当前位置:文档之家› 函数方程的几种解法

函数方程的几种解法

函数方程的几种解法
函数方程的几种解法

解函数方程的几种方法

李素真

摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。

关键词:函数方程;换元法;待定系数法;解方程组法;参数法

含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。

1.换元法

换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。

例1 已知x x f x sin )2(+=,求)(x f 。

解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222

u u u f += )(0>u ,以x 代替u ,得)log sin(log 2

)(22u x x f += )0(>x 。 例2 已知x

x x x f 212ln )1(+=+ )0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111

2

ln )(+=-+-=t t t t f , 即1

2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。

解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2

--=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。

例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。

解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有

由已知条件得 422)(22222+-=+++x x c a bx x a

根据两个多项式相等的条件得

22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。

例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。

解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222

将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++

比较对应项的系数有

?????????=++=+-=++==0

0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法

此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

柯西函数方程

柯西函数方程 柯西函数方程是以下的函数方程: 此方程的解被称为加性函数。 方程的解 在有理数的范围中,可以用简单的代数得到唯一一类的解,表示为,其中任意给定的有理数。 在实数中,这个方程仍然有这一类解,然而存在着其他非常复杂的解,函数f经常被外加条件以排除那些复杂的解。例如: 1、若f是连续的 (由柯西于1821年证明)。这个条件在1875年被达布弱化,证明f只需要在一点连续。 2、若f在任一个区间上是单调的 3、若f在任一个区间上是有界的 另一方面,如果函数f没有其他限制条件,那么满足方程的函数有无穷多个(假设选择公理成立)。这在1905年由乔治·哈梅尔(英语:Georg Hamel)使用基的概念证明。 希尔伯特的第五个问题是这个方程的推广。 存在实数使得的解称为柯西─哈默方程(英语:Cauchy-Hamel function(s))。在希尔伯特的第三个问题中,往高维度的推广所用的德恩-哈德维格不变量(英语:Dehn-Hadwiger invariant(s)),其中就用到柯西-哈默方程。 在有理数集下的证明 先设,得到:

再设: 反复设、、...、,可以得到 (1) 设并代入(1)式得到: 或者 (2) 对于任意有理数,设,根据(1)、(2)两式可知: 上式又可改写为 令就可以得到在有理数下的唯一解。 其他解的性质 以下的证明将显示线性函数以外的解(若存在)是相当病态(pathological)(英语:Pathological (mathematics))的函数。我们将证明这个函数f所对应的图形

在中稠密,亦即在平面上任何给定的圆都至少包含该图形的一个点,我们将从这个定义着手证明。 不失一般性,假设解f满足,且能找到实数满足,同时设 任意给定一个圆,其内部必能找到一个小圆以点为圆心,其中满足 。令实数为半径的倍,即半径为。 令,存在一个有理数满足: 类似地,存在一个有理数使得: 设实数X,Y满足: 从原方程和以上的关系式可以得知:

函数方程的几种解法

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f += )0(>x 。 例2 已知x x x x f 212ln )1(+=+ )0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生: 时间: 学习目标 1、熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、.二次函数的三种表达式 一般式:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P (h ,k )] 交点式:y=a(x-x1)(x-x2) [仅限于与x 轴有交点A (x1,0)和 B (x2,0)的抛物线] 2、一般地,自变量x 和因变量y 之间存在如下关系: y=ax^2+bx+c (a ,b ,c 为常数,a ≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 例题1已知函数y=x 2 +bx +1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x >0时,求使y ≥2的x 的取值范围. 例题2、一次函数y=2x +3,与二次函数y=ax 2 +bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大. (4)当x 为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax 2 +bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是( ) A .0<- a b 2<1 B .0<-a b 2<2 C .1<-a b 2<2 D .-a b 2=1 图① 图② 2.函数y = 21x 2 +2x +1写成y =a (x -h)2+k 的形式是 A.y =21(x -1)2+2 B.y =21(x -1)2+2 1

求二次函数解析式的几种基本解法

求二次函数解析式的几种基本解法 奉贤区新寺学校胡纪英 二次函数是初中数学中的重要内容,也蕴涵着一种重要的数学思想方法。它是在一次函数、反比例函数的基础上,进一步由数、式、方程(二次方程)到二次函数,贯穿了初中代数。纵观近几年的中考试卷可以发现,二次函数始终是中考命题中的重点与热点,一方面是考查二次函数中学生对基础知识的掌握程度,另一方面以其新颖独特的综合试题引导学生探究和创新。在此我就以二次函数中求解析式这一小块内容提供几种常见的基本解法,方便同学们在学习中进行参考: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y=a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。

