当前位置:文档之家› 简谈基于模型的系统工程概述

简谈基于模型的系统工程概述

简谈基于模型的系统工程概述
简谈基于模型的系统工程概述

简谈基于模型的系统工程概述

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

0引言

伴随中国航空工业的发展,航空产品经历了从机械到机械、电子到机械、电子、软件等多学科高度综合的过程,其体系也经历了从分立式到联合式、综合式、高度综合式的发展历程。在系统体系的演变历程中,系统功能的互操作由独立向基于共享资源的交互演进,接口定义由功能性的聚合、松耦合向高度综合、紧耦合的方向发展,集成工作由简单功能向更加复杂的功能发展,系统的互联由离散向高度网络化的互联发展,系统失效模式由透明化的简单行为向不透明的复杂综合行为发展。

目前,在航空系统工程实施过程中,产生的信息均是以文档的形式来描述和记录。随着近年来中国航空型号研制数量大幅度增加,系统复杂度和规模不断提高,跨学科、交叉学科系统的出现,基于文档的系统工程难以保证产品数据一致性、数据的可追溯性等需求。

为了应对类似的挑战,在国际航空领域,NASA

在原有系统工程研制模式的基础上采用了国际系统工程组织(INCOSE)提出的基于模型的系统工程(Model-basedSystemsEngineering,MBSE)[1]管理新模式和实现技术。基于模型的系统工程思想是通过建立和使用一系列模型对系统工程的原理、过程和实践进行形式化控制,通过建立系统、连续、集成、综合、覆盖全周期的模型驱动工作模式帮助人们更好地运用系统工程的原理,大幅降低管理的复杂性,提高系统工程的鲁棒性和精确性,将整个系统工程作为一个技术体系和方法,而不是作为一系列的事件。本文通过从当前遇到的问题、推行基于模型的系统工程的必要性、优势、未来的挑战等几个方面进行了较为详细的阐述。

1TSE的概念

传统的系统工程用各种文本文档构建系统架构,其中的产出物是一系列基于自然语言的、以文本格式为主的文档,比如用户的需求、设计方案,当然也包括一些用实物做成的物理模型等。例如火箭的总体布局方案、推进系统、控制系统等分系统的设计方案以及弹道方案、分离方案等。把这些文档串起来的东西是一系列的术语及参数,这些术语对系统进行了定性描述。各种参数是系统的定量描述。各专业学科的分

析模型从文档中抽取相关参数进行计算,计算之后再把相关参数写入文档,转交给其它学科和相关人员。参数在各文档之间来回流动,这种设计流程也被称作抛过墙的设计。很显然,在这个过程中,文档管理的机制、配置管理的机制非常重要。总体设计的工作主要就是抓总和协调,并控制这些术语和参数。上述描述的系统工程是基于文本的系统工程(TextBasedSystemEngineering,TSE)。TSE的文档在描述系统架构模型时具有天生的缺陷:TSE的文档是基于自然语言、基于文本形式,当然也包括少量的表格、图示、图画、照片等。由于自然语言并非专门为系统设计所发明,而是要表示大千世界的万事万物,还要表示纷繁复杂的各专业学科知识,所以TSE的文档要依靠相关工程设计的术语来使各方对系统有共同的理解和认识。所以各方的沟通交流要依赖不断更新的术语表、词汇表等,否则就容易产生理解的不一致性。尤其是当系统的规模越来越大、涉及的学科和参与的单位越来越多时,这个问题就更加突出了文档的电子化、网络化并没有从根本上改变各方对文档理解的不一致性。

2MBSE的概念和内涵

在2007年,国际系统工程学会(INCOSE)在系统

工程2020年愿景中给出了基于模型的系统工程的定义。基于模型的系统工程(ModelBasedSystemEngineering,MBSE)是对系统工程活动中建模方法应用的正式认同,以使建模方法支持系统要求、设计、分析、验证和确认等活动,这些活动从概念性设计阶段开始,持续贯穿到设计开发以及后来的所有的寿命周期阶段。从MBSE的定义可见,建模就是运用某种建模语言和建模工具来建立模型的过程,仿真是对模型的实施与执行。模型是我们思考问题的基本方法,是设计工作的思维基础。实际上,各专业学科及系统工程一直在使用建模与仿真方法,MBSE并不是对建模方法的首次采用,也就是说,MBSE与传统系统工程的区别并不在是否采用建模方法。基于模型的系统工程开发方法中涉及到的关键技术有系统架构设计、多物理领域建模、集成的仿真计算环境、模型和数据的管理。

3国外MBSE发展情况

近年来,国际领先的航空企业在积极实践和推进MBSE。例如,空客公司在A350系列飞机的开发中全面采用MBSE,在飞机研制中逐层细化需求并进行功能分析和设计综合,不仅实现了顶层系统需求分解与确认,也实现了向供应商、分包商的需求分配和管理。

