当前位置:文档之家› 高中数学 第二章 第24课时 函数与方程(1)教案 苏教版必修1

高中数学 第二章 第24课时 函数与方程(1)教案 苏教版必修1

高中数学 第二章 第24课时 函数与方程(1)教案 苏教版必修1
高中数学 第二章 第24课时 函数与方程(1)教案 苏教版必修1

2.5.1 二次函数与一元二次方程

【学习导航】 知识网络 学习要求

1.能利用二次函数的图象与判别式的符号,判断一元二次方程根的存在性及根的个数;

2.了解函数的零点与方程根的联系及判断函数的零点所在的大致区间;

3.体验并理解函数与方程相互转化的

数学思想和数形结合的数学思想.

【课堂互动】

自学评价

1.二次函数的零点的概念

一元二次方程2

0ax bx c ++=()0a ≠的根也称为二次函数2y ax bx c =++(a ≠

0)的零点.

2. 二次函数的零点与对应一元二次方程根的关系

(1)一元二次方程2

0ax bx c ++=(a ≠0)有两个不相等的实数根1x ,2x ?判别式0?>?对应的二次函数

2y ax bx c =++(a ≠0)的图象与x 轴有

两个交点为()1,0x ,()2,0x ?对应的二次函数2y ax bx c =++(a ≠0)有两个不同的零点1x ,2x ;

(2)一元二次方程2

0ax bx c ++=(a ≠0)有两个相等的实数根1x =2x ?判别式0?=?对应的二次函数2y ax bx c =++(a ≠0)的图象与x 轴有唯一的交点为(1x ,0)?对应的二次函数2y ax bx c =++(a ≠0)有两个相同零点1x =2x ;

(3)一元二次方程2

0ax bx c ++=(a ≠0)没有实数根?判别式0?

2

y a x b x c =++(a ≠0)没有零点.

3. 推广

⑴函数的零点的概念

一般地,对于函数()y f x =()x D ∈,我们把使()0f x =的实数x 叫做函数()y f x =

()x D ∈的零点.

⑵函数的零点与对应方程的关系

方程()0f x =有实数根?函数()

y f x =的图象与x 轴有交点?函数()y f x =有零点.

【精典范例】

例1:求证:一元二次方程2

2370x x +-=有两个不相等的实数根. 【解】证法1

∵?=()23427650-??-=>

∴一元二次方程2

2370x x +-=有两个不相等的实数根.

证法2 设2()237f x x x =+-,

∵函数的图象是一条开口向上的抛物线,且

2(0)2030770f =?+?-=-<∴函数()f x 的图象与x 轴有两个不同的交点,即一元

二次方程2

2370x x +-=有两个不相等的实

数根.

点评:例1还可用配方法将方程化为

2365()416

x +=再证明.也可仿照证法2,由抛

物线开口向上及(1)23720f =+-=-<来推

证.

例2:右图是一个二次函数()y f x =的图象. (1)写出这个二次函数的零点; (2)写出这个二次函数的解析式;

(3)试比较(4)(1)f f --,(0)(2)f f 与0的大小关系.

【解】(1)由图象可知此函数的零点是:13x =-,

21x =.

(2)由(1)可设()f x =(3)(1)a x x +- ∵(1)4f -= ∴1a =

∴()(3)(1)f x x x =-+-.即这个二次函数的解析式为2

()23f x x x =--+. (3)∵(4)5f -=-,(1)4f -=,

(0)3f =,(2)5f =-,

(4)(1)200f f --=-<,

(0)(2)150f f =-<.

点评:例2进一步体现了利用函数图象研究函数性质的思想.

例3:当关于x 的方程的根满足下列条件时,求实数a 的取值范围:

(1)方程22

70x ax a -+-=的两个根一个大于2,另一个小于2;

(2)方程2

340ax x a ++=的两根都小于1; (3)方程2

2

(4)2530x a x a a -+-++=的两根都在区间[1,3]-上;

(4)方程2

2

7(13)20x a x a a -++--=的一

个根在区间(0,1)上,另一根在区间(1,2)上;

(5)方程022

=++ax x 至少有一个实根小于1-.