解函数方程的几种方法

绪论 在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述. 首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程. 其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略. 最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的. 1函数方程的一些相关概念 1.1函数方程的定义 含有未知函数的等式叫做函数方程.如()() f x f x -=, =-,()() f x f x +=等,其中() f x即是未知函数. f x f x (1)() 1.2函数方程的解 设某一函数() f x对自变量在其定义域的所有值均满足某已知方程,那么把 f x就叫做函数方程的f x就叫做已知函数方程的解.即能使函数方程成立的() () 解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1 =-分别是上述各方程的解. f x x 1.3解函数方程 求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,

二次函数表达式三种形式练习题

7.已知二次函数的图象经过点(﹣1,﹣5),( 0, 4)和(1,1),则这二次函数的表达式为( A .y=﹣6x 2+3x+4 B .y=﹣2x 2+3x ﹣4 C .y=x 2+2x ﹣4 D .y=2x 2+3x ﹣4 8.若二次函数 y=x 2﹣2x+c 图象的顶点在 x 轴上,则 c 等于( )A .﹣1 B .1 C . ) D .2 9.如果抛物线经过点A (2,0)和B (﹣1,0),且与y 轴交于点C ,若OC=2.则这条抛物线的解析式是( ) A . 10. A . 11. A . y=x 2﹣x ﹣2 B .y=﹣x 2﹣x ﹣2 或 y=x 2+x+2 C .y=﹣x 2+x+2 D .y=x 2﹣x ﹣2 或 y=﹣x 2+x+2 如果抛物线 y=x 2 ﹣6x+c ﹣2 的顶点到 x 轴的距离是 3,那么 c 的值等于( ) 8 B .14 C .8 或 14 D .﹣8 或﹣14 二次函数 的图象如图所示,当﹣1≤x ≤0 时,该函数的最大值是( ) 3.125 B .4 C .2 D .0 当﹣2≤x ≤1 时,二次函数 y=﹣(x ﹣m )2+m 2+1 有最大值 3,则实数 m 的值为( ) A . 或﹣ B . 或﹣ C .2 或﹣ D . 或﹣ 13.如果一条抛物线经过平移后与抛物线 y=﹣ x 2 +2 重合,且顶点坐标为(4, 的解析式为 . 14.二次函数的图象如图所示,则其解析式为 . 15.若函数 y=(m 2﹣4)x 4+(m ﹣2)x 2的图象是顶点在原点,对称轴是 y 轴的抛物线,则 m= . 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x 轴的距离为 2, 则该二次函数的解析式为 . 17.如图,已知抛物线 y=﹣x 2+bx+c 的对称轴为直线 x=1,且与x 轴的一个交点为(3,0), 那么它对应的函数解析式是 . 18.二次函数 y=ax 2+bx+c 的图象经过 A (﹣1,0)、 B (0,﹣3)、 C (4,5)三点,求出 抛物线解析式 . 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为 4,此函数关系式为 20.如图,一个二次函数的图象经过点A ,C ,B 三点,点A 的坐标为(﹣1,0),点B 的坐标为 (4,0),点 C 在 y 轴的正半轴上,且 AB=OC .则这个二次函数的解析式是 . 21.坐标平面内向上的抛物线y=a (x+2)( x ﹣8)与x 轴交于A 、B 两点,与y 轴交于C 点,若 1.把二次函数 y=x 2﹣4x+5 化成 y=a (x ﹣h )2+k (a ≠0)的形式,结果正确的是( ) A .y=(x ﹣2)2+5 B .y=(x ﹣2)2+1 C .y=(x ﹣2)2+9 D .y=(x ﹣1)2+1 2.将 y=(2x ﹣1)?(x+2)+1 化成 y=a (x+m )2+n 的形式为( ) D . 3.与 y=2(x ﹣1)2+3 形状相同的抛物线为( )A .y=1+ x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为( A .y=﹣2(x+2)2+4 B .y=﹣2(x ﹣2)2+4 C .y=2(x+2)2﹣4 D .y=2(x ﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( ) A .y=﹣3(x ﹣1)2+3 B .y=3(x ﹣1)2+3 C .y=﹣3(x+1)2+3 D .y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数 y= x 2的图象相同的抛物线所对应的函数是( ) A .y= (x+6)2 B .y= (x ﹣6)2 C .y=﹣ (x+6)2 D .y=﹣ (x ﹣6)2 A . B . C . ) 2),则它

一元二次函数方程和不等式教学设计

一元二次函数、方程和不等式(衔接课) 一、教学设计 1.教学内容解析 在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好. 本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡. 三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面. 根据以上分析,本节课的教学重点确定为 教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用. 2.学生学情诊断 本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律. 教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式. 3.教学目标设置 (1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系; (2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性; (3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养. 4.教学策略分析 本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆

函数方程的归类及求解

函数方程归类与求解 目录 【摘要】 (1) 【关键字】 (1) 【正文】 (1) 一、函数方程相关概念 (1) 二、函数方程分类 (2) 1.按元分 (2) 2.按阶分 (2) 3.按次分 (2) 4.按未知函数的个数来分 (2) 5.其他 (2) 三、函数方程的常用解法 (2) 1、赋值法 (2) 2、柯西法 (3) 3、待定系数法 (5) 4、代换法(换元法) (6) 5、递推法 (6) 6、不动点法 (7) 7、解方程组法 (8) 8、数学归纳法 (9) 9、参数法 (10) 10、微积分程法 (10) 11、数列法 (11) 12、反证法 (11) 四、结束语 (12) 五、参考文献 (12)

【摘要】含有未知函数的等式称为函数方程,解函数方程的问题,就是求能使函数方程成立的一个函数或一类函数的集合,解函数方程没有一般的方法,需要有较强的解题技能和技巧,本文通过例题介绍函数方程的几种常见解法。而对于函数方程,本文给出了按元分,按阶分,按次分,按未知数个数分以及其他的分类方法。函数方程的思想反映了数学内部各个分支的密切联系与逻辑思维,研究函数方程的解法不仅可以拓展对函数概念更深层的理解,而且对函数在实际生活中的应用具有一定的指导作用。 【关键字】函数方程分类解法赋值法柯西法递推法 【正文】 一、函数方程相关概念 3、解函数方程:求函数方程的解或证明函数方程无解的过程就叫解函数方

程。 二、函数方程分类 1.按元分 函数方程中表示未知函数自变量的字母有几个,就称其为几元函数方 程,如(x+1)=f x 、(x)=()f f x -、(x+2)=(x)f f 是一元函数方程,(x+y)=()+(y)f f x f 是二元函数方程。 2.按阶分 函数方程中未知函数经过几次迭代,就称其为几阶函数方程,如 2()=+1x x ?就是二阶函数方程,其中[]2()=()x x ???。 3.按次分 函数方程中未知函数的最高次项的次数是几,就称其为几次函数方程,如32()=()+3()x x x ???就是一个二阶三次函数方程. 4.按未知函数的个数来分 如(x+1)=f x 、(-x)=()f f x 、(x+2)=(x)f f 、222()=(1+z )(z)1+z z ??都是含一个未知函数的函数方程;又如函数方程()()=()f x g y h x 中就含有三个未知函数()f x 、()g x 、()h x 。 同“数值方程”类似,几个函数方程也可以组成函数方程组. 5.其他 对于其他一些特殊类型的函数方程(即具有一定特殊结构的函数方程),则有其特殊的名称。如多项式函数方程、迭代式函数方程、共轭型函数方程。 三、函数方程的常用解法 1、赋值法 对函数方程中的变量带入一些特殊式子或者数值,可以求出未知函数的一些特殊值,或者可以将原方程化简,再结合其他条件解决问题,赋值法是处理函数方程问题最基本的策略。使用赋值法要求仔细观察和勇于尝试。且其多用于多变

