当前位置:文档之家› 函数

函数

函数
函数

函数

C语言实际上是一种函数式语言,一个C语言源程序由一个main函数和其他函数组成。函数本质上是一段程序,用于完成某个特定的功能。除了主函数(main函数)外,其他函数均不能独立运行。使用函数之前要先定义函数,使用函数称为函数的调用。

1.函数的分类

(1)从用户使用的角度

标准函数:即库函数,例如printf函数、scanf函数;

用户函数:程序员在程序中定义的函数;

(2)从函数的形式来看

无参函数:主调函数并不将数据传送给被调用函数;

有参函数:在主调函数和被调函数之间有数据传递;

(3)从函数的作用范围来看

外部函数:允许其他文件中的函数调用;

内部函数:只限于本文件的其他函数调用它;

2.函数的定义

函数要先定义后使用,函数定义的一般格式:

函数类型函数名(形式参数表)

{

声明部分

执行部分

}

说明:

(1)函数类型:说明了函数返回值的类型,返回值为int型的函数定义时可以省略函数类型,即int为函数的默认类型;如果为void,则表示无返回值。

(2)函数名:遵循变量的命名规则,在同一个程序中,函数名必须唯一。

(3)形式参数表:可以为空,也可为多个参数,不管参数是否为空,圆括号都不能省略,形参必须说明其类型,且只能在本函数内部使用。

(4)函数体:分为说明部分和执行部分。说明部分包括变量的定义或所调用函数的声明,执行部分有执行语句组成。也可为空函数,即不产生任何操作。

(5)例如:float power(float x,int n)

{

int i;

float t=1;

for(i=1;i<=n;i++)

t=t*x;

return t;

}

3.函数的调用

(1)当一个函数需要使用某个函数的功能时,就可以调用该函数,函数调用的一般形式为:

函数名(实际参数表) //有参数的函数调用

函数名() //无参数的函数调用

(2)对于有参函数的调用,应注意以下几个问题:

1)在定义函数时,形参并不占用内存的存储单元,只有在被调用时才给形参变量

分配内存单元,在调用结束时,即刻释放所分配的内存单元。所以,形参是存在生命周期的;

2)实参和形参在数量上应严格一致,在类型上应相同或赋值兼容;

3)形参只能是变量,而实参可以是常量、变量或表达式。在函数调用时,实参必须有确定的值,以便把这些值传递给形参;

4)实参可以与形参同名,但是在内存在分配两个不同的存储单元。

4.函数的返回

两种方法可以终止函数运行并返回到调用它的函数中:

(1)执行到函数的最后一条语句后返回;

(2)执行到返回语句return时返回;return语句的格式为:

return 表达式;或者return(表达式);

说明:return 0/-1/1,一般情况下,0和-1或者0和1使用。

1)0和-1使用时:

return 0 //一般表示成功执行

return -1 //一般表示不成功

2)0和1使用时:

return 1 //真

return 0 //假

3)return; //可以跳出一个函数,过程。

5.参数的传递

在调用有参函数时,实参和形参之间要进行数据的传递,在C语言中,只能由实参单向传递给形参,而不能由形参传递回给实参,这种传递称值传递。

●调用函数时,先给形参分配独立的存储单元,再将实参的值一一赋值给对应的形参;

●在函数体中对形式参数的加工与实际参数已完全脱离关系;

●在执行被调函数时,形参的值可能发生改变,但调用结束后,形参单元被取消,而

实参单元仍保留维持原值,形参中的值将不回带到对应的实参中。

例如:swap函数实现两个变量的值进行交换。

#include

void swap(int a,int b)

{

int i;

printf("a=%d,b=%d\n",a,b);

i=a;

a=b;

b=i;

printf("a=%d,b=%d\n",a,b);

}

void main()

{

int x=6,y=9;

printf("x=%d,y=%d\n",x,y);

swap(x,y);

printf("x=%d,y=%d\n",x,y);

}

6.函数的声明

函数声明是对被调用函数的特征进行必要的说明,以此向编译系统提供函数名、函数类型、函数参数的个数和类型等必要的信息,以便编译系统对函数的调用进行检查。

(1)函数声明的位置

当在所有函数的外部被调用之前声明函数时,在函数声明的后面所有位置上都可以对该函数进行调用;

