当前位置:文档之家› 737NG飞机49-10-00辅助动力装置

737NG飞机49-10-00辅助动力装置

飞机燃油系统

飞机上用来贮存和向发动机连续供给燃油的整套装置,又称外燃油系统。 分类燃油系统主要有两种型式:重力供油式和油泵供油式。前者是最简单的燃油系统,多用于活塞式发动机的轻型飞机。这种系统的油箱必须高于发动机,在正常情况下燃油靠重力流进发动机汽化器。现代喷气飞机都采用油泵供油式燃油系统。油箱内的燃油被增压油泵压向发动机主油泵。为了提高系统的可靠性和保证安全,燃油系统大都采用“余度设计”的原则,即系统中的关键元件和通路,如油泵和供油管路至少配置两套,一旦系统中某一元件有故障时,备用元件或通路自动接通。 组成喷气飞机耗油量大,燃油系统比较复杂。它一般由燃油箱、输油和供油管路、油箱通气增压分系统、油量指示和自动控制分系统等组成(图1 喷气飞机燃油系统)。 ①燃油箱:轻型低速飞机多采用铝合金焊接油箱。喷气飞机多用尼龙薄膜油箱或整体油箱。整体油箱直接利用机身和机翼结构内部的一部分空间作为油箱。为了保证油箱密封,结构缝隙均用弹性的密封胶堵塞。在每个油箱的最低点都装有汲油泵,用以向发动机或其他油箱供油。在歼击机上,为了使飞机在倒飞时供油不致中断,通常在主油箱的底部还设有倒飞油箱或倒飞装置(图2配重活门式倒飞油箱)。 ②压力加油系统:喷气飞机载油多,油箱数量也多,如果用注入的方式逐个油箱加油太费时间。为此在飞机上较低的部位设置一个压力加油口,用较粗的管子和各个油箱连通,由地面压力加油车迅速把全部油箱加满。 ③通气增压系统:飞机由高空急速俯冲到海平面时,油箱如没有通气增压管道与大气相通,油箱便会在强大的外界压力下压瘪。通气增压管道可使油箱内部始终保持比外界大气压略高的压力。 ④紧急放油系统:大型旅客机和轰炸机起飞时载油量很大(有的达总重的一半)。为了在紧急情况下(特别是在起飞后不久燃油尚未消耗时)安全着陆,油箱内的燃油应能尽快地排放掉。紧急放油管道应足够粗大,排放口的位置适当,不使放出的燃油喷洒在飞机机体上。 ⑤输油控制系统:飞机上众多的油箱分散布置在机身和机翼内。如果对各油箱的用油顺序不加控制,飞机的重心便会发生很大变化,影响飞机的平衡。控制系统根据各油箱内油量传感器提供的信息,按照规定(保证重心变化为最小)的要求自动安排用油顺序。 超音速飞机燃油系统特点飞机由亚音速转到超音速时,飞机气动中心后移,影响飞机的平衡。超音速运输机上由于带的燃油较多,可以把

航空动力装置100

航空动力装置(100题) 1.一个物理大气压约为 A.14.3PSI B.29.92百帕斯卡 C.1013帕斯卡 2.温度为0摄氏度约合 A.9华氏度 B.0华氏度 C.32华氏度 3.在活塞发动机起动之前,进气压力表通常指示在29.9英寸汞柱,这是因为A.表的指针卡在此位上 B.油门关断,进气管道内有高压 C.进气管道压力和大气压力相等 4.发动机排出的废气温度与外界大气温度相比 A.更高 B.更低 C.相等 5.四行程活塞发动机输出功率的行程是 A.压缩行程

B.膨胀行程 C.排气行程 6.飞机的马赫数指的是 A.飞机的表速与当地的音速之比 B.当地的音速与飞机的速度之比 C.飞机的真空速与当地的音速之比 7.活塞发动机混合气的油/气比是指 A.进入气缸的燃油体积与空气体积之比 B.进入气缸的燃油重量与空气重量之比 C.进入汽化器的燃油重量与空气重量之比 8.活塞发动机的汽缸头温度过高将 A.增加燃油消耗率并增加功率 B.造成胶制受热部件损坏和气缸散热片翘曲 C.导致失去功率,滑油过度消耗 9.如果活塞发动机滑油温度和气缸头温度超过正常范围,是因为A.混合比过富油 B.使用了比规定牌号高的燃油 C.使用功率过大和混合气过贫油 10.如果飞机有燃油箱放油口和燃油滤油口,飞行前放油检查

A.只从油箱放油口放油检查 B.只从油滤放油口放油检查 C.应从油箱放油口和滤油口放油检查 11.如果活塞发动机使用的燃油牌号低于规定的牌号,将最有可能产生A.爆震 B.气缸头温度过低 C.在增加功率时,发动机内的部件应力过大 12.关于活塞发动机电嘴积碳,下列说法哪种正确 A.是因为混合气过富油造成的 B.是因为发动机气缸头温度太高造成的 C.是因为发动机内燃烧温度太高造成的 13.当给飞机加油时,为预防静电带来的危害,应注意 A.检查电瓶和点火电门是否关断 B.油车是否用接地线接地 C.将飞机、加油车和加油枪用连线接地 14.当飞机飞行高度增加,如果混合比杆没有向贫油位调整,将会使A.进入气缸的混合气变富油 B.进入气缸的混合气变贫油 C.进入气缸的混合气油气比不变