洛克希德·马丁公司采用MBSE来统一进行需求管理和系统架构模型,并向后延伸到机械、电子设备以及软件等的设计与分析之中,如:基于MatLab的算法分析以及SystemC、Verilog、ANSYS的软硬件的设计与分析、Adams的性能分析、SEER的成本分析等,构建了完整的基于模型的航空和防务产品的开发环境[5]。罗克韦尔-柯林斯公司采纳MBSE方法覆盖航电全领域的系统定义和系统测试模型。RR公司依据INCOSE系统工程手册制定了其自身的系统工程能力框架,涵盖了系统思考、需求管理、系统定义、接口管理、系统功能分析、系统架构设计、确认和验证等能力,覆盖了总工程师、项目管理者、总设计师、系统工程师、系统设计师、开发工程师、质量工程师、服务工程师等岗位职责,实现了从航空动力系统到子系统到部件的系统工程迭代。波音公司构建了以任务和需求定义、逻辑和功能集成、功能和逻辑架构设计为核心的覆盖产品全生命周期的MBSE过程,从运行概念到需求到设计到生产。

NASA在多个新的及已有的项目上积极运用MBSE,其目的是显著提升项目的经济可承受性、缩减开发时间、有效管理系统的复杂性、提升系统整体的质量水平。软件工具提供商也在积极行动。IBM公

司也开发了1种方法论,称为针对系统工程的统一软件过程(MDSD)软件提供商积极开发相关支撑平台。如LMS公司的多领域系统仿真集成平台,可用于飞机开发的每个阶段(从前期的概念设计分析、详细设计到产品验证)。

4当前存在的现实问题

随着系统的规模和复杂程度的提高,传统的基于文档的系统工程将产生大量的各种不同的文档,其面临的困难越来越明显:

(1)信息的完整性和一致性以及信息之间的关系难于评估和确定,因为其散布于各种不同的数量巨大的文档中。

(2)难以描述各种活动。活动是动态的,有交互的,仅用文字描述对于相对简单,参与方不多的活动还能胜任,但对于复杂活动就很难描述清楚。

(3)更改的难度很大。由于文档数量巨大,要确保更改所有需要更改的内容,是1项很难很大的工程。

(4)传统的系统设计方法依赖文档形式的需求管理。在形成需求后开发系统架构,并由设计师人工建立设计结果与需求之间的链接关系。如果出现不满足需求的情况,必须作出更改并重新建立链接关系。这一迭代过程随着设计进程的推进会在顶层设计、子系

统设计和设备级设计层次不断重复。经验表明这一方法存在周期长、验证需求符合性困难、系统间接口不明确以及更改流程复杂耗时等诸多问题。

(5)飞机整机的设计面临新的问题:一方面是系统本身越来越复杂,特别是随着多电飞机的发展,智能控制系统的采用越来越多,使得在传统开发流程中如何有效地考虑机电一体化系统开发,特别是在开发阶段如何综合地考虑控制系统和受控对象的耦合成为开发的关键之一;另一方面是不同研发部门或供应商的系统如何集成,特别是在设计的早期如何通过系统的集成确保系统设计的成熟性是全球航空行业产品开发面临的棘手问题。

5MBSE的优势

基于模型的系统工程就采用模型的表达方法来描述系统的整个生命周期过程中需求、设计、分析、验证和确认等活动。基于模型的系统工程的出现就是为了解决基于文档的系统工程方法的困难,相对于基于文档的系统工程方法,主要在以下几个方面有所改进:

(1)知识表示的无二义性。文字的描述经常会因为个人理解的差异而产生不同的解释,团队成员针对文档在大脑中形成的构思模型不可能完全一致。而模型是1种高度图形化的表示方法,具有直观、无歧义、

模块化、可重用等优点,建立系统模型可以准确统一地描述系统的功能、详细规范与设计等方面,对整个系统内部的各细节形成统一的理解,尤其是可以提高设计人员和开发人员之间的理解的一致性。系统模型是1种最佳实践方法,可以保证团队成员对此有相同的理解,为解决问题和改进系统提供基础。

(2)沟通交流的效率提高。随着系统的规模和复杂程度的提高,各种文档越来越多,相对于厚厚的技术文档,阅读图形化的模型显然更加便利直观、无歧义,使得不同人对同一模型具有统一一致的理解,有利于提高系统内需要协调工作部门之间的沟通与交流的效率,如顾客、管理人员、系统工程师、软硬件开发人员、测试人员等。

(3)系统设计的一体化。由于系统模型的建立涵盖系统的整个生命周期过程,包括系统的需求、设计、分析、验证和确认等活动,是1个统一整体的过程,可以提供1个完整的、一致的并可追溯的系统设计,从而可以保证系统设计的一体化,避免各组成部分间的设计冲突,降低风险。