函数声明也可以放在调用函数内的声明部分,如在main函数内部进行声明,则只能在main函数内部才能识别该函数。

(2)函数声明的形式

函数声明是在函数首部加上分号即可,一般放在程序的最前面。其一般形式为:

函数类型函数名([形参类型[形参名1],形参类型[形参名2]….);

(3)函数声明与函数定义的关系主要体现在以下几个方面:

1)函数声明在程序的数据声明部分,函数定义的位置可以在调用它的函数之前,也可以在调用的函数之后,,甚至位于其他的源程序模块中;

2)函数定义位置在前,函数调用在后,或者函数类型为int和char时,可以不声明;

3)函数定义在调用它的函数之后或者函数在其他源程序模块中,且函数类型不是整型,则必须在函数调用之前,在本程序函数之外或本函数内的任意位置

声明该函数。

例如:求最大数和最小数的函数

#include

int maxmum(int x,int y,int z);

int minmum(int x,int y,int z);

void main()

{

int a,b,c,max,min;

scanf("%4d,%4d,%4d",&a,&b,&c);

max=maxmum(a,b,c);

printf("max=%d\n",max);

min=minmum(a,b,c);

printf("min=%d\n",min);

}

int maxmum(int x,int y,int z)

{

int max;

max=(x>y)?x:y;

max=(max>z)?max:z;

return(max);

}

int minmum(int x,int y,int z)

{

int min;

min=(x

return min;

}

7.举例

(1)输出50行hello world。

方法一:

#include

main()

{

int i;

for(i=0;i<50;i++)

printf("Hello World!\n");

}

方法二:

#include

void he1()

{

printf("Hello World!\n");

}

main()

{

int i;

for(i=0;i<50;i++)

he1();

}

方法三:

#include

void he2()

{

int i;

for(i=0;i<50;i++)

printf("Hello World!\n");

}

main()

{

he2();

}

方法四:

#include

main()

{

void he2();

he2();

}

void he2()

{

int i;

for(i=0;i<50;i++)

printf("Hello World!\n");

}

(2)素数程序:输入一个正整数,判断其是否是素数。

方法一:

#include

main()

{

int n,i;

do

{

scanf("%d",&n);

}while(n<0);

for(i=2;i

{

if(n%i==0)

break;

}

if(i

printf("No,%d 不是一个素数",n);

else

printf("Yes,%d 是一个素数",n);

}

方法二:

#include

void su1(int x)

{

int i;

for(i=2;i

{

if(x%i==0)

break;

}

if(i

printf("No,%d 不是一个素数",x);

else

printf("Yes,%d 是一个素数",x);

}

main()

{

int n;

do

{

scanf("%d",&n);

}while(n<0);

su1(n);

}

方法三:

#include

int su2(int x)

{

int i;

for(i=2;i

if(x%i==0)

break;

if(i

return 0;

else

return 1;

}

main()

{

int n;

do

{

scanf("%d",&n);

}while(n<0);

if(su2(n))

printf("Yes,%d 是一个素数",n);

else

printf("No,%d 不是一个素数",n); }

方法四:

#include

int su3(int x)

{

int i;

for(i=2;i

if(x%i==0)

break;

return x-i;

}

main()

{

int n;

do

{

scanf("%d",&n);

}while(n<0);

if(su3(n)>0)

printf("No,%d 不是一个素数",n);

else

printf("Yes,%d 是一个素数",n); }

函数方程的几种解法

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f += )0(>x 。 例2 已知x x x x f 212ln )1(+=+ )0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

实变函数证明题全套整合(期末深刻复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c αβ∞ =>=,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>= <<= ><因为g 在2E 上可 测,因此22[],[]n n E g E g αβ><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2, ,n n A A n n n -==求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