辅助动力装置APU

辅助动力装置(APU)简介 摘要 辅助动力装置(APU)为位于飞机尾部防火舱内的一个燃气涡轮发动机,APU向发动机起动系统和空调系统提供引气,APU的交流发电机提供辅助交流电源。 关键词:燃气涡轮发动机、辅助动力装置(型号:85-129[H]) 引言 燃气涡轮机包括以下主要部件:压气机、燃烧室、涡轮、齿轮箱。原理如下:起初是由一个直流起动机来提供发动机初始转动所需的机械能,随着APU压气机部分开始旋转,压气机就把外界的空气抽入发动机。 发动机的压气机段先靠空气通过压气机叶轮使空气加速,这样从外界抽入的气体能量就增加了,然后空气通过扩散器的发散形管道,速度减小,压力增大。 在APU的燃烧段,压缩空气被导入燃烧室,燃油喷入其中点火燃烧,化学能转化为热能。燃气膨胀,进一步提高了燃气的压力。 高温高压气体通过涡轮的收敛形喷口,速度增加,直接冲击在涡轮转子的叶尖上,这样热能在涡轮段转化成机械能。在有足够的机械能提供给压气机转子时就引起了转子的旋转,开始了周而复始的运转。同时齿轮箱也运转了起来,提供必要的动力来驱动部附件,用于发动机的操纵和控制。85-129[H]型APU是一种恒速的发动机,可以加速到设计转速(100%RPM),转速是由调节器来保持的。 涡轮发动机简图

1压气机功能描述 随着叶轮开始转动,叶片间的空气向叶尖加速运动,空气从叶尖进入扩散器,扩散器叶片间的空间形成了一个分叉的管路,使空气减速增压。空气由叶轮向扩散器流动使得在轮轴或叶轮中心处产生低压,周围的空气会流向这个低压区,这样压气过程得以延续。外界空气被抽入第一级叶轮,从第一级扩散器排出,然后又通过一个级间管道导入第二级叶轮的中心。从第二级扩散器出来后,压气机排气进入涡轮部分。 压气机部分 2燃烧室功能描述 压气机的空气经过火焰筒上不同直径的孔进入燃烧室,这些孔的大小和间隔控制了进入燃烧区域的空气量。燃油经喷嘴喷入火焰筒的中心,与压缩空气混合并点火。火焰沿着火焰筒轴向向下燃烧,这些孔允许部分压缩空气进入燃烧室以降低燃气温度。经过冷却的燃气减小了对涡轮喷管和叶轮的烧蚀。 3涡轮功能描述 进入涡轮喷嘴的燃气被引导冲向涡轮叶片的叶尖,由于燃气高速流动,对叶尖的冲击产生扭矩来转动涡轮,随后燃气流向中心区,在那里改变方向并推动叶片。因此,在燃烧室中涡轮可以在燃气排出之前从中最大限度地吸取能量。在燃烧室段产生的热能进入涡轮,在那里转化为机械能,带动压气机和附件齿轮箱。 整个过程称为工作循环,它描述了能量从一种形式转化为另一种形式,又转化回原来的形式。

民用飞机主要系统有哪些讲课稿

民用飞机主要系统有哪些 1、空调系统 2、自动驾驶系统 3、通讯系统 4、电源系统 5、防火系统 6、飞控系统 7、燃油系统 8、液压系统 9、防冰系统10、仪表系统11、起落架系统12、灯光系统13、导航系统14、氧气系统15、引气系统16、水系统17、发动机各个系统、发动机振动监测仪发动机接口控制装置18、主飞行控制系统19、驾驶舱控制系统20、照明系统21、内装饰系统22、控制板组件23、水/废水系统24、应急撤离系统25、氧气系统26、驾驶员座椅27、风档玻璃和通风窗28、风档温控和雨刷系统29、风门作动器30 航电系统31、高升力系统32、空气管理系统33、起落架系统图书目录编辑1.1 引言1.2 飞行控制原理1.3 飞行操纵面1.4 主飞行控制1.5 副飞行控制1.6 商用飞机1.6.1 主飞行控制1.6.2 副飞行控制1.7 飞行操纵联动系统1.7.1 操纵连杆系统1.7.2 钢索和滑轮系统1.8 增升控制系统1.9 配平和感觉1.9.1 配平1.9.2 感觉1.10 飞控作动装置1.10.1 简单的机械/液压式作动装置1.10.2 具有电信号的机械式作动装置1.10.3 多余度作动装置1.10.4 机械式螺旋作动器1.10.5 组合作动器组件(iap)1.10.6 先进作动机构1.11 民用系统的实施1.11.1 顶层比较1.11.2 空中客车的实施1.12 电传控制律1.13

a380飞控作动1.14 波音777的实施1.15 飞行控制、引导和飞行管理的相互关系参考文献控制系统编辑2.1 引言2.1.1 发动机/机体接口2.2 发动机技术和工作原理2.3 控制问题2.3.1 燃油流量控制2.3.2 空气流量控制2.3.3 控制系统2.3.4 控制系统参数2.3.5 输入信号2.3.6 输出信号2.4 系统实例2.5 设计准则2.6 发动机起动2.6.1 燃油控制2.6.2 点火控制2.6.3 发动机旋转2.6.4 油门杆2.6.5 起动顺序2.7 发动机指示2.8 发动机滑油系统2.9 发动机功率的提取2.10 反推力2.1l 现代民用飞机上的发动机控制参考文献燃油系统编辑3.1 引言3.2 燃油系统的特性3.3 燃油系统部件说明3.3.1 输油泵3.3.2 燃油增压泵3.3.3 输油阀3.3.4 止回阀(nrv)3.4 燃油油量测量3.4.1 油面传感器3.4.2 燃油油量测量传感器3.4.3 燃油油量测量基础3.4.4 油箱形状3.4.5 燃油的性质3.4.6 燃油油量测量系统3.4.7 福克f50/f100系统3.4.8 空中客车a3203.4.9 “智能型”传感器3.4.10 超声波传感器3.5 燃油系统的工作模式3.5.1 增压3.5.2 发动机供油3.5.3 燃油传输3.5.4 加油/放油3.5.5 通气系统3.5.6 用燃油作为热沉3.5.7 外部燃油箱(副油箱)3.5.8 应急放油3.5.9 空中加油3.6 综合民机系统3.6.1 庞巴迪“环球快车”3.6.2 波音7773.6.3 a340-500/600燃油系统3.7 燃油箱的安全