分析:可将方程的左端设为函数,结合二次函数图象,确定a 的不等式(组). 【解】⑴ 设22()70f x x ax a =-+-=,其图象为开口向上的抛物线.若要其与x 轴的两个交点在点(2,0)的两侧,只需

(2)0f <,即242

70a a -+-<,∴ 13a -<<.

⑵ 当0a =时,0x =满足题意. 当0a ≠时,设2()34f x ax x a =++. 若要

方程两根都小于

1,只要

2

3

3916044

3310223(1)005a a a a a af a a ?-≤≤

???=-≥??

??

-<-????

>???><-??

或或 3

04

a ?<≤

综上,方程的根都小于1时,3

04

a ≤≤

⑶ 设22

()(4)253f x x a x a a =-+-++则方程两个根都在[1,3]- 上等价于: 222(1)0340(3)0041362

24(32)0

(

)02

f a a f a a a a a a f -≥???--≤≥??-≤??+???

-≤≤-≤≤????+-≥?≤?? ∴01a ≤≤. (4

22()7(13)2f x x a x a a =-++--,则方

程一个根在(0,1)上,另一根在(1,2)上等价

于2

2220

(0)0(1)0280(2)030a a f f a a f a a ?-->>???

->?? 122403a a a a a <->??

?-<?

或或

21a -<<- 或34a <<.

(5)设2()2f x x ax =++,若方程的两个实根都小于1-,则有

280

1223

(1)0

a a a a

a a f ?-≥?≤-≥?

??-<-?>??????

3a ?≤<

若方程的两个根一个大于1-,另一个小于-1,

则有(1)30f a -=-<, ∴3a >.

若方程的两个根中有一个等于1-,由根与系数关系知另一根必为2-, ∴12a -=--, ∴3a =.

综上,方程至少有一实根小于1-

时,a ≥ 点评:二次函数是高中知识与大学知识的主要纽带,函数综合题往往以二次函数为载体,考查函数的值域、奇偶性、单调性及二次方程实根分布问题、二次不等式的解集问题等,考查形式灵活多样,考查思想涉及到数形结合思想、函数与方程思想、分类讨论思想等,高考在此设计的难度远远高于课本要求,在学习中一方面要加强训练,一方面要提高分析问题、解决问题的能力. 追踪训练一

1. 函数2()2f x x ax =--(01)x ≤≤的最大值是2

a ,则 ( D )

A .01a ≤≤

B .02a ≤≤

C .20a -≤≤

D .10a -≤≤ 2. 设

2()f x x bx c =-+,(0)4f =,

(1)(1)f x f x +=-,则 ( B )

A . ()()x x f b f c ≥

B . ()()x x f b f c ≤

C .()()x x f b f c >

D . ()()x x f b f c < 3. 若关于x 的方程2(2)210x m x m +-+-=有一根在(0,1)内,则m ∈__

12

23

m <<___. 4.若二次函数2

()(1)5f x x a x =--+在区间

1

(,1)2

上是增函数,则(2)f 的取值范围是_______[)7,+∞__________.

【选修延伸】

一、二次函数与一元二次方程根的关系 例4:已知m ,n 是方程2

2

(2)x k x k +-++

350k +=(k R ∈)的两个实根,求22m n +的

最大值和最小值.

分析:一元二次方程与二次函数有很多内在联系.要求2

2

m n +的最值,首先要考虑根与系数的关系,并由此得到以k 为自变量的

22m n +的函数解析式.

22(2)350x k x k k +-+++=(k R ∈)有

根,所以

2

2

(2)4(35)k k k ?=--++

2316160k k =---≥,解得4

43

k -≤≤-

又(2)m n k +=--,2

35m n k k ?=++, 所以222()2m n m n mn +=+- 22(2)2(35)k k k =--++

22106(5)19k k k =---=-++.

而()()2451943f k k k ?

?=-++-≤≤- ?

??是减函数,因此当4k =-时,22

m n +取最

大值18,当43

k =-时,22

m n +取最小值

509

. 点评:这是一个与一元二次方程根有关的问题,必须先确定k 的取值范围,否则无法确定函数()f k 的单调性.