SQL常见语句及函数

1.求字持串的长度LENGTH 您可用LENGTH函数求字符串的长度。LENGTH返回一个数值。该值等于参数中的字符个数。 例:使用LENGTH函数 SQL>select Last_Name, length(Last_Name) from customer order by LastName; 2.使用SUBSTR函数从字符串中提取子串 语法: SUBSTR函数的语法如下: SUBSTR(string, string charcter, number of charcters) 变量定义如下: string为字符列或字符串表达式 string charcter为子串的起始位置 number of charcters为返回字符的个数c 例:说明了怎样使用SUBSTR函数取得教师的姓的前四个字符 SQL>select last_Name, substr(Last_Name, 1, 4) from instector order by Last_Name 例:在SUBSTR函数中使用LENGTH函数(取后三个字符) 5Qt.>select last_Name, substr(Last_Name, Length(Last_Name) - 2, 3) from instector order by Last_Name 3.在字符串中查找模式 例:使用LIKE运算符 SQL>column description format a40 word_wrapped SQL>column title format a35 SQL>select Title, Description from Course where Description like '%thory%' or Description like '%theories%'; 4.替换字符串的一部分 经常遇到的数据操纵任务是在特定的列中将数据由一种模式转换成另一种模式。 假设您希望在Course表中改变课程说明,将说明中的字seminar用字discussion替代.那么您可用oracle提供的函数REPLACE,该函数使得某列的字符串能被另一字符串代替。 语法: REPLACE函数的语法如下: REPLACE(string, existion_string, [replacement_string]) 变量定义如下: string为字符表达式c existion_string为已存在的字符串。 replacement_string为用来替代的可选字符串。 例:使用REPLACE函数 显示了在Course表中如何使用REPLACE来改变课程名称(title):首先使用查询显示当前课程名称,UPDATE语句中使用REPLACE函数将SEMINAR改变成

Python语句、函数与方法的使用技巧总结

Python语句、函数与方法的使用技巧总结 显示有限的接口到外部 当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在__init__.py中添加__all__属性,该list中填写可以import 的类或者函数名,可以起到限制的import的作用,防止外部import其他函数或者类。 #!/usr/bin/env python # -*- coding: utf-8 -*- from base import APIBase from client import Client from decorator import interface, export, stream from server import Server from storage import Storage from util import (LogFormatter, disable_logging_to_stderr, enable_logging_to_kids, info) __all__ = ['APIBase', 'Client', 'LogFormatter', 'Server', 'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids', 'export', 'info', 'interface', 'stream'] with的魔力

with语句需要支持上下文管理协议的对象,上下文管理协议包含__enter__和__exit__两个方法。with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。 其中上下文表达式是跟在with之后的表达式,该表达式返回一个上下文管理对象。 # 常见with使用场景 with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file, for line in my_file: print line 知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现__enter__和__exit__方法。 #!/usr/bin/env python # -*- coding: utf-8 -*- class MyWith(object): def __init__(self): print "__init__ method" def __enter__(self):

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

实变函数第一章答案

习题1.1 1.证明下列集合等式. (1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A = )()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = . (2) c C B A A )(C \B)(= )()(c c C B C A = =)\()\(C A C A . (3) )(\C)\(B \c C B A A = c c C B A )( = )(C B A c = )()(C A B A c = )()\(C A B A =. 2.证明下列命题. (1) ()A B B A = \的充分必要条件是:A B ?; (2) ()A B B A =\ 的充分必要条件是:=B A ?; (3) ()()B B A B B A \\ =的充分必要条件是:=B ?. 证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要条 是:.A B ? (2) c c c c B A B B B A B B A B B A ===)()()(\)( 必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ?, 可得.?=B A 反之若,?≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与c B A ?矛盾.