飞行器动力工程-专业培养方案(新)

西北工业大学本科生培养方案专业名称飞行器动力工程 专业代码0203 0701 学院名称航天学院动力与能源学院 培养方案制定人签字年月日 院长签字年月日 校长签字年月日 西北工业大学 1 1

2 1

飞行器动力工程专业本科培养方案 一、专业介绍 西北工业大学飞行器动力工程专业以航空航天飞行器动力为对象,以航空宇航推进理论与工程、 动力工程与工程热物理学科为依托,以动力、能源、机械及控制等学科为延拓,历经60多年的发展,已成为我校最具航空航天特色的专业之一。本专业拥有2个国家级重点实验室、2个省部级重点实验 室和工程中心,是陕西省本科“名牌专业”、国防科工委“重点建设专业”和教育部“特色专业”。 本专业涵盖航空发动机和火箭发动机设计、燃烧与流动、叶轮机械、发动机结构与强度等多个研 究方向,参与并支持了我国多个航空飞行器动力装置、航天飞行器动力系统等方面的科研工作,已形 成了一支教学水平高、科研能力强的师资队伍。本专业以国民经济发展和国防建设需求为牵引,充分 发挥国防特色的突出优势,教学与科研紧密结合,培养的学生基础扎实、实践能力强、综合素质高、 创新意识强,得到用人单位的一致好评。 毕业生就业方向主要分布在航天、航空研究院(所)、大专院校、大型企业及部队,从事发动机设计、制造、试验、测试等方面的研究、开发和管理等工作;也可选择报考本专业及相关学科专业的硕 士研究生,近年来平均读研率在60%以上。 二、培养目标 培养适应社会主义现代化建设需要的德智体全面发展,掌握航空航天动力系统设计基本理论和工程应用等专门知识,具备航空航天热动力机械方面设计、分析和解决实际问题的能力,能从事航空航天动力系统总体设计、性能仿真、燃烧组织、流动模拟、传热分析及相关软件开发等,并能从事通用机械设计及制造的高级研究人员和工程技术人员。 三、培养要求 通过通识通修、学科专业和综合实践等培养环节,使学生具有高尚的人文素养、掌握宽广的基础科学理论、具备解决实际问题的基本方法和创新能力;并可结合自身的兴趣、爱好和就业取向,选修有助于拓展视野和提高能力的个性培养课程,从而达到综合素质的全面提升。 毕业生应获得以下几方面的知识和能力: 1、具有扎实的自然科学基础知识,良好的人文、艺术和社会科学基础及较强的语言表达和阅读写作能力。 3 1

飞机燃油系统译文

飞机燃油系统 姓名:温可明学号:10063121 南昌航空大学飞行器工程学院 【摘要】 飞机燃油系统是飞机上众多系统中的一个子系统,它的功用是储存燃油,并保证在规定的任何状态(如各种飞行高度、飞行姿态)下,均能按发动机所要求的压力和流量向发动机持续不间断地供油。此外,燃油系统还可以完成冷却飞机上其他系统、平衡飞机、保持飞机重心于规定的范围内等附加功能。民用飞机燃油系统一般包括燃油箱系统、加放油系统、供输油系统、油箱通气增压系统、燃油测量系统、信号指示系统和热负载系统。 关键字:燃油系统供输油系统油箱燃油特性腐蚀安全与排故 正文 一:燃油系统的组成 作为一个燃油系统,必须有至少油箱、管道、油过滤器、截止阀和油、规模等,简单的燃油供给系统是依靠重力活塞引擎油系统。油箱高度相对于化油器,印版压力,使汽油可以达到化油器。有一个加油在背心,也是油箱通气。下水道在内胆底部的,它也是一个排污口。有一个关闭阀、防火阀在油滤器过滤后。另一个开始泵用于石油在启动。燃油系统由油箱,油箱通风系统、气/油应急放油系统、燃料供给系统、压缩空气系统和指令/预警系统等。 二:燃油系统的功能 (1):储存燃油 (2):在规定的飞行条件下的安全可靠传输燃料发动机和生产现场的安全、可靠 (3):调整重心位置,保持平衡和压力的机翼结构 (4):制冷配件,如冷却源 三:燃油系统的特点 (1):大燃料载荷 (2):供油安全 (3):可以删除油泵不放油泵快速放电,提高维护性能 (4):可视化的燃料控制面板 (5):避免死油 (6):使用压力加油 (7):通风油箱 (8);紧急卸油系统 四:燃油系统的要求 (1)燃油增压泵一般安装在油箱的最低点,保证起飞、着陆、启动和高空都能有效工作,还要有足够的能力当发动机驱动的油泵失效时以替代之。 (2)当增压泵全部失效时,依靠重力供油,靠发动机驱动的油泵的抽吸作用, 仍能向发动机供油。 (3)每个油箱至少有两台增压泵。对于任何正常飞行姿态下的燃油载荷,每 个油箱至少有一个油泵能泵出燃油。