(4)系统内容的可重用性。系统设计最基本的要求就是满足系统的需求并且把需求分配到各组成部分,因此建立系统的设计模型必然会对系统的各功能进行

分析并分解到各模块去实现,从而对于功能类型相同的模块不必重复开发。

(5)增强知识的获取和再利用。系统生命周期中包含着许多信息的传递和转换过程,如设计人员需要提取需求分析人员产生的需求信息进行系统的设计。由于模型具有的模块化特点,使得信息的获取、转换以及再利用都更加方便和有效。

(6)可以通过模型多角度的分析系统,分析更改的影响,并支持在早期进行系统的验证和确认,从而可以降低风险,减少设计更改的周期时间和费用。与其他工程学科(软件、电子等)一样,系统工程正在进化:从基于文档的方法到基于模型的方法,而这也正是系统工程发展的必然趋势。

(7)MBSE和TSE的区别就在于系统架构模型的构建方法和工具的不同,以及由此带来的工作模式、设计流程等方面的区别。也就是说,传统的系统工程变成基于模型的系统工程,实际是从基于文本向基于模型的转变。这个模型是指用系统建模语言建立的系统架构模型,或者说是系统架构模型的建模语言从自然语言(文本格式)转向了图形化的系统建模语言(SysML)。但MBSE并没完全抛弃过去的文档,而是从过去以文档为主模型为辅向以模型为主文档为辅的

转变。

(8)MBSE可以更好地支持V&V(VerificationandValidation),由于引入了很多的工具软件,借助工具软件的优势,可以大幅提高测试与验证的效率与正确性。同时可以提高测试与验证的自动化水平,降低人工手动测试与验证的低级错误,并提高效率。

(9)MBSE有助于进一步突破时间和空间对设计工作的限制。TSE下相关的设计工作要遵循一定的时间顺序,而且还有一定的空间限制。比如:系统工程文档要按照一定的顺序进行流转,上一个专业学科分析做完之后,才能够进行下一个专业的分析,而且做出样机后各方才能进行测试等。MBSE下用系统建模语言构建出模型后,就能进行各种分析和测试,提前协调、平衡和优化。而且各方围绕着1个存储着系统架构模型数据的数据银行并行开展工作,并且可以支持远程及分布式的工作模式,突破设计人员地理位置的限制。

6MBSE未来发展面对的挑战

(1)MBSE的推进需要行政干预。基于模型的系统工程的推进需要付出巨大努力,并且不是所有系统成员都渴望MBSE的推进。对于一些人来说,建立模型

并且验证模型纯粹是浪费时间,与其花费巨大的时间建模与验模,还不如省下时间开发新产品。很多诸如此类的观念是短时间内很难改变的,需要行政力量去干预并且改变这种观念。基于模型的系统工程是1种新的工作方法,需要完全改变以前的工作习惯。这其中的阻力之大可想而知。

(2)工具集的集成。每个复杂的系统,都会涉及到很多工具软件,每个领域会有1种专门工具。对于系统工程来说,没有1种工具适用所有领域。比如,在功能与逻辑层,可以采用某种多用途仿真工具即可,但对于物理层建模,就需要其他工具。由于使用了多种不同的工具,首先就会增加针对不同工具的维护与培训费用。其次,更大的风险在于数据如何在多种工具之间进行转换,同时不可忽视的是,在数据转换时会产生大量的不可预知的错误。不同工具之间数据接口的设计与数据交互也是非常困难。最后,不同工具软件的联合在系统层面的仿真是需要真正面对的难题。

(3)系统开发向大型化、复杂化发展。航空系统产品日益庞大复杂,复杂度日益上升,包含的功能越来越多,但是系统组件却越来越少。同时,软件在系统中占的比重越来越大,这就增加了对完整产品需求定

义的难度。对于复杂大系统的要求是减少部件数量、提高每个系统部件的能力、部件之间可以松散耦合与紧密集成。只有按照这个要求才可以实现系统的高效运作,同时才能实现便于后续的维护与扩展。

7结束语

MBSE使用建立的模型并且仿真,经过20年的发展,已经取得了巨大成就。MBSE有着诸多显而易见的优势,虽然未来的发展也有挑战,但挑战与机遇并存。MBSE增加了前后端程序的花费,但是也增加了对多种领域工具软件的需求。总之,MBSE是针对系统工程一系列解决方法中的最佳实践方法。这一方法依靠大型软件平台,建立各级别的需求与相应的系统方案元素的链接,并以图形化的方式展示设计者对系统的认识。因为摒弃了繁缛的文档管理方式,系统模型与需求之间的关系更加明确,系统更改造成的影响也更加透明。设计者之间通过易于理解的图形交流系统设计方案,减少了由误解造成的隐患。可执行的功能模型使得在设计的各阶段都能分析系统对需求的符合性,并验证系统需求是否符合利益相关方的原始需求。