充分性. 假设?=B A 成立, 则c B A ?, 于是有A B A c = , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,?≠B 取,B x ∈ 则,c B x ? 于是,c B A x ? 但,B A x ∈ 与c C A B A =矛盾. 充分性. 假设?=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6. 定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →=1 ;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →= 1 . lim n n n n A A 证明 (1) 设),1(1≥??+n A A n n 则对任意 ∞ =∈ 1 ,n n A x 存在N 使得,N A x ∈ 从而 ),(N n A x N ≥?∈ 所以,lim n n A x ∞ →∈ 则.lim 1 n n n n A A ∞→∞ =? 又因为 ∞ =∞ →∞ →??1 ,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞ =∞ →= 1 ;lim n n n n A A (2) 当)1(1≥??+n A A n n 时, 对于, lim n n A x ∞ →∈存 )1(1≥?<+k n n k k 使得 ),1(≥?∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0 n n A A x k ?∈ 可见.lim 1 ∞ =∞ →?n n n n A A 又因为,lim lim 1 n n n n n n A A A ∞ →∞ →∞ =?? 所以可知{}n A 收敛且 ∞ =∞ →=1 .lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ??? ???+≥=>∞ =n c f E c f E n 1][1 ; (2) ?? ? ???+<=≤∞ =n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈?=∞ →,则对任意实数c 有 ?????? ->=????? ?->=≥∞→∞=∞ =∞ =∞ =k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+ ∈Z n 使得n c x f 1)(+ ≥成

函数的极大值和极小值

4.3.2 函数的极大值和极小值 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=. 对于一般的函数()y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 二.新课讲授 1.问题:图 3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数 2() 4.9 6.510 h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是 增函数.相应地,' ()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是 减函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图 3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

r语句常用函数汇总(1)

R-note 一、基本函数 1.函数c()—向量,length()—长度,mode()—众数,rbind()—组合,cbind()— 转置,mode()—属性(数值、字符等) 2.函数mean( )-中位数, sum( )-求和, min( )-最小 值, max( )-最大值, var( )-方差, sd( )-标准差, prod( ) –连乘 3.函数help()--帮助 4.正态分布函数rnorm( ) 、泊松分布函数rpois( ) 、指数分布函数rexp( ) 、 Gamma分布函数rgamma( ) 、均匀分布函数runif( ) 、二项分布函数rbinom( ) 、几何分布函数rgeom( ) (一)基本函数 1.>2:60*2+1 [1]5 7 9 11……..。。。(共60个数) 2. a[5]:a数列第5个数,a[-5]:删除a数列第5位数 a[-(1:5)]: 删除a数列第1-5位数 a[c(2,4,7)]:a数列第2,4,7位数 a[a<20]:a数列小于20的数 a[a[3]]:先查找a数列第3位数对应数值,然后找第该位数对应数值 5.Seq()函数---序列数产生器 Seq(5,20):产生5,6。。。。20的数集 Seq(5,100,by=2):产生5开始,步长为2的数集,最大值为100 Seq(5,100,length=10):产生从5开始,从第三个数开始等于第二个数加上第二个数减去第一个数的差值,最后一个数为100. 如:=+() 6.letters():产生字母序列 letters[1:30]:a,b,c,d…..30个字母 ()选择 (a):a数列里面最大数 which(a==2):查找a数列中等于2的数,并返回该数所对应位置

函数的极大值、极小值

【学习目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 【重点与难点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤 【学法提示】 讲练结合 【课前预习】 用导数法求下列函数的单调区间. (1) 2()2f x x x =-- (2)311433 y x x = -+ 1.极大值: 2.极小值: 3.极大值与极小值统称为极值 取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念由定义,并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即函数在某区间上或定义域内极大值或极小值可以不止一个 (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足 0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数/()f x (2)求方程/()f x =0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查/()f x 在方程根左右的值的符号,若左正右负,那么f (x )在这个根处取得极大值;若左负右

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

实变函数(复习资料,带答案).doc

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ?,若E 是稠密集,则CE 是无处稠密集。 2、若0=mE ,则E 一定是可数集. 3、若|()|f x 是可测函数,则()f x 必是可测函数 4.设()f x 在可测集E 上可积分,若,()0x E f x ?∈>,则 ()0E f x >?