《飞机动力装置》知识

一、单选题 1.对于燃油泵,按供油增压原理可分为: A.齿轮泵和柱塞泵 B.齿轮泵和容积式泵 C.叶轮式泵和容积式泵 D.叶轮式泵和柱塞泵 D 2.柱塞泵属于: A.叶轮式,定量泵 B.叶轮式,变量泵 C.容积式泵 ,变量泵 D.容积式泵 ,定量泵 C 3.柱塞泵供油量的多少由()决定。 A.转速和斜盘角度 B.转速和分油盘大小 C.齿数和斜盘角度 D.转速和齿数 A 4.发动机全功能(全权限)数字电子控制器的英文缩写是( )。 A.APU B.EEC C.FADEC D.FMU C 5.发动机启动过程是指: A.从接通启动电门到达到慢车转速 B.从接通启动电门到自维持转速 C.从接通启动电门到启动机脱开 D.从接通启动电门到点火断开 A 6.发动机点燃的标志是发动机的: A.滑油压力低灯灭 B.转速升高 C.进气温度升高 D.排气温度上升 D 7.发动机能够保持稳定工作的最小转速是: A 自持转速 B 慢车转速 C.巡航转速 D.最大连续转速 B

8.目前在干线客机上最广泛采用的启动机是: a 电动启动机 b 冲击启动机 c 空气涡轮启动机 d 燃气涡轮启动机 C 9.下列不是飞机用气气源的是: a APU b 发动机压气机 c 地面气源 d 客舱空调 D B 10.放气活门打开放掉()的空气来防喘。 A、风扇后 B、压气机前面级 C、压气机中间 D、压气机后面级 C 11、在双转子发动机中,可调静子叶片是调节()。 A、高压压气机进口导向叶片和前几级静子叶片 B、低压压气机进口导向叶片和前几级静子叶片 C、高压涡轮进口导向叶片和前几级静子叶片 D、低压涡轮进口导向叶片和前几级静子叶片 A 12 飞机空调、增压、除冰、加温用的空气来自何处: a 压气机引气 b 地面供气 c冲压空气 d 燃烧气体 A 13 燃烧室中用于冷却的气体约占其进气量的: A.1/5 B.1/4 C.1/3 D.3/4 D 14 涡喷发动机的冰部位有()。 A.进气整流罩,前整流锥和压气机的进气导向器 B.进气整流罩和压气机静子 C.前整流锥和压气机转子 D.压气机和尾喷管 A

A320飞机液压系统的工作原理

A320飞机液压系统的工作原理 姓名:XXX 学号:XXXX XXXXXXXXXXXXXXXXX 一:摘要 空客A320凭借其在设计上使用大量复合材料作为主要结构材料,更改机身的空间,加宽座椅的宽度,在控制上,其采用了电传操纵(fly-by-wire)飞行控制系统的亚音速民航运输机,代替了过去主要靠机械装置传输飞行员指令来控制飞机的姿态和动作。飞行员的操纵动作被转换成电子信号,经过计算机处理后再驱动液压和电气装置来控制飞机姿态。从而代替了过去的主要由线缆等机械装置来传输飞行员指令,进而控制飞机的姿态和动作。这是第一款使用电传操纵飞行控制系统的大型客机。凭借这些等优势,在国内及世界空客飞机中占有重要一席。本论文主要对其液压系统作介绍。 二:关键字 空客A320 液压系统 三:液压系统构造及工作原理 1:为何要采用液压系统 飞机大型化以后,一对副翼的重量就可达l吨以上,依靠驾驶员操纵控制各操纵面仅凭体力去搬动驾驶杆、踏踩脚蹬、拉动钢索使副翼或方向舵转动,那是绝对办不到的了。此时飞机上就出现了助力机构。飞机上的绝大部分助力机构采用的多为液压传动助力系统。日常生活中,常常可以看到在建设工地上施工的挖掘机,它那巨大的挖斗由伸出缩入的推杆来带动,就是由液压机构来实现的。 2:液压传动原理 液压传动是一种以液体为工作介质,利用液体静压能来完成传动功能的一种传动方式,也称容积式传动。 功用:给飞行操纵系统、起落架收放、前轮转弯、刹车系统和发动机反推装置等提供操纵动力。

3:液压系统的基本组成

(1):动力元件 液压泵,其作用是将机械能转换成液体的压力能。液压泵可分多种,有柱塞泵,齿轮泵等。这些泵在液压系统中都起着转换机械能的作用,但原理各不同,下面介绍齿轮泵和柱塞泵的工作原理图。 a:齿轮泵 齿轮按图示方向旋转 吸油过程:在吸油腔中的啮合 齿逐渐退出啮合,吸油腔容积 增大,形成部分真空,油箱中 的油液在油箱内压力作用下, 克服吸油管阻力被吸进来,并 随轮齿转动; 排油过程: 当油进入排油腔 时由于轮齿逐渐进入啮合,排 油腔容积逐渐减小,将油从排 油口挤压出去。齿轮不断旋转, 油液便不断地吸入和排出。排油腔吸油腔

SAE ARP 4754A 民用飞机系统研发指导

目录 1.范围(Scope) (1) 1.1目的(Purpose) (2) 1.2文件背景(Document Background) (3) 2.引用文件(References) (5) 2.1适用文件(Applicable Documents) (5) 2.1.1 SAE出版物 (5) 2.1.2 FAA出版物 (5) 2.1.3 EASA出版物 (6) 2.1.4 RTCA出版物 (6) 2.1.5 EUROCAE出版物 (6) 2.2 定义(Definitions) (7) 2.3缩写(Abbreviations And Acronyms) (12) 3.研制计划(Development Planning) (14) 3.1计划过程(Planning Process) (14) 3.2过渡准则(Transition Criteria) (15) 3.2.1偏离计划 (16) 4飞机和系统研制过程(Aircraft And System Development Process) (16) 4.1飞机/系统概念研制阶段(Conceptual Aircraft/System Development Process) (17) 4.1.1 研制保证 (18) 4.1.2研制保证过程的介绍 (18) 4.1.3源自安全性分析家等级安全性要求的介绍 (19) 4.1.4飞机级功能、功能要求和功能接口的识别 (20) 4.1.5飞机功能到系统的分配 (20)

4.1.6系统构架研制 (21) 4.1.7系统要求到项目的分配 (21) 4.1.8系统实施 (21) 4.2飞机功能研制(Aircraft Function Development) (21) 4.3飞机功能到系统的分配(Allocation of Aircraft Functions to Systems) (23) 4.4系统构架的研制(Development of System Architecture) (24) 4.5项目系统要求的分配(Allocation of System Requirements to Items) (24) 4.6系统实施(System Implementation) (25) 4.6.1信息流-从系统过程到项目过程&从项目过程到系统过程 (25) 4.6.2硬件和软件设计/建造 (27) 4.6.3电子硬件/软件集成 (27) 4.6.4飞机/系统集成 (27) 5集成过程(Integral Process) (28) 5.1安全性评估(Safety Assessment) (28) 5.1.1功能危害性评估 (30) 5.1.2初始飞机/系统安全性评估 (31) 5.1.3飞机/系统安全性评估 (32) 5.1.4共因分析 (33) 5.1.5安全性项目计划 (34) 5.1.6安全性相关的飞行操作或维修任务 (34) 5.1.7服务中安全性的关系 (35) 5.2研制保证等级分配(Assignment of Development Assurance Level) (35) 5.2.1一般准则—研制保证等级分配的介绍 (36) 5.2.2功能研制保证等级和项目研制保证等级(FDAL和IDAL) (37) 5.2.3详细的FDAL和IDAL分配指南 (37) 5.2.4考虑外部事件的FDAL分配 (50) 5.3要求捕获(Requirements Capture) (51) 5.3.1要求类型 (52) 5.3.2安全性分析的导出安全性相关要求 (55)

5第五章飞机燃油系统

第五章飞机燃油系统 燃油系统是为存储和输送动力装置所需燃料而设置的。对燃油系统的要求是:储存所需的全部燃油,并在飞机的所有飞行阶段(包括改变飞行高度、剧烈机动和突然加速或减速等)都能可靠地连续不断地向动力装置输送所需的洁净燃油。 一架飞机的完整的燃油系统包括两大部分,飞机燃油系统与发动机燃油系统。 一、对燃油系统的要求 为了保证在所有正常飞行状态下能够可靠地向发动机供给所需燃油,并且确保飞行中飞机和乘员、旅客的安全,许多国家都颁布有各类飞机的适航条例。例如:在美国有联邦航空条例FAR,在欧洲有联合航空条例JAR,中国有中国民用航空适航条例CCAR。在条例中对燃油系统都有详细具体的要求,这些要求是必需满足的。 二、飞机加油时的静电 飞机加油时产生静电失火和爆炸事故,在世界各航空公司几乎每年都有发生,造成生命财产的重大损失。随着大型飞机加油量的增加和加油速度的提高以及加油操作的不当,使飞机在加油过程中产生的静电灾害的危险性有所增加。这个问题不仅涉及到油料部门,也涉及到各航空公司飞机加油时的操作。 飞机加油时产生静电灾害必须具备以下4个条件:(1)必须具有产生静电的条件(包括感应带电);(2)必须具有静电电荷积累的并能产生火花放电;(3)放电时具备足够的放电能量;(4)放电必须在浓度适宜的爆炸混合气内发生。 所以在飞机加油时产生静电灾害有一定的机会或偶然性。正是由于这个原因,加油人员与飞行机组或有关人员往往思想麻痹,怀着侥幸心理。从国内外多起飞机加油静电灾害的分析来看,大多是人为造成的,即和管理、操作、维护有关,这点必须引起高度重视。 5.1燃油配置、传输与重心控制 一、燃油配置 从机翼的受载角度来说,机翼上装燃油是有利的。因为在飞行中机翼主要是受升力作用,方向向上,而燃油重量是重力,方向朝下,起了卸载的作用。故对减轻机翼结构重量是有利的。然而,在着陆时燃油重量恰好增加了机翼固定装置的载荷,又是不利的,但往往这时燃油已大部分消耗掉了,所剩无几了。因此,有的飞机装有紧急放油系统,是准备在紧急着陆时,放掉大部分机翼中的燃油。 机翼中的油箱,有的全是整体油箱,有的部分是整体油箱部分是软油箱,有的飞机还设有备用油箱。 二、飞机重心和耗油顺序 理论上讲燃油可以布置在机身和机翼的任一容积空间,但燃油消耗中对飞机重心的 1

车辆液压辅助动力系统设计

摘要 目前,减少车辆的油料消耗和废气排放量是车辆节能和环境保护的一个迫切问题。为了减少城市内交通车辆的耗油量和所排放的废气,将车辆制动等过程中转变为热能的动能加以回收利用是一个值得研究的问题。 本设计属于再生制动能量的研究范围,研究以汽车减速及制动能量回收再利用为目的的液压节能驱动系统。本系统由液压技术、传动技术、控制技术相结合实现车辆的低油耗、低排放,并有效地提高车辆的动力性能,是现有汽车节能、环保的重要途径。 本系统采用定量泵/马达,气囊式蓄能器为能量转换及贮存部件,实现制动时的动能回收和启动加速的液压能回馈。 系统中,车辆的加速与减速通过改变泵/马达的使用功能来实现,加速时,泵/马达作为马达使用,制动时,作为泵用。因此,配有该系统的车辆,即可以回收动能,还能够再利用这些能量进行加速、启动。而能量回收的关键技术是如何将制动时的能量加以保存,也就是能量回收系统的设计。在本设计中,系统采用的是液压蓄能器。 本文针对城市公交车辆研究的能量回收系统可望达到较高的节能效果,具有较高的经济效益和社会效益。 关键词:公交车;节能;泵/马达;动能;蓄能器

ABSTRACT Today it becomes very urgent problems to reduce fuel consumption and exhaust gases from road vehicles for environmental protection. In order to reduce fuel consumption and exhaust gases from road vehicle, the kinetic energy that might otherwise be lost as heat during vehicle braking might be received and used. This design belongs to the research of the third aspect, the compound drive system is used to regenerate the loss energy. The low oil consumption and low bleeder of vehicle are achieved by using of transmission, hydraulic power control. And the compound drive system works harmoniously with engine to raise the motive capability effectively. It is the important way of automobile saving energy and environmental protection. Hydraulic pump/motor and hydraulic accumulation are used to transform a store energy, therefore it can regenerate the loss energy during vehicle braking and use this energy when automobile is in acceleration state. In this system, both driving and braking torque of the vehicle are controlled by a pump/motor. The pump/motor is used as a motor during the vehicle acceleration and as a pump when the vehicle being on braking. As a result, the vehicles with this system can not recover the kinetic energy from moving object but also use the energy at braking, namely the design of energy recovery system. In this design, the energy recovery system uses a hydraulic accumulator. This system is expected to reduce fuel consumption, especially compared with vehicle without this system. It will bring extremely high economic and social benefits . Key words:City bus; Energy Saving; Hydraulic pump/motor; Hydraulic power; Accumulator

民用飞机液压系统技术现状及趋势研究

龙源期刊网 https://www.doczj.com/doc/7915169037.html, 民用飞机液压系统技术现状及趋势研究 作者:陈宝琦 来源:《科技资讯》2015年第19期 摘要:目前民用飞机液压系统为保障安全性和操作性,在设计时通常会采用冗余和备份 技术,但同时也会带来成本、重量和复杂性的问题。该文通过对波音和空客多款机型机载液压系统的研究,重点分析泵源、余度配置、替换逻辑与系统布局方案,总结了其液压系统体结构、冗余备份等方面的技术现状,指出未来民机液压系统应具有单源系统向多源系统发展、系统独立性提升、多电化和分布式、控制技术和健康监测技术的应用以及高压化低压力脉动的发展趋势。 关键词:民用飞机液压系统布局分析发展趋势 中图分类号:V22 文献标识码:A 文章编号:1672-3791(2015)07(a)-0069-03 随着经济的发展和社会的繁荣,我国民航产业每年都以超过10%的增速快速增长,现已成为世界第二大民用航空市场。但作为航空大国,我国在大型民用飞机液压系统的研制方面却是刚刚起步,从元件级到系统级基本由国外供应商垄断,国内市场的供给量与巨大的需求极不匹配。 研制高效可靠的大型民用飞机液压系统,不仅可以在产品层级上为飞机减轻重量,提高安全性和效率,还可带动诸如新材料、电子、能源、精密制造等一系列相关的高新技术产业的发展,关系到整个国家航空系统集成能力的提高。 1 液压系统的定义及组成 按照ATA100(航空产品技术资料编写规范)的定义,民机液压系统是指使液压油在压力下供至公共点以便再行分配到其它规定系统的部件和零件。民用飞机液压系统按功能可分为液压能源系统和工作回路两个部分。液压能源系统为飞机上所有使用液压驱动的活动部位提供液压能源,并保证卸荷与散热等方面的要求。液压能源系统主要由泵源、能量转换装置、油箱、控制阀、管路及指示系统等组成。 2 典型民机液压系统技术现状 波音和空客是目前世界民航市场上两大巨头,均有多款产品在市场上获得巨大成功,具有极高的研究价值。 2.1 波音飞机液压系统的特点

航空器系统动力装置

1. 世界公认的第一次成功地进行带动力飞行的飞机制造和试飞者是 a A:莱特兄弟于1903年. B:兰利于1903年 C:莱特兄弟于1902年 D:蒙哥尔菲于1783年 2.某客机机身内设有240个座位,按客座数分类,该飞机属于 c A:小型客机. B:中型客机 C:大型客机 D:巨型客机 3.飞行安全即无飞行事故,在执行飞行任务时发生飞机失事的基本原因可以分为三大类: B A:单因素、双因素、多因素. B:人、飞机、环境 C:机场内、进场区、巡路上 D:机组、航管、签派 4. 飞机载荷是指: D A:升力 B:重力和气动力 C:道面支持力 D:飞机运营时所受到的所有外力 5.在研究旅客机典型飞行状态下的受载时,常将飞机飞行载荷分为B A:升力、重力、推力、阻力. B:平飞载荷、曲线飞行载荷、突风载荷 C:飞行载荷、地面载荷与座舱增压载荷 D:静载荷、动载荷 6.飞机等速平飞时的受载特点是: D A:没有向心力而只受升力、重力、推力和阻力作用. B:升力等于重力;推力等于阻力;飞机所有外力处于平衡状态 C:既有集中力,也有分布力 D:以上都对 7.飞机大速度平飞时,双凸翼型机翼表面气动力的特点是: A A:上下翼面均受吸力. B:上下翼面均受压力 C:上翼面受吸力,下翼面受压力 D:上翼面受压力,下翼面受吸力 8.飞机作曲线飞行时:A A:受升力、重力、推力、阻力作用 B:受升力、重力、推力、阻力及向心力作用 C:升力全部用来提供向心力 D:外力用以平衡惯性力 9.飞机水平转弯时所受外力有 A A:升力、重力、推力、阻力