综上所述,基于模型的系统工程非常重要,从事MBSE的工作将大有可为。认真研究,积极引进、消

化、吸收,形成具有中国特色的MBSE,为中国国防实力和综合国力的提升夯实基础。

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

专家系统

专家系统发展概

述 院系:化工学院化工机械系 班级:10自动化(1) 姓名:李正智 学号:1020301016 日期:2013年10月1日 专家系统发展概述 摘要:回顾了专家系统发展的历史和现状。对目前比较成熟的专家系统模型进行分析,指出各自的特点和局限性。最后对专家系统的热点进行展望并介绍了新型专家系统。 关键词:专家系统;知识获取;数据挖掘;多代理系统;人工神经网络 Abstract:The history and recent research ofexpertsystem was reviewed. Severalwell-researched expertsystemmodelswereintroduced respectively, and their featuresand limitationswere analyzed. Finally, the hotspotofexpertsystem wasoverlookedand future research direction ofexpertsystem wasdiscussed. Key words:expertsystem; knowledge acquisition; datamining; multi-agentsystem; artificialneuralnetwork 近三十年来人工智能(Artificial Intelligence,AI)获得了迅速的发展,在很多学科领域都获 得了广泛应用,并取得了丰硕成果。作为人工智能一个重要分支的专家系统在20世纪60年代初期产生并发展起来的一门新兴的应用科学,而且正随着计算机技术的不断发展而日臻完善和成熟。一般认为,专家系统就是应用于某一专门领域,由知识工程师通过知识获取手段, 将领域专家解决特定领域的知识,采用某种知识表示方法编辑或自动生成某种特定表示形式存放在知识库中;然后用户通过人机接口输入信息、数据或命令,运用推理机构控制知识库及整个系统,能像专家一样解决困难的和复杂的实际问题的计算机(软件)统。 专家系统有三个特点:1.启发性,能运用专家的知识和经验进行推理和判断;2.透明性,能解决本身的推理过程,回答用户提出的问题;3.灵活性,能不断地增长知识,修改原有知识。 1 专家系统的产生与发展 专家系统按其发展过程大致可分为三个阶段[1~3],即初创期(1971年前)、成熟期(1972)1977年)和发展期(1978年至今)。 1.1 初创期 人工智能早期工作都是学术性的,其程序都是用来开发游戏的。尽管这些努力产生了如国际象棋、跳棋等有趣的游戏[4],但其真实目的在于在计算机编码中加入人的推理能力,以

国外基于模型的系统工程方法研究与实践

国外基于模型的系统工程方法研究与实践 王崑声袁建华陈红涛蒲洪波 引言 自上世纪60年代以来,系统工程一直是国外航天和国防领域所惯常采用的研制管理方法,保障了自“大力神”导弹及阿波罗计划以来众多项目的成功。然而,自1969年形成美国军用标准《系统工程管理》(Mil-Std-499)以来,该方法变化很小。与此同时,系统的规模和复杂性却在显著地增长,传统系统工程(Traditional Systems Engineering,TSE)方法已经不能满足需求。 2012年1月,在NASA的项目管理挑战研讨会上(PM Challenge),来自约翰逊航天中心的技术人员介绍了在航天服开发中应用“基于模型的系统工程”(MBSE,Model-Based Systems Engineering)的情况。目前,NASA所属的兰利航天中心、喷气推进实验室等都在项目研发、技术管理等方面积极地应用MBSE方法。MBSE作为一种新的范式(Paradigm),NASA、DoD、ESA等政府组织和相关承包商积极在项目中应用,IBM等软件和方案提供商也在积极地开展研究,并开发相关的支持环境。有关MBSE的研究与应用正在快速地扩展开来,影响越来越大。MBSE方法已经成为最近几年系统工程界研究与应用的热点。 一、基于模型的系统工程的概念与内涵 2007年,国际系统工程学会(INCOSE)在《系统工程2020年愿景》中,给出了“基于模型的系统工程”的定义:基于模型的系统工程是对系统工程活动中建模方法应用的正式认同(formalized application of modeling),以使建模方法支持系统要求、设计、分析、验证和确认等活动,这些活动从概念性设计阶段开始,持续贯穿到设计开发以及后来的所有的寿命周期阶段。 从MBSE的定义可以看出,MBSE强调了建模方法的应用问题。我们知道,模型就是针对建模对象(研究对象)中建模者感兴趣的某些方面特征的近似表征,建模就是运用某种建模语言和建模工具来建立模型的过程,仿真是对模型的实施