二、已知二次函数的某些特征,求二次函数的解析式

例5:已知二次函数2

()f x ax bx =+ (a ,b 是常数且0a ≠) 满足条件(5)(3)f x f x -+=-,且方程()f x x =有等根.⑴ 求()f x 的解析式;⑵ 是否存在实数m ,n (m n <),使()f x 的定义域和值域分别为[,]m n 和[3,3]m n ,如果存在,求出m ,n 的值,如果不存在,说明理由. 【解】 ⑴ 2

ax bx x +=,即

20a x b x x +-=有等根,故有2

(1)0b ?=-=,∴1b =. 由(5)(3)f x f x -+=-知,()f x 图象关于

直线1x =对称, ∴12b a

-=,∵ 1b =,∴12a =-,∴()2

12

f x x x =-+.(2)∵ ()()2

2111112222

f x x x x =-+=--+≤.由

()f x 值域为[3,3]m n , ∴1

32

n ≤,即

16n ≤. 抛物线21

2

y x x =-+对称轴为1x =,

且开口向下,由1

6

n ≤知定义域[,]m n 在对称

轴左侧, ∴ ()f x 在[,]m n 上为增函数,设

存在实数m ,n 使

2

213()32

()3132

m m m

f m m f n n n n n

?-+=?=????

?=??-+=?? 0404

m m n n ==-???==-?或或, ∵16m n <≤,∴

4m =-,0n =.即存在4m =-,0n =使定义域为[4,0]-,值域为[12,0]-.

思维点拔:

一元二次方程2

0ax bx c ++=()0a ≠的根的

分布问题,既可以运用公式法先求出方程的根,再列出等价条件组,也可以引入二次函数,由函数的图象特征列出等价的条件组,应因题而异,优化解题的思路. 追踪训练二

1. 若方程2

210ax x --=在()0,1内恰有

一解,则a 的取值范围是( B ) A .1a <- B .1a > C .11a -<< D .01a ≤<

2.已知()()()2f x x a x b =---()a b <,并且α、β是方程()0f x =的两个根()αβ<,则实数a 、b 、α、β的大小关系可能是( A ) A .a b αβ<<< B .a b αβ<<< C .a b αβ<<< D .a b αβ<<<

3.不等式2

2

3222

x kx k x x >++++对一切实数x 都立,则k 的取值范围是210k <<. 4.

已知二次函数2()f x ax bx c =++和一次函

数()g x ax b =+,其中a b c >>,且

(1)0f =,

(1)求证:两函数()f x 、()g x 的图象交于不同两点A 、B ;

(2)求线段AB 在x 轴上投影11A B 长度的取值范围.

答案:(1)∵(1)0

f a b c =++=,a b c >>,∴0a >,0c <.由2y a x b x c

y a x b ??

?

=++=+ 得2()0ax b a x c b +-+-=,

因为2

()40b a ac ?=+->.

所以两函数()f x 、()g x 的图象必交于不同的两点;

(2)设11(,)A x y ,22(,)B x y ,则211||A B =

2212()(2)4c

x x a

-=--.∵0a b c ++=,

a b c >>,∴1

22c a -<<-.

∴11

||A B ∈(2

3

,32).

高中数学必修一幂函数及其性质

幂函数及其性质专题 一、幂函数的定义 一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、函数的图像和性质 (1)y x = (2)12 y x = (3)2y x = (4)1y x -= (5)3y x = 用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出: 3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 三.两类基本函数的归纳比较: ① 定义 对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 幂函数的定义:一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. ②性质 对数函数的性质:定义域:(0,+∞);值域:R ;

过点(1,0),即当x =1,y =0; 在(0,+∞)上是增函数;在(0,+∞)是上减函数 幂函数的性质:所有的幂函数在(0,+∞)都有定义, 图象都过点(1,1)x >0时,幂函数的图象都通过原点, 在[0,+∞]上,y x =、2y x =、3 y x =、1 2 y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。 【例题选讲】 例1.已知函数()() 2 53 1m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =- (4)2 5 m =-(5)1m =- 变式训练:已知函数()()2 223 m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲 线。 简解:2 20230 m m m m ?+>??-->??解得:()(),13,m ∈-∞-+∞ 例2.比较大小: (1)1122 ,1.7 (2)33 ( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.5 30.5,3,log 0.5 例3.已知幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 解:∵幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2 230m m --≤,∴13m -≤≤; ∵m Z ∈,∴2 (23)m m Z --∈,又函数图象关于原点对称, ∴2 23m m --是奇数,∴0m =或2m =. 例4、设函数f (x )=x 3, (1)求它的反函数; (2)分别求出f - 1(x )=f (x ),f - 1(x )>f (x ),f - 1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f - 1(x )=x 3 1 . (2)∵函数f (x )=x 3和f -1 (x )=x 3 1 的图象都经过点(0,0)和(1,1).

高一数学必修一 函数知识点总结

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

【新教材】 新人教A版必修一 函数与方程 教案

2019-2020学年新人教A版必修一函数与方程教案 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c (a〉0)的图象与零点的关系 Δ>0Δ=0Δ〈0 二次函数y=ax2+bx +c(a〉0)的图象 与x轴的交点(x1,0),(x2,0)(x1,0)无交点 零点个数210 概念方法微思考 函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点? 提示不能. 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.(×) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×) (3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.(√) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)

高中数学必修基本初等函数常考题型幂函数

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高三数学一轮复习教案:函数与方程 必修一

必修Ⅰ—08 函数与方程 1、函数的零点与方程的根:一般地,对于函数 ()f x ,如果存在实数c ,当x c =时,()0f c =,那么把x c = 叫做函数()f x 的零点.解方程()0f x =,即得()f x 的所有零点. 2、二分法的基本思想: (1)先找到a b 、,使(),()f a f b 异号,说明在区间()a b 、内一定有零点,然后求()2 a b f +. (2)假设()0,()0,f a f b a b <><,如果()2a b f +=0,该点就是零点;如果()2 a b f +<0,则在区间(,)2a b b +内有零点,如果()2a b f +>0,则在区间(,)2 a b a +内有零点, (3)按上述方法再求该区间中点的函数值,这样就可以不断接近零点.通过每次把()f x 的零点所在小 区间收缩一半的方法,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值,这种方法叫做二分法. 3、函数的零点存在性: 如果函数()f x 在区间(,)a b 上是连续不间断的,且()()0f a f b ?<,则函数()f x 在区间(,)a b 上 存在实数c ,当x c =时, ()0f c =, x c =称为函数()f x 在区间(,)a b 上的一个零点.它只能判定函数在区间上有零点,但不能判定具体个数. 例1、 已知函数 2()log f x x =,问方程()0f x =在区间1,44??????上有没有实数根,为什么? 例2、 用二分法求函数 3()3f x x =-的一个正实数零点(精确到0.1).

例3、 若函数2()f x x ax b =++的两零点为—2和3,则方程(2)0f x -=的解是 . 例4、 已知二次函数2()f x ax bx c =++.若,a b c >>且(1)0f =,试证明()f x 必有两个零点.

高中数学必修一 函数与方程教学设计(3)

函数与方程教学设计(3) 一、教学内容解析 本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如 对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。 二、教学目标解析 1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

高中数学必修1《函数的应用》知识点

高中数学必修1《函数的应用》知识点(总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第4章 函数的应用 第1讲 函数与方程 一、连续函数 连续函数: 非连续函数: 二、方程的根与函数的零点 ()()()0001f x x f x x f x ?、零点:对于函数,若使=0,则称为函数的零点. ()()()=0y f x f x y f x x ??2、函数=的零点方程的实根函数=图像与交点的横坐标. 3、零点存在性定理: ()[]()()()(),::,. 0.y f x a b p q y f x a b f a f b ?????

()f x 三、用二分法求=0的近似解 步骤: ()()()()()()( )1 2121233131323231,,0; 2,;2 30,20,2.i i x x f x f x x x x f x f x f x x x f x f x x x x x d +?<+= ?

高中数学必修一幂函数教案

高中数学必修一幂函数 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学必修一幂函数教案 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 问题引入. 索一般幂函数的图象规律.

教学过程与操作设计:

环节教学内容设计师生双边互动 组织探究 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定 义,并且图象都过点(1,1); (2)0 > α时,幂函数的图象通过原 点,并且在区间) ,0[+∞上是增函数.特别 地,当1 > α时,幂函数的图象下凸;当 1 0< <α时,幂函数的图象上凸; (3)0 < α时,幂函数的图象在区间 ) ,0(+∞上是减函数.在第一象限内,当x从 右边趋向原点时,图象在y轴右方无限地逼 近y轴正半轴,当x趋于∞ +时,图象在x轴 上方无限地逼近x轴正半轴. 师:引导学生 观察图象,归纳概 括幂函数的的性质 及图象变化规律. 生:观察图 象,分组讨论,探 究幂函数的性质和 图象的变化规律, 并展示各自的结论 进行交流评析,并 填表.

探究与发现 1.如图所示,曲线 是幂函数αx y=在第一象 限内的图象,已知α分别 取2, 2 1 ,1,1 -四个值,则相 应图象依次 为:. 2.在同一坐标系内,作出下列函数的图 象,你能发现什么规律? (1)3- =x y和3 1 - =x y; (2)4 5 x y=和5 4 x y=. 规律1:在第 一象限,作直线 )1 (> =a a x,它同 各幂函数图象相 交,按交点从下到 上的顺序,幂指数 按从小到大的顺序 排列. 规律2:幂指 数互为倒数的幂函 数在第一象限内的 图象关于直线x y= 对称. 作业回馈 1.在函数 1 , , 2 , 1 2 2 2 = + = = =y x x y x y x y中,幂函数的个数为: A.0 B.1 C.2 D.3 环节呈现教学材料师生互动设计2.已知幂函数) (x f y=的图象过点 )2 ,2(,试求出这个函数的解析式. 3.在固定压力差(压力差为常数)下, 当气体通过圆形管道时,其流量速率R与管 道半径r的四次方成正比. (1)写出函数解析式; (2)若气体在半径为3cm的管道中,流 量速率为400cm3/s,求该气体通过半径为r 的管道时,其流量速率R的表达式; (3)已知(2)中的气体通过的管道半 径为5cm,计算该气体的流量速率. 4.1992年底世界人口达到54.8亿, 若人口的平均增长率为x%,2008年底世界人 口数为y(亿),写出: (1)1993年底、1994年底、2000年底 的世界人口数; (2)2008年底的世界人口数y与x的 函数解析式.

人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高

人教版高中数学必修一 知识点梳理 重点题型(常考知识点)巩固练习 指数函数、对数函数、幂函数综合 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a≠1). 【知识框图】 【要点梳理】 要点一:指数及指数幂的运算 1.根式的概念 a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈ 当n 为奇数时,正数的n 次方根为正数,负数的n n 为偶数时,正数 的n 次方根有两个,这两个数互为相反数可以表示为 负数没有偶次方根,0的任何次方根都是0. n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质: (1)当n a =;当n ,0, ,0;a a a a a ≥?==? -

)0,,,1m n a a m n N n =>∈>;()10,,,1m n m n a a m n N n a - = >∈> 要点诠释: 0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: ()0,0,,a b r s Q >>∈ (1)r s r s a a a += (2)()r s rs a a = (3)()r r r ab a b = 要点二:指数函数及其性质 1.指数函数概念 一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

高中数学必修1公开课教案2.3.1 幂函数

2.3 幂函数 整体设计 教学分析 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究 y =x,y =x 2,y =x 3,y =x -1 ,y =x 2 1 等函数的性质和图象,让学生认识到 幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习. 将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x 2,y=x -1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径. 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 三维目标 1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣. 2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望. 3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力. 重点难点 教学重点:从五个具体的幂函数中认识幂函数的概念和性质. 教学难点:根据幂函数的单调性比较两个同指数的指数式的大小. 课时安排 1课时 教学过程 导入新课 思路1 1.如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?根据函数的定义可知,这里p 是w 的函数. 2.如果正方形的边长为a,那么正方形的面积S=a 2,这里S 是a 的函数. 3.如果正方体的边长为a,那么正方体的体积V=a 3,这里V 是a 的函数.

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

高中数学必修1幂函数测试卷

高中数学学科测试试卷 学校:___________姓名:___________班级:___________考号:___________ 一.单选题(共__小题) 1.已知幂函数f(x)过点,则f(4)的值为() A.B.1C.2D.8 答案:A 解析: 解:设幂函数f(x)=x a,x>0, ∵幂函数f(x)过点, ∴,x>0, ∴,∴, ∴f(4)==. 故选A. 2.幂函数y=(m2+2m-2)的图象过(0,0),则m的取值应是()A.-3或1B.1C.-3D.0<m<4 答案:B 解析: 解:由幂函数的定义得:m2+2m-2=1,且-m2+4m>0, 解得:m=1,

3.函数y= 的图象是( ) A . B . C . D . 答案:C 解析: 解:∵函数y=的定义域是[0,+∞), ∴排除选项A 和B , 又∵,∴曲线应该是下凸型递增抛物线. 故选:C . 幂函数y=x -1及直线y=x ,y=1,x=1将平面直角坐标系的第一 象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数的图象经过的“卦限”是( ) A .④⑦ B .④⑧ C .③⑧ D .①⑤ 答案:D 解析: 解:取x=得∈(0,1),故在第⑤卦限; 再取x=2得∈(1,2),故在第①卦限

5.幂函数f(x)=xα的图象经过点,则的值为() A.4B.3C.2D.1 答案:C 解析: 解:幂函数f(x)=xα的图象经过点,所以,∴ ∴ 故选C. 二.填空题(共__小题) 6.若f(x)=x a是幂函数,且满足=3,则f()=______. 答案: 解析: 解析:设f(x)=xα,则有=3,解得2α=3,α=log23, ∴f()= = = = =. 故答案为: 7.设,则使函数y=xα的定义域为R且为偶函数的所有的α值为______.答案:,2

高中数学必修1《 函数的应用》知识点

第4章 函数的应用 第1讲 函数与方程 一、连续函数 连续函数: 非连续函数: 二、方程的根与函数的零点 ()()()0001f x x f x x f x ?、零点:对于函数,若使=0,则称为函数的零点. ()()()=0y f x f x y f x x ??2、函数=的零点方程的实根函数=图像与交点的横坐标. 3、零点存在性定理: ()[]()()()(),::,.0.y f x a b p q y f x a b f a f b ?????

()f x 三、用二分法求=0的近似解 步骤: ()()()()()()()12121233131323231,,0; 2,;2 30,20,2.i i x x f x f x x x x f x f x f x x x f x f x x x x x d +?<+= ?

【新教材】新人教A版必修一 函数与方程 教案

一、2019-2020学年新人教A版必修一函数与方程教案 二、知识梳理:(阅读教材必修1第85页—第94页) 1、方程的根与函数的零点 (1)零点:对于函数,我们把使0的实数x叫做函数的零点。这样,函数的零点就是方程0的 实数根,也就是函数的图象与x轴交点的横坐标,所以方程0有实根。 (2)、函数的零点存在性定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在c,使得=0,这个C 也就是方程0的实数根. (3)、零点存在唯一性定理:如果单调函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在唯一c,使得=0,这个C 也就是方程0的实数根. (4)、零点的存在定理说明: ①求在闭间内连续,满足条件时,在开区间内函数有零点; ②条件的函数在区间(a,b)内的零点至少一个; ③间[a,b]上连续函数,不满足,这个函数在(a,b)内也有可能有零点,因此在区间[a,b]上连续函数,是函数在(a,b)内有零点的充分不必要条件。 2、用二分法求方程的近似解 (1)、二分法定义:对于区间[a,b]连续不断且的函数通过不断把区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。 (2)、给定精确度()用二分法求函数的零点近似值步骤如下: ①确定区间[a,b],验证给定精确度(); ②求区间(a,b)的中点c; ③计算 (I)若=0,则c就是函数的零点; (II)若则令b=c,(此时零点); (III)若则令a=c,(此时零点); ④判断是否达到精确度,若|a—b|,则得到零点的近似值a(或b),否则重复②—-④步骤. 函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解,由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的程序,借助计算器或者计算机来完成计算.

人教版高中数学必修一《基本初等函数》之《幂函数》表格式教学设计

§2.3幂函数 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性. 教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 问题引入. 幂函数的图象和性质.

教学过程与操作设计: 环节教学内容设计师生双边互动 创设情境 阅读教材P90的具体实例(1)~(5),思考下列 问题: 1.它们的对应法则分别是什么? 2.以上问题中的函数有什么共同特征? (答案) 1.(1)乘以1;(2)求平方;(3)求立方;(4) 开方;(5)取倒数(或求-1次方). 2.上述问题中涉及到的函数,都是形如αx y= 的函数,其中x是自变量,是α常数. 生:独立思考完成引 例. 师:引导学生分析归纳 概括得出结论. 师生:共同辨析这种新 函数与指数函数的异 同. 组织探究 材料一:幂函数定义及其图象. 一般地,形如 α x y=) (R a∈ 的函数称为幂函数,其中α为常数. 下面我们举例学习这类函数的一些性质. 作出下列函数的图象: (1)x y=;(2)2 1 x y=;(3)2x y=; (4)1- =x y;(5)3x y=. [解] ○1列表(略) ○2图象 师:说明: 幂函数的定义来 自于实践,它同指数函 数、对数函数一样,也 是基本初等函数,同样 也是一种“形式定义” 的函数,引导学生注意 辨析. 生:利用所学知识和方 法尝试作出五个具体 幂函数的图象,观察所 图象,体会幂函数的变 化规律. 师:引导学生应用画函 数的性质画图象,如: 定义域、奇偶性. 师生共同分析,强调画 图象易犯的错误. 环节教学内容设计师生双边互动

高一数学必修一函数及其表示-函数的概念

1.2函数及其表示 §1.2.1函数的概念 【教学目的】 1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素; 2、理解函数符号的含义,能根据函数表达式求出定义域、值域; 3、使学生能够正确使用“区间”、“无穷大”的记号; 4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。 【教学重点】 在对应的基础上理解函数的概念 【教学难点】 函数概念的理解 【教学过程】 一、复习引入 〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数? 〖回答〗设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数,并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函 数的传统定义。 〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。 〖提问〗问题1:y =1(x ∈R )是函数吗? 问题2:y =x 与y = x x 2 是同一函数吗? 〖投影〗观察对应: 〖分析〗观察分析集合A 与B 之间的元素有什么对应关系? 二、讲授新课 函数的概念 (一)函数与映射 〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个

数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。 函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。 函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。 映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射. 如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y 叫合A 中的元素x 的象. 映射概念的理解 (1)映射B A f →:包含三个要素:原像集合A ,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有: (1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”. 函数与映射的关系 函数是一种特殊的映射.映射与函数概念间的关系可由下表给出. 映射B A f →: 函数B y A x x f y ∈∈=,),( 集合A,B 可为任何集合,其元素可以是物,人,数等 函数的定义域和值域均为非空的数集 对于集合A 中任一元素a ,在集合B 中都有唯一确定的像 对函数的定义域中每一个x ,值域中都有唯一确定的值与之对应 对集合B 中任一元素b ,在集合A 中不一定有原像 对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应 函数是特殊的映射,映射是函数的推广. 〖注意〗(1)函数实际上就是集合A 到集合B 的一个特殊对应f :A →B 。这里A ,B 为非空的数集。 (2)A :定义域,原象的集合;{)(x f |x ∈A}:值域,象的集合,其中{)(x f |x ∈A}?B ;f :对应法则,x ∈A ,y ∈B (3)函数符号:y =)(x f ,y 是x 的函数,简记) (x f 〖回顾〗(二)已学函数的定义域和值域: 1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R 2、反比例函数)(x f = x k (k ≠0):定义域{x |x ≠0},值域{y | y ≠0} 3、二次函数)(x f =ax 2 +bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b a c 442 -};

相关主题
文本预览
相关文档 最新文档