B:升力、重力、推力、阻力、向心力 C:升力、重力、推力、阻力、惯性力 D:升力和重力、推力和阻力始终保持平衡 10.飞机转弯时的坡度的主要限制因素有: C A:飞机重量大小 B:飞机尺寸大小 C:飞机结构强度、发动机推力、机翼临界迎角 D:机翼剖面形状 11.某运输机在飞行中遇到了很强的垂直上突风,为了保证飞机结构受载安全,飞行员一般采用的控制方法是: A:适当降低飞行高度 B:适当增加飞行高度 C:适当降低飞行速度 D:适当增大飞行速度 正确答案: C 12.飞机平飞遇垂直向上突风作用时,载荷的变化量主要由 A:相对速度大小和方向的改变决定 B:相对速度大小的改变决定 C:相对速度方向的改变决定 D:突风方向决定 正确答案: C 13.在某飞行状态下,飞机升力方向的过载是指 A:装载的人员、货物超过规定 B:升力过大 C:该状态下飞机升力与重量之比值 D:该状态下飞机所受外力的合力在升力方向的分量与飞机重量的比值 正确答案: C 14.飞机水平转弯时的过载 A:与转弯半径有关 B:与转弯速度有关 C:随转弯坡度增大而减小 D:随转弯坡度增大而增大 正确答案: D 15.机翼外载荷的特点是 A:以分布载荷为主 B:主要承受接头传给的集中载荷 C:主要承受结构质量力 D:主要承受弯矩和扭矩 正确答案: A 16.在机翼内装上燃油,前缘吊装发动机,对机翼结构 A:会增大翼根部弯矩、剪力和扭矩 B:可减小翼根部弯矩、剪力和扭矩 C:有利于飞机保持水平姿态 D:有利于保持气动外形

5第五章 飞机燃油系统讲课教案

5第五章飞机燃油系 统

第五章飞机燃油系统 燃油系统是为存储和输送动力装置所需燃料而设置的。对燃油系统的要求是:储存所需的全部燃油,并在飞机的所有飞行阶段(包括改变飞行高度、剧烈机动和突然加速或减速等)都能可靠地连续不断地向动力装置输送所需的洁净燃油。 一架飞机的完整的燃油系统包括两大部分,飞机燃油系统与发动机燃油系统。 一、对燃油系统的要求 为了保证在所有正常飞行状态下能够可靠地向发动机供给所需燃油,并且确保飞行中飞机和乘员、旅客的安全,许多国家都颁布有各类飞机的适航条例。例如:在美国有联邦航空条例FAR,在欧洲有联合航空条例JAR,中国有中国民用航空适航条例CCAR。在条例中对燃油系统都有详细具体的要求,这些要求是必需满足的。 二、飞机加油时的静电 飞机加油时产生静电失火和爆炸事故,在世界各航空公司几乎每年都有发生,造成生命财产的重大损失。随着大型飞机加油量的增加和加油速度的提高以及加油操作的不当,使飞机在加油过程中产生的静电灾害的危险性有所增加。这个问题不仅涉及到油料部门,也涉及到各航空公司飞机加油时的操作。 飞机加油时产生静电灾害必须具备以下4个条件:(1)必须具有产生静电的条件(包括感应带电);(2)必须具有静电电荷积累的并能产生火花放电;(3)放电时具备足够的放电能量;(4)放电必须在浓度适宜的爆炸混合气内发生。 所以在飞机加油时产生静电灾害有一定的机会或偶然性。正是由于这个原因,加油人员与飞行机组或有关人员往往思想麻痹,怀着侥幸心理。从国内外多起飞机加油静电灾害的分析来看,大多是人为造成的,即和管理、操作、维护有关,这点必须引起高度重视。 5.1燃油配置、传输与重心控制 仅供学习与交流,如有侵权请联系网站删除谢谢1

2019飞行器动力工程专业怎么样

2019飞行器动力工程专业怎么样 1、飞行器动力工程专业简介 本专业设有航空宇航推进理论与工程、系统仿真与控制、机械设计及理论硕士点和博士点以及动力机械及工程、流体机械及工程硕士点等,并设有航空宇航科学与技术、力学博士后流动站。 2、飞行器动力工程专业主要课程 机械工程、力学、动力工程与工程热物理、高等数学。主要课程:机械原理及机械设计、电工与电子技术、工程力学、工程热力学、传热学、动力装置原理及结构、动力装置制造工艺学等。 3、飞行器动力工程专业培养目标 培养目标 本专业培养具备飞行器动力装置或飞行器动力装置控制系统等方面的知识,能在航空、航天、交通、能源、环境等部门从事飞行器动力装置及其它热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。 培养要求 本专业学生主要学习有关飞行器动力装置的基础理论和基本知识,受到机械工程设计、实验测试和计算机应用等方面的基本训练,具有飞行器动力装置及控制系统的设计、实验和运行维护等方面的基本能力。 4、飞行器动力工程专业就业方向与就业前景

由于我国飞行器动力行业已得到国家多项专项计划支持,未来该专业将具有很好的发展前景。毕业生可在航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门等从事设计、试验、研究等方面的工作。 5、飞行器动力工程专业比较不错的大学推荐,排名不分先后 1.北京航空航天大学A++ 2.西北工业大学A++ 3.南京航空航天大学A+ 4.北京理工大学A+ 5.中国民航大学A+ 6.沈阳航空航天大学A+ 7.厦门大学A+ 8.南昌航空大学A 9.哈尔滨工业大学A 10.哈尔滨工程大学A 11.中国民用航空飞行学院A

民用飞机液压能源系统故障模拟试飞实现方法

民用飞机液压能源系统故障模拟试飞实现 方法 【摘要】液压系统故障试飞是民用飞机适航验证的重要科目,本文介绍了一种在飞机上模拟液压系统故障的装置及其实现方法,并对试飞风险进行简要分析。论文关键词:民用飞机,液压系统,故障模拟,试飞 现代民用飞机液压系统是典型的多余度、大功率的复杂综合系统,为保证的可靠工作,大都采用多余度设计,有2套或3套甚至更多套独立的系统,并且系统间可以相互进行能源转换,以保证飞机液压系统的可靠工作。而且大多飞机设计有辅助系统,以保证在应急情况下一些主要操作系统可以工作,保证飞机安全落地。 根据民航适航标准规定,对于飞机系统可能存在的失效情况,必须通过分析,必要时通过适当的地面、飞行或模拟器试验来表明发生任何妨碍飞机继续安全飞行与着陆的失效状态的概率极不可能。 对于液压系统,需通过分析和试验表明,在所有可能发生的故障状态下,影响飞机安全飞行的概率极不可能。液压系统故障试飞需要模拟可能发生的故障状态,本文介绍了一种基于飞机和液压用户安全性要求的、用于液压系统故障试飞的发动机驱动泵(EDP)故障模拟阀设计。 1 条款分析 CCAR 25.1309(c)(d)、CCAR25.1435c(2)条款要求液压系统进行失效条件下模拟试验,验证液压系统的安全性。CCAR25.671(d)条款