系统工程基础概述

第二章系统工程基础概述 教学目的:使学生理解系统工程的概念,了解系统工程的发展历程和基础理论,掌握系统工程的研究方法,理解物流系统工程的基本方法和技术。基本要求:1、理解系统工程的概念; 2、了解系统工程的基础理论; 3、重点掌握系统工程的研究方法; 4、理解物流系统工程的概念、基本方法和技术 教学重点:系统工程方法论,物流系统工程的常用技术和手段。 教学时数:2学时 第一节系统工程及其发展历程 1. 系统工程的定义 ?“系统工程”这个词来源于英文“System Engineering”。 ?系统工程主要提供一套现代化的管理方法,同时也能够促进工程活动本身获得最佳效果 ?系统工程在不同的学科有多种不同的定义,代表性的定义有 美国著名学者切斯纳(H. Chestnut):系统工程按照各个目标进行权衡,全面求得最优解(满意解),并使各组成部分能够最大限度 的相互适应。 日本工业标准“运筹学术语”中指出:系统工程是为了更好地达到系统目标,而对系统的构成要素、组织结构、信息流动和控制机制等 进行分析和设计的技术。 我国的定义:系统工程就是用科学的方法组织管理系统的规划、研究、设计、制造、试验和使用,规划和组织人力、物力、财力,通 过最优途径的选择,使工作在一定期限内收到最合理、最经济、最 有效的成果。 该定义有三层含义: 组织和管理的技术 解决工程活动全过程的技术 这种技术具有普遍性 2. 系统工程的特征 ?普遍性 系统工程不限于某一特定的研究对象,各种自然的、社会的系统都可以做为它的研究对象 ?全局最优性 系统工程着眼于系统的整体状态和过程,而不拘泥于局部的、个别的部分,以系统整体的最佳为目标。 ?相关性 系统工程与所处的环境和条件密切相关,离不开事物本来的性质与特征。

人工智能习题&答案-第6章-专家系统

第六章专家系统 6-1 什么叫做专家系统?它具有哪些特点与优点? 专家系统是一种模拟人类专家解决领域问题的智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。 特点: (1)启发性 专家系统能运用专家的知识与经验进行推理、判断和决策 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户能够了解推理过程,提高对专家系统的信赖感。 (3) 灵活性 专家系统能不断地增长知识,修改原有知识,不断更新。 优点: (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能的各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。

基础工程现状及发展

基础工程现状及发展 概述 现状:土的工程性质及测试技术,我国对表征土的变形与强度特性的本构模型进行了大量的研究,理论上达到了极高水平,但却未能付诸行动。地基处理技术,我国建筑工程的地基处理就其加固机理不同大体可分为四大类:第一大类是压密固结法,第二大类是加筋体复合地基法,第三大类是换填垫层法,第四大类是浆液加固法。 发展:发达国家基础工程技术的主要特点是注重工效,施工机械趋于大型化、自动化;同时注意环境保护,避免污染;广泛运用电子计算机,实行信息化施工和资料积累,推行反分析的方法,不断提高设计和施工质量。结合我国的基本国情,发展基础工程技术应着重做好以下几项工作:重视土的工程性质以及测试技术的研究;完善现有地基处理技术,开发地基处理的新技术、新工艺;以灌注桩为重点,发展成桩新工艺、新设备,实现配套化、系列化、完整化;适应不同的地质、水文和其他环境条件,完善开发基坑支护技术;研究设计计算理论与方法,把我国的地基基础的设计提高到国际领先水平,争取与西方发达国家并驾齐驱。 具体分析 1.混凝土施工技术 混凝土,是对由胶凝材料将集料胶结成整体的工程复合材料的统称。通常我们讲的混凝土是指用水泥作胶凝材料,砂、石作集料,与水按一定的比例配合,经搅拌、成型、养护而得到的水泥混凝土,也称普通混凝土。混凝土结构就是以混凝土为主要材料制作的结构。它主要包括素混凝土结构、钢筋混凝土结构、型钢混凝土结构、钢管混凝土结构以及预应力混凝土结构等。混凝土结构工程的质量,从根本上决定并影响着整个建筑工程的质量。混凝土是一种抗拉能力很低的脆性材料,在施工和使用过程中,经常会出现由于材料质量、施工工艺、地基变形、温度和湿度变化以及结构受荷、设计结构等原因造成的建筑工程局部甚至整体的质量问题。总之,积极改进混凝土施工技术,是减少和防止建筑工程出现质量问题、提高建筑工程质量的重要途径。 现如今,我国高层建筑发展异常迅速,在高层建筑施工过程中,大体积混凝土的应用日益广泛。对于高层建筑基础工程来说,大体积混凝土具有面积大、水泥用量多等的特点,当水泥水化后必然会释放出一定水化热,使得大体积混凝土形成温度应力和收缩应力,在一定程度上也会导致混凝土产生表面裂缝和贯穿裂缝,对于整个结构的稳定性有着十分严重的消极影响。因此,在实际的大体积混凝土施工过程中必须加强对施工技术的控制。首先,要降低水泥水化热,可以采用水化热较低的水泥,如矿渣硅酸盐水泥、火山灰硅酸盐水泥或和粉煤灰水泥等。充分结合混凝土的后期强度,从而减少水泥的用量。对于集料的选择,则应采用粒径大而且级配良好的粗集料为宜,并掺加粉煤灰等。施工过程中可适当掺入大石块,但是必须控制石块的体积不超过总体积的20%,并且石块对钢筋的布置不会产生太大的影响。为降低水化热,还可以在混凝土内部预埋冷却水管,从而带走一部分热量,以减少裂缝的产生。在大体积混凝土浇筑后,应注重长期的保温养护,并且必须缓慢降温,否则混凝土内外温差和湿度梯度过大,极易产生裂缝。 2.城市化进程的影响 随着人们生活水平的提高,对物质文化的需求日益增长,城市建设的压力不仅包括人口增加、住房需求、城市交通等需求的压力,为了增加城市容量和人类的活动空间,缓解交通堵塞,不占或少占可用耕地,开发利用地下空间将成为必然的选择。解决大城市住房用地紧张的另一措施是建造高层、超高层建筑。我国地下空间资源丰富,开发地下空间是节省土地资源、提高利用率、缓解城市压力、减少环境污染、改善生态环境的有效途径。我国的主要

系统工程复习要点-Elane

第一章:系统工程概述 1、系统理论包括: 老三论(形成于二十世纪四十年代):一般系统论、控制论和信息论。系统论或狭义的一般系统论,是研究系统的模式、原则和规律,并对其功能进行数学描述的理论。控制论是研究各类系统的控制和调节的一般规律的综合性理论。信息与控制等是其核心概念。信息论是研究信息的提取、变换、存储与流通等特点和规律的理论。 新三论(形成于二十世纪七十年代):耗散结构理论、协同论和突变论。 2、系统的概念: 系统:是由两个以上有机联系、相互作用的要素所组成,具有特定功能、结构和环境的整体。 系统工程研究的是组织化的大规模复杂系统。系统与环境也是两个相对的概念。 3、系统的一般属性: 整体性、关联性、环境适应性(附加:目的性、层次性) 整体性:是系统最基本、最核心的特性,是系统性最集中的体现;集合的概念就是把具有某种属性的一些对象作为一个整体而形成的结果,因而系统集合性是整体性的具体体现。 关联性:构成系统的要素是相互联系、相互作用的; 环境适应性:系统的开放性及环境影响的重要性是当今系统问题的新特征,日益引起人们的关注; 4、系统的类型: A、自然系统与人造系统 B、实体系统与概念系统 C、 动态系统与静态系统 D、封闭系统与开放系统 5、系统工程的概念: 系统工程是从总体出发,合理开发、运行和革新一个大规模复杂系统所需思想、理论、方法论、方法与技术的总称,属于一门综合性的工程技术. 用定量与定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。钱学森曾指出:系统工程是组织管理系统的规划、研究、设计、制造、实验和使用的科学方法,是一种对所有系统具有普遍意义的科学方法,系统工程是一门组织管理的技术。 系统工程是一门交叉学科;而且具有广泛而厚实的理论和方法论基础,又具有很明显的实用性特征。 6、系统工程方法的特点:

基于模型的设计(MBD)

MBD: Model-based design 河北优控新能源科技有限公司自主研发的发动机控制器(ECU),电动车控制器(VCU),变速箱控制器(TCU),混动动力控制器(HCU)都采用模块化设计,功能多样化,支持不同的需求。 软件模型 下面详细介绍下基于模型设计的定义及基本步骤。 基于模型的设计(MBD)是一种用数字化和可视化的方法来解决问题和设计相关复杂控制的算法,是一种信号处理和通信系统。它被广泛应用在许多动向控制、工业设备、航空航天和汽车应用领域。基于模型的设计方法应用于嵌入式软件设计。 概述 基于模型的设计在整个设计过程中提供了一个有效方法来建立一个共同通信框架,同时支持开发周期(“V”图)。在基于模型控制系统的设计、开发体现在这四个步骤: 模型设计建设; 模型控制器的分析和合成; 模型和控制器的模拟 集成所有这些阶段模型的控制器。 基于模型的设计范式与传统的设计方法有着显著的不同。设计人员可以使用基于模型的设计来定义模型,采用连续时间和离散时间的建筑块,而不是使用复杂的结构和广泛的软件代码,设计人员可以使用模型为基础的设计。这些内置的模型与仿真工具,可以导致快速原型,软件测试和验证。不仅是测试和验证过程增强,而且,在某些情况下,硬件在环仿真可以使用新的设计范例,以执行测试的动态效果更快速,更有效地比传统的设计方法。

历史 电时代的曙光带来了许多创新和先进的控制系统,早在20世纪20年代的工程、控制理论与控制系统这两个方面的融合,使大型集成系统成为可能。在那些早期的控制系统中,通常在工业环境中使用。大型过程设备开始使用过程控制器,用于调节连续变量,如温度,压力和流量。内置梯形网络的电气继电器是第一个独立的控制设备,自动化的整个生产过程。 控制系统获得的势头,主要是在汽车和航空航天部门。在上世纪五十年代和60年代,在嵌入式控制系统中对空间产生了兴趣。工程师建造的控制系统,如发动机控制单元和飞行模拟器,这可能是部分的最终产品。到第二十世纪末,嵌入式控制系统是无处不在的,如洗衣机和空调,即使是白色的产品包含复杂和先进的控制算法,使他们更“智能”。 1969年,介绍了第一个以计算机为基础的控制器。这些早期的可编程序逻辑控制器(PLC)模仿现有的离散控制操作技术,计算机技术的出现为过程和离散控制市场带来了巨大的转变。现成的桌面含有足够的硬件和软件可以运行整个过程处理单元,执行复杂的,并建立了一个分布式控制系统(集散控制系统)的控制算法或工作。 基于模型的设计步骤 基于模型设计方法的主要步骤是: 1 模型设计建设。模型建设是基于数据驱动,或者是基的第一原则。数据驱动的模式设计采用的技术,如系统识别。通过对实际系统中的原始数据的获取和处理,选择一个数学模型,并选择一个数学模型来识别模型的数学模型。各种各样的分析和模拟,可以使用所确定的模型,它被用来设计一个基于模型的控制器进行执行。第一原则为基础的建模是基于创建一个框图模型,实现已知的微分代数方程组的动态。一种类型的第一原则为基础的建模是物理模型,其中一个模型包括在连接块,代表实际的植物的物理元素。 2 控制器分析和集成。设想在步骤1中的数学模型被用于识别模型的动态特性,然后控制器可以根据这些特性合成。 3,离线仿真和实时仿真。根据复杂的动态系统时间响应,对随时间变化的输入进行了研究。这是通过模拟一个简单的LTI(线性时不变)模型,或通过模拟一个非线性模型的控制器进行。仿真允许规范、要求和建模出现错误时立即可以被发现,而不是在之后的设计工作才被发现。实时仿真可以通过自动生成代码的控制器开发的步骤2。此代码可以部署到一个特殊的实时原型计算机可以运行的代码和控制植物的经营。如果一个工厂原型是不可用,或在原型测试是危险的或昂贵的,代码可以自动生成从工厂模型。该代码可以部署到特定的实时计算机,可以连接到目标处理器与运行控制器代码。因此,一个控制器可以实时测试的实时工厂模型。 4,部署。理想情况下,这是通过开发的步骤2自动从控制器生成代码。控制器将不太可能在实际系统中进行模拟,所以迭代调试过程是通过对实际分析结果目标和更新的控制器模型。基于模型的设计工具,允许在一个统一的视觉环境中执行这些所有迭代步骤。

人工智能第六章_专家系统_的要点

1什么是专家系统。有什么特点和优点? 专家系统是一个具有大量的专门知识与经验的程序系统 专家系统是一种模拟人类专家解决领域问题的计算机程序系统特点: 启发性,能够运用专家的知识进行推理判断与决策 透明性,能够解释推理过程和回答用户问题 灵活性,能不断增长知识,更新知识库 专家系统的优点,自己课后了解一下。 2专家系统由哪些部分构成?各部分的作用? 知识库;综合数据库;推理机;解释器;接口 知识库,存储各领域专家的专门知识。静态。硬盘 综合数据库,存储初始问题数据和推理过程的中间数据。内存推理机,根据知识进行推理并导出结论。CPU 接口,用户界面,和用户进行交互。向用户提问,回答用户问题,并进行必要的解释。

知识获取机制是将专业知识转换成机器能理解的表达形式。 解释机制向用户解释以下问题:系统为什么要向用户提出该问题(Why)?计算机是如何得出最终结论的(How)? 3专家系统的分类,自己课下了解。 4建造专家系统的关键步骤。 专家系统团队关系图

是否拥有大量知识是专家系统成功与否的关键。因此知识表示是设计专家系统的关键 一.设计初始数据库 二.原型机的开发与实验 三.知识库的改进与归纳 建立专家系统的步骤图6.3P156页 5基于规则的专家系统

知识库:包含解决问题用到的领域知识,知识表达成为一序列规则。每个规则使用IF(条件)THEN(动作)结构指定的关系。当满足规则的条件部分时,便激发规则,执行动作部分。 数据库:包含一序列事实(一个对象及其取值构成了一个事实),所有的事实都存放在数据库中,用来和知识库中存储的规则的IF(条件)部分相匹配。 3. 基于规则的专家系统的推理机制 推理机制分为两大类:前向连接和后向链接 前向链接就是根据已有事实推断出新的事实。例如已知事实A is x,根据规则IF A is x THEN B is y。获得B is y。然后将B is y加入数据库。再寻找新的规则,即IF B is y THEN ….。

简谈基于模型的系统工程概述

简谈基于模型的系统工程概述 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 0引言 伴随中国航空工业的发展,航空产品经历了从机械到机械、电子到机械、电子、软件等多学科高度综合的过程,其体系也经历了从分立式到联合式、综合式、高度综合式的发展历程。在系统体系的演变历程中,系统功能的互操作由独立向基于共享资源的交互演进,接口定义由功能性的聚合、松耦合向高度综合、紧耦合的方向发展,集成工作由简单功能向更加复杂的功能发展,系统的互联由离散向高度网络化的互联发展,系统失效模式由透明化的简单行为向不透明的复杂综合行为发展。 目前,在航空系统工程实施过程中,产生的信息均是以文档的形式来描述和记录。随着近年来中国航空型号研制数量大幅度增加,系统复杂度和规模不断提高,跨学科、交叉学科系统的出现,基于文档的系统工程难以保证产品数据一致性、数据的可追溯性等需求。 为了应对类似的挑战,在国际航空领域,NASA

在原有系统工程研制模式的基础上采用了国际系统工程组织(INCOSE)提出的基于模型的系统工程(Model-basedSystemsEngineering,MBSE)[1]管理新模式和实现技术。基于模型的系统工程思想是通过建立和使用一系列模型对系统工程的原理、过程和实践进行形式化控制,通过建立系统、连续、集成、综合、覆盖全周期的模型驱动工作模式帮助人们更好地运用系统工程的原理,大幅降低管理的复杂性,提高系统工程的鲁棒性和精确性,将整个系统工程作为一个技术体系和方法,而不是作为一系列的事件。本文通过从当前遇到的问题、推行基于模型的系统工程的必要性、优势、未来的挑战等几个方面进行了较为详细的阐述。 1TSE的概念 传统的系统工程用各种文本文档构建系统架构,其中的产出物是一系列基于自然语言的、以文本格式为主的文档,比如用户的需求、设计方案,当然也包括一些用实物做成的物理模型等。例如火箭的总体布局方案、推进系统、控制系统等分系统的设计方案以及弹道方案、分离方案等。把这些文档串起来的东西是一系列的术语及参数,这些术语对系统进行了定性描述。各种参数是系统的定量描述。各专业学科的分

专家系统的构成、工作原理及分类-人工智能导论

专家系统的构成、工作原理及分类 1.专家系统概念:实际上就是一种智能的计算机程序,它运用知识和推理来解决只有专家才能解决的复杂问题。 2.专家系统基本组成:知识库(数据库,规则库)和推理机(解释程序,调度程序) 3.专家系统特点: (1)编程思想不同:传统程序=数据结构+算法 专家系统=知识+推理 (2)知识与程序是否独立:传统程序关于问题求解的知识隐含于程序中,而专家系统知识单独组成知识库,与推理机分离。 (3)处理对象不同:传统程序进行数值计算和数据处理,而专家系统还能处理符号。 (4)是否具有解释功能:传统程序没有,专家系统有。 (5)是否给出正确答案:传统程序一定可以给出正确答案,专家系统可能给出错误答案。 4.专家系统的最基本工作原理: (1)推理机和知识库是专家系统的核心,就是要能够学习知识,然后运用知识。(2)数据库用来存放初始的数据,可以放入中间推算的中间的结果。 (3)知识获取机构用来获取知识通过人机接口和专家和知识工程师进行知识获取 (4)解释机构用来给出结果的解释,说明答案为什么是这样。 5.知识获取的过程: 领域专家和知识工程师进行交流沟通,专家进行知识概念解答,工程师进行数据问题提问,知识工程师将从专家处获得的答案形式化,结构化的存到知识库中。6.知识获取类别 一般分为两种,一种是非自动知识获取,即完全是由人来进行的,就是把科技文献领域专家的知识通过阅读度化,让知识工程师掌握,然后通过知识编译器变成计算机能够存储和运用的知识。这种方式的优点是可靠,错误很少,缺点是文献知识都要通过人工来处理,太复杂了。二是自动知识获取,即领域专家与机器对

话,通过语音识别来将专家的答案变成一个机器能够处理的文字。或者说是文字图像经过计算机的识别,放到计算机中,然后再进行归纳理解翻译,然后变成知识库里面的知识。 通常采用两者的结合来进行事务的处理。比如翻译英文著作,可以先通过自动获取知识的专家系统,然后再经过非自动知识获取的专家系统,那样翻译的文章就非常接近原文意思呢。 7.专家系统分类: ⑴按知识表示技术可分为:基于逻辑的专家系统、基于规则的专家系统、基于语义网络的专家系统和基于框架的专家系统。 ⑵按任务类型可分为:解释型:可用来于分析符号数据,进行阐述这些数据的实际意义。预测型:根据对象的过去和现在情况来推断对象的未来演变结果。诊断型:根据输入信息来找到对象的故障和缺陷。调试型:给出自己确定的故障的排除方案。自维修型:指定并实zhidao施纠正某类故障的规划。规划型:根据给定目标拟定行动计划。设计型:根据给定要求形成所需方案和图样。监护型:完成实时监测任务。控制型:完成实施控制任务。教育型:诊断型和调试型的组合,用于教学和培训。

基于模型的系统工程

基于模型的系统工程(MBSE)的案例研究 第 1 部分: IBM Rational Harmony 的集中式系统模型 建模自出现以来,一直是系统工程的重要组成部分。在过去十年中,工程师们已经大幅增加基于模型的技术的使用,并发展出一门新的学科,基于模型的系统工程(Model-Based Systems Engineