控制系统信号都是数字式的,无需进行数/模转换。 让信号保持为数字形式可将噪声影响降到最小,因此广泛应用在测量、通信和功率控制与变换的许多领域中。 下图是一种PWM信号发生器的逻辑图,此信号发生器是由两个完全相同的可自加载加法计数器LCNT8组成的,它的输出信号的高、低电平脉宽可分别由两组8位预置数进行控制。

如果将初始值可预置的加法计数器的溢出信号作为本计数器的初始预置值加载信号LD,则可构成计数器初始值自加载方式的加法计数器,从而构成数控分频器。图中D 触发器的一个重要功能就是均匀输出信号的占空比,提高驱动能力,这对驱动,诸如扬声器或电动机十分重要。 (2)VHDL源程序 ①8位可自加载加法计数器的源程序LCNT8.VHD --LCNT8.VHD LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ENTITY LCNT8 IS PORT(CLK,LD:IN STD_LOGIC; D:IN INTEGER RANGE 0 TO 255; CAO:OUT STD_LOGIC); END ENTITY LCNT8; ARCHITECTURE ART OF LCNT8 IS SIGNAL COUNT:INTEGER RANGE 0 TO 255; BEGIN PROCESS(CLK)IS BEGIN IF CLK'EVENT AND CLK='1'THEN IF LD='1'THEN COUNT<=D; ELSE COUNT<=COUNT+1; END IF; END IF; END PROCESS; PROCESS(COUNT)IS BEGIN IF COUNT=255 THEN CAO<='1'; ELSE CAO<='0'; END IF; END PROCESS; END ARCHITECTURE ART; ②PWM信号发生器的源程序PWM.VHD

脉宽调制(PWM)直流电动机控制器

脉宽调制(PWM)直流电动机控制器 脉宽调制的全称为:Pulse Width Modulator,简称PWM。由于它的特殊性能,常被用作直流回路中灯具调光或直流电动机调速。这里将要介绍的就是利 用脉宽调制(PWM)原理制作的马达控制器(见图1)。有关电路已经在汽车仪表 照明、车灯照明调光和计算机电源散热风扇方面得到应用。该装置可用于12v 或24v 直流电路中,两者间只需稍做变动。它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载亮度/速度的 目的。技术指标:PWM 频率400Hz;PWM 功率消耗1.5mA(12V 电源、无负 载和LED);输出容量3A(采用IRF521 FET);工作电压12V 或24V。一、PWM 简介利用脉宽调制(PWM)方式实现调光/调速的好处是电源的能量能得到 充分利用,电路的效率高。例如:当输出为50%的方波时,脉宽调制(PWM)电路消耗的电源能量也为50%,即几乎所有的能量都转换为负载功率输出。而采用常见的电阻降压调速时,要使负载获得电源最大输出功率50%的功率,电源必须提供71%以上的输出功率,这其中21%消耗在电阻的压降及热耗上。有 时电路的转换效率是非常重要的。此外,采用脉宽调制(PWM)方式可以使负载 在工作时得到满电源电压,这样有利于克服电机内在的线圈电阻而使电机产生 更大的力矩。当然,采用脉宽调制(PWM)方式实现调光/调速也有一些不利方面,如电路构成会稍许复杂,而且有可能会产生一些射频干扰(RFI),要避免这个问题,在设计时可以考虑负载与控制器尽可能放在一起,以免它们之间的连线过长,必要时还可以考虑在电源处增加滤波器等方法。二、工作原理电路原理见 图1。它主要由U1(LM324)和Q1 组成。图1 中,由U1a、U1d 组成振荡器电路,提供频率约为400Hz 的方波/三角形波。U1c 产生6V 的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要

基于AT89S51单片机的PWM专用信号发生器设计

基于AT89S51单片机的PWM专用信号发生器设计 2007年08月02日星期四 13:20 基于AT89S51单片机的PWM专用信号发生器设计 摘要:介绍一种脉冲涡流无损检测系统所使用的多波形专用PWM信号发生器的设计。该信号发生器以单片机为核心控制单元,通过对外围芯片的控制来实现对输出波形的频率、电压幅值、占空比的连续调节,并能对运行信号参数进行实时显示。经实验验证,该信号发生器便于观察和调节,完全满足脉冲涡流检测系统所需激励信号的要求。 关键词:无损检测;脉冲涡流; PWM;单片机 1 引言 涡流无损检测作为无损检测应用最广泛的方法之一,具有传感器结构简单、灵敏度高、测量范围大、不受油污等介质影响、抗干扰能力强等优点,已被广泛应用于冶金、机械、化工、航空等多个工业部门。然而由于受趋肤效应的影响,常被限制在对导体表面及亚表面层的检测上,这使其检测应用范围受到了很大的限制。但是,若检测线圈在脉冲激励作用下,因脉冲信号中含有丰富、连续的频率成分,所以检测线圈中所得到的信息不仅包含了被检测试件的表面、亚表面信息,还包含其深度信息,能够对材质以及缺陷进行定量评价。而脉冲信号的波形、频率、幅值、占空比等参数的改变对检测结果有着不同的影响。因此为了获得不同的脉冲激励下的检测结果。特制作了这一专用高精度大功率脉冲信号发生器。 2 硬件设计 为满足试验要求,该信号发生器的设计目的是能产生多个波形,且频率,电压,占空比均可以调节的高精度,大功率脉冲信号。该信号发生器的硬件部分:通过单片机控制数模转换芯片输出不同的波形,再经过两级放大以及高频模拟开关进行波形整形得到较为完美的波形后,再用一组达林顿管进行电流放大得到较大功率的脉冲信号。系统硬件框图如图1示。

PWM功率控制器

PWM功率控制器 一功率控制器作用 功率控制器 功率控制器的作用:控制功率,从而间接的控制电流 固态继电器需要特制功率控制器用以保护 SSR 固态继电器(Solid State Relay,缩写SSR),是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。用隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。 1 无功补偿功率控制器 作用是在电子供电系统中提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。 工作原理的话,可以通过对负荷的电压、电流、无功功率和功率因数等一堆东西进行实时跟踪测量,通过微机进行分析,计算出无功功率并与预先设定的数值进行比较,自动选择能达到最佳补偿效果的补偿容量并发出指令,由过零触发模块判断双向可控硅的导通时刻,实现快速、无冲击地投入并联电容器组。 二、数字功率控制器电流选型方法

控制方法 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率. PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控 制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制

PWM信号发生电路

1.P W M信号概述 脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)和AC-DC变换(功率因数校正)。 产生PWM信号的方法有多种,现分别论述如下: 1)普通电子元件构成PWM发生器电路 信 PWM产生过程和灵活调节各项参数。 2.电子元件构成PWM发生器电路

图2 PWM信号发生器电路图 SG3525采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在OUTA、

OUTB两端可输出两个幅度相等、频率相等、相位相差一个周期、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。占空比控制端Ur与输出端OUTA、OUTB两端波形图如图3所示。 图3 Ur与OUTA、OUTB波形图 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照所接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 SG3525芯片内部功能框图如图4所示。 图4 SG3525芯片内部功能框图 各引脚功能如下所述: 1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

相关主题
文本预览
相关文档 最新文档