要求飞机在所有发动机失效的情况下是可控的。因此,需要对可能发生液压系统故障情况进行试飞验证。 2 液压系统的原理及方案 1#系统的压力由一台左发动机驱动泵及一台与其并联作备用的交流电动泵产生。 2#系统的压力由一台右发动机驱动泵及一台与其并联作备用的交流电动泵产生。 3#系统正常工作及应急工作时均只使用一台电动泵,另一台作备用,这两台电动泵可互为备用。当出现双发失效时候,3#系统电动泵改由冲压空气涡轮(RAT)供电。此时,先接通主电动泵的卸荷阀,在RAT 启动正常供电后,卸荷阀关闭,主电动泵启动供压。RAT启动期间对液压源的需求由3#系统蓄压器提供。 在1#与2#液压能源系统之间设置一个1#系统向2#系统进行压力转换的单向能源转换装置。该装置主要用于起飞着陆阶段收放起落架时增大2#系统流量用。 3 故障模拟方法 3.1 发动驱动泵故障模拟的原理 故障模拟装置的连接和工作原理如图1所示。 在EDP供压管路上加装二位三通转换阀,在常开位置接通EDP和压力油滤管路。使故障模拟装置在断电状态下保持系统正常工作;在驾驶舱加装控制开关,当该开关合上供电时,二位电磁阀转换,EDP供油管路断开——EDP斜盘自动转到0度——EDP的油量输出为零。此

飞机发动机辅助动力装置启动原理

飞机发动机辅助动力装置启动原理 航空燃气涡轮发动机的结构和循环过程,决定了它不能象汽车发动机那样自主的点火起动。因为,在静止的发动机中直接喷油点火,因为压气机没有旋转,前面空气没有压力,就不能使燃气向后流动,也就无法使涡轮转动起来,这样会烧毁燃烧室和涡轮导向叶片。 所以,燃气涡轮发动机的起动特点就是:先要气流流动,再点火燃烧,也即是发动机必须要先旋转,再起动。这就是矛盾,发动机还没起动,还没点火,却要它先转动。 根据这个起动特点,就必须在点火燃烧前先由其他能源来带动发动机旋转。 在以前的小功率发动机上,带动发动机到达一定转速所需的功率小,就采用了起动电机来带动发动机旋转,如用于国产运-7,运-8飞机的涡桨5、涡桨6发动机。 但是随着大推力发动机的出现,用电动机已无法提供如此大的能量来带动发动机,达到点火燃烧时的转速了,因此需要更大的能源来带动发动机,这时,采用APU,产生压缩空气,用气源代替电源来起动发动机成为了现在所有高涵道比发动机的起动方式。 二、压缩空气的来源 毫无疑问,压气机是压缩空气最好的来源。采用涡轮带动压气机就可以连续不断的提供飞机所需要的压缩气源。而由于这个燃气涡轮装置提供的气源只要能满足发动机起动的需要就可以了,所以功率,体积相比发动机要小得多,这就使这套燃气涡轮装置可以采用电动机来起动,然后再由这套燃气涡轮装置产生压缩空气来起动发动机,这样就解决了发动机起动时需要大的能量的问题。这套燃气涡轮装置被称作APU(Auxiliary Power Unit 辅助动力装置)。 三、起动过程 发动机的起动过程是一个能量逐级放大的过程。先由蓄电池提供电源给APU起动电机,带动APU转子旋转;APU达到起动转速后喷油燃烧,把燃料提供的化学能转变为涡轮的机械能,并通过压气机把机械能转换为空气的压力能。由于燃料的加入,APU产生的压缩空气的能量已远远大于蓄电池的能量了最后,发动机上的空气涡轮起动机把APU空气的压力转化为带动发动机核心机转子旋转的机械能,在达到发动机起动转速时喷油点火,最终靠燃料的化学能使发动机进入稳定工作状态。 所以,在整个起动过程中,带动发动机核心机旋转的大能量,从很低的蓄电池能量,通过燃料的加入,一步步升了起来,就象三峡大坝的梯级船闸。 这就是APU的好处:飞机本身只需要携带一个能量很低的,充足了电的蓄电池,通过APU,就能够自主的完成发动机的起动,而不再依赖于地面设备来起动发动机。 四、APU的特点 APU和发动机一样,都是燃气涡轮装置,但它们的目的不同,这是个很大的区别, 发动机用于产生推力而APU不需要产生推力,它主要用来提供气源,还有电源。气源除用于发动机起动,还为飞机的空调系统供应连续不断的空气。 这个特点使APU不同于发动机。它要求APU在设计时,使涡轮产生的机械能主要通过压气机转换为空气的压力能,还有一部分机械能通过齿轮传递给发电机以产生电能,而不是向后喷出产生推力。 所以,能量分配的不同,是APU和发动机的主要区别 五、APU的工作 和发动机不同的是,APU的工作状态很简单,在起动过程完成之后,就进入了稳定工作状态,即转速维持不变。而发动机的却需要依据飞行情况不断的改变转速和推力。 APU的工作状态决定了APU的工作特点:

相关主题
文本预览
相关文档 最新文档