Intouch函数及语句介绍

Intouch函数及语句介绍 R 1: RecipeDelete() 从指定配方模板文件中删除配方名。 句法RecipeDelete(“Filename”,“RecipeName”); 参数描述 FileName 被函数所作用的配方模板文件。实际字符串或消息标记名。 RecipeName 在将被函数删除的指定配方模板文件中的特定配方。RecipeLoad()、RecipeSave() 和RecipeDelete() 函数需用户提供RecipeName 参数。 RecipeSelectRecipe() 函数返回此参数的值。实际字符串或消息标记名。 实例 下面的语句将配方“Recipel”从recfile.csv 文件中删除: RecipeDelete("c:\recipe\recfile.csv", "Recipe1"); 2: RecipeGetMessage()写给模拟标记名某一错误代码同时写给消息标记名相应的错误代码消息。 句法 RecipeGetMessage(Analog_T ag,Message_T ag,Number); 参数描述 Analog_T ag不带引号或常数的实际整型或实型标记名。 Message_T ag不带引号或常数的实际整型或实型标记名。 Number该参数设置返回给Message_Tag 的最大字符串长度。InTouch,消息标记名有131 字符的最大长度。除非你减小在InTouch 标记名称典中的Message_Tag 的最大字符串长度,该参数值为131。该参数可以是常数或包含一个数值的整型标记名。 实例 在“InTouch 数据更改脚本”中使用RecipeGetMessage() 函数,相应的错误代码可以被写到一个模拟标记名,并且关联的错误代码消息可以被写到一个消息标记名中。 Data Change Script Tagname[.field]:ErrorCode Script body:RecipeGetMessage(ErrorCode, ErrorMessage,131); 当模拟标记名ErrorCode 的值发生变化时,将自动执行此脚本。当此脚本执行时,RecipeGetMessage() 函数将读取标记名ErrorCode 的当前数字值,并且返回与此数字值关联的消息到标记名ErrorMessage。 ErrorCode = RecipeLoad ("c:\App\recipe.csv","Unit1","cookies"); RecipeGetMessage(ErrorCode, ErrorMessage, 131); 3: RecipeLoad() 将指定的配方加载到指定的标记名单元中。 句法 RecipeLoad(“Filename”,“UnitName”,“RecipeName”); 参数描述 Filename此函数所作用的配方模板文件的名称。FileName 可以是字符串常数或含有配方模板文件的消息标记名。 UnitName此函数使用的指定配方模板文件中指定的单元。RecipeLoad()函数需用户提供UnitName。RecipeSelectUuit() 函数返回此参数的值。UnitName 可以是字符常数或含有该单元名称的消息标记名。 RecipeName此函数使用的指定配方模板文件中指定的配方。RecipeLoad()、RecipeSave() 和RecipeDelete() 函数需用户提供RecipeName。RecipeSelectRecipe() 函数返回此参数的值。RecipeName 可以是字符常数或含有该配方名称的消息标记名。

函数证明问题专题训练

函数证明问题专题训练 ⑴.代数论证问题 ⑴.关于函数性质的论证 ⑵.证明不等式 6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根. (Ⅰ)当x >a 时,求证:()f x <x ; (Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); (Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x x f ,求证: )(x f 在],0[π上单调递减; 2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程 ()f x =x 的根. ⑴.当x >a 时,求证:()f x <x ; ⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); ⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

求解函数解析式的几种常用方法

求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有 1、换元法:已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。 2、凑配法 若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的 3、待定系数法 若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。 式子,再换元求出)(x f 的式子。 4、赋值法 在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 5、消元法 若已知以函数为元的方程形式,若能设法构造另一个方程,组成

方程组,再解这个方程组,求出函数元,称这个方法为消元法。 典型题例示范讲解 例1 如果45)1(2+-=+x x x f ,那么f(x)=______________________. 例2 设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y 轴上的截距为1,被x 轴截得的线段长为22,求f(x)的解析式。 例 3 设y=f(x)是实数函数,且x x f x f =-)1(2)(,求证:23 2|)(|≥x f 。 例4 已知bx x f x af n n =-+)()(,其中n a ,12≠奇数,试求)(x f 。 例5 已知)12()()(+++=+b a a b f b a f ,且,1)0(=f 求)(x f 的表达式。 解:令0=b ,由已知得:.1)1()0()(2a a a a f a f ++=++= 1)(2++=∴x x x f 例6 (1)已知函数f (x )满足f (log a x )=)1(1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;0

相关主题
文本预览
相关文档 最新文档