函数与方程及解题方法

高三专题复习函数(3)函数与方程 一、基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

(完整版)高中数学一元二次不等式及其解法-知识点剖析

一元二次不等式及其解法-知识点剖析 一、一元二次不等式及一元二次不等式的解集 1.一元二次不等式经过变形,可以化成以下两种标准形式: (1)ax 2+bx+c>0(a>0); (2)ax 2+bx+c<0(a>0). 上述两种形式的一元二次不等式的解集,可通过方程ax 2+bx+c=0的根确定.设Δ=b 2-4ac ,则: ①Δ>0时,方程ax 2+bx+c=0有两个不相等的解x 1、x 2,则不等式(1)的解集为{x|x>x 2或x0时,解形如ax 2+bx+c>0(≥0)或ax 2+bx+c<0(≤0)的一元二次不等式,一般可分为三步: (1)确定对应方程ax 2+bx+c=0的解; (2)画出对应函数图象的简图; (3)由图象得出不等式的解集. 二、一元二次函数图象、一元二次方程的根、一元二次不等式的解集之间的关系 由下表可以看出ax 2+bx+c>0对一切x ∈R 都成立的条件为?? ?, ,00a ax 2 +bx+c<0对一切x ∈R 都成立的 条件为???0 Δ=0 Δ<0 二次函数y=ax 2+bx+c (a>0) 的图象 一元二次方程ax 2+bx+c=0(a>0) 的根 有两相异实根x 1,2=a ac b b 242-±- 有两相等实根 x 1=x 2=- a b 2 没有实根 一元二次不等式的解集 ax 2+bx+c >0(a>0) {x|x>x 2或x0) {x|x 1

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

简单的函数方程

简单的函数方程 函数方程的概念: 1.函数方程的定义 含有未知函数的等式叫做函数方程。如f (x +1)=x 、f (-x )=f (x )、f (-x )= -f (x )、f (x +2)=f (x )等。其中f (x )是未知函数 2.函数方程的解 能使函数方程成立的函数叫做函数方程的解。如f (x )=x -1、偶函数、奇函数、周期函数分别是上述各方程的解 3.解函数方程 求函数方程的解或证明函数方程无解的过程叫解函数方程 4.定理(柯西函数方程的解) 若f (x )是单调(或连续)函数且满足f (x +y )=f (x )+f (y ) (x,y ∈R )、则f (x )=xf (1) 证明:由题设不难得 f (x 1+x 2+…+x n )=f (x 1)+f (x 2)+…+f (x n ) 取x 1=x 2=…=x n =x ,得f (nx )=nf (x ) (n ∈N +) 令x =0,则f (0)=nf (0),解得f (0)=0 --------- (1) x =1,则f (n )=nf (1) x =n m ,则f (m )=nf (n m ) ,解得f (n m )=n 1f (m )= n m f (1) --------- (2) x =-n m ,且令y =-x >0,则f (x )+f (y )=f (x +y )=f (0)=0 ∴f (x )=-f (y )=-yf (1)=xf (1) (m,n ∈N +,且(m,n )=1) ---------(3) 由上述(1),(2),(3)知:对任意有理数x 均有f (x )=xf (1) 另一方面,对于任意的无理数x ,因f (x )连续,取以x 为极限的有理数 序列{x n },则有 :f (x )=∞→n lim f (x n )=∞ →n lim x n f (1)=xf (1) 综上所述,对于任意实数x ,有f (x )=xf (1) 函数方程的解法: 1.代换法(或换元法) 把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数 例1 (1)已知f (2x -1)=x 2+x ,那麽f (x )=______________。 略解:设t =2x -1,则x = 21 (t +1),那麽f (t )= 41 (t +1)2+21 (t +1)= 41t 2+t + 43

函数方程的柯西解法

4.函数方程的柯西解法 在函数方程的发展史上,许多函数方程的建立和解法都是由柯西首先提出的. 本节我们就来研究函数方程的柯西解法. 在前几节讨论的函数方程中,所涉及的函数大多数是自然数的函数. 而本节中的函数,它的定义域都是在某一区间上的实数. 柯西解法的步骤是:依次求出对于自变量的所有自然数值、整数值、有理数值,直至所有实数值的函数方程的解. 如所周知,一个函数方程的解往往并不是唯一的. 也就是说,可能存在着不同的函数,满足同一个函数方程. 为了保证函数方程的解的唯一性,通常需要给所求的函数附加一些条件,例如要求所求的函数必须是连续的,或者必须是单调的. 在本节里,要求函数方程的解都必须是单调函数. 什么是单调函数呢?如果对于较大的自变量的值,函数值也较大;即当12 x x >时,有 )()(12x f x f >,就是说函数)(x f 单调增加. 如果对于较大的自变量的值,函数值反而较 小;即当12 x x >时,有)()(12x f x f <,就说函数)(x f 单调减小. 单调增加和单调减小 的函数,统称单调函数. 在后面的讨论中,我们还要用到区间套原理. 这个原理是这样的: 设有一个区间序列: ,],[,,],[,],[,],[332211?????????????????n n βαβαβαβα (78) 其中每个区间都包含着后一个区间: ),3,2,1(,],[],[11 ??????i ?? ????i i i i =βα?βα++ (其中?是集的包含符号)形成一个“区间套”,而且区间长度可以任意地小(就是说,不 论我们事先给定一个多么小的正数ε,序列(78)中总存在这样一个区间,从此以后所有的区间的长度都小于ε). 那末,必定存在着唯一的一个点ξ,被所有(无穷多)这些区间所包含. 特别是当ξ是无理数时,如果把n α和n β取作ξ的精确到10-n 的不足近似值和过剩近似值. 那末以ξ的不足近似值和过剩近似值为端点,将构成一个区间套. 相应的区间的长度是10-n . 例如,我们知道,圆周率π是一个无理数: .897931415926535.3?? =π 于是,可以构成区间套 .]142.3,141.3[]15.3,14.3[]2.3,1.3[??????? ??? 区间的长度依次是3.2-3.1=10-1,3.15-3.14=10-2,3.142-3.141=10-3,…. 我们注意到,每个区间的端点n n βα和都是有理数,而只有唯一的一个无理数α=π被包含在所有这些区间之内. 有了这些准备之后,我们转入函数方程的柯西解法的讨论.

一元二次函数方程和不等式教学设计(陈开懋)

课题:一元二次函数、方程和不等式(衔接课) 华中师范大学第一附属中学陈开懋 一、教学设计 1.教学内容解析 在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好. 本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡. 三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面. 根据以上分析,本节课的教学重点确定为 教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用. 2.学生学情诊断 本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律. 教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式. 3.教学目标设置 (1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系; (2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性; (3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养. 4.教学策略分析

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生:时间: 学习目标 1熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、?二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a老) 顶点式:y=a(x-h)A2+k [ 抛物线的顶点P (h, k)] 交点式:y=a(x-x1)(x-x2)[ 仅限于与x轴有交点A (x1 , 0)和B (x2 , 0)的抛物线] 2、一般地,自变量x和因变量y之间存在如下关系: y=axA2+bx+c (a, b, c为常数,a M),且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还可以决定开口大小,lal越大开口就越小,lal越小开口就越大.) 则称y 为x的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 2 例题1已知函数y=x + bx +1的图象经过点(3, 2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x > 0时,求使y》2的x的取值范围. 例题2、一次函数y=2x + 3,与二次函数y=ax2+ bx + c的图象交于A ( m 5)和B (3, n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax2+ bx+ c(a M0)的图象,如图①所示,则下列关系式中成立的是( b b b b ——=1

简单的函数方程(一).doc

简单的函数方程(一丿 1 ?函数方程的定义含有未知函数的等式叫做函数方程。如f(x+l)=x、f(- x)=f(x)> f(—x)= —f(x)、f(x+2)=f(x)等。其中f(x)是未知函数 2.因数方程的鮮能使函数方程成立的函数叫做函数方程的解。如f(x)=x-K 偶函数、奇函数、周期函数分别是上述各方程的解 3.鮮函数方程求函数方程的解或证明函数方程无解的过程叫解函数方程 4.定理(柯西函数方程的鮮丿 若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y) (x,yWR)、则f(x)=xf(l) 证明:由题设不难得 f(X 1 + X2 ----- F Xn)=f(X 1) + f(X2) H -- F f(X n) 取X1=X2二…=Xn=x,得f(nx)=nf(x) (neN+) 令x=0,则f(O)=nf(O),解得f(0)二0 ------------ (1) x=l,则f(n)=nf(l) x=-,则f(m)=nf(-),解得f(-)= -f(m)= -f(l) (2) n n n n n X=-—,且令y=—x>o,则f(x) + f(y)=f(x + y)=f(O)=O n f(x)=—f(y)=—yf(l )=xf(l) (m,n G N+,且(m,n)= 1) ----------------- (3) 由上述(1), (2), (3)知:对任意有理数x均有f(x)=xf(l) 另一方面,对于任意的无理数x,因f(x)连续,取以x为极限的有理数序列区},则有:f(x)= limf(x n)= limx n f( 1 )=xf( 1) n ―>8 n T8 综上所述,对于任意实数X,有 f(x)=xf(l) 1?代换法(或换元法) 把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数例 1 (1)己知f(2x — l)=x2+x,那麽f(x)二______________________________ 。 略解:设t=2x-l,则x二丄(t+1),那麽f(t)二-(t+1)2+ - (t+l)= -t2 2 4 2 4

函数方程的几种解法 (1)

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2)(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f +=)0(>x 。 例2 已知x x x x f 212ln )1(+=+)0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

相关主题
文本预览
相关文档 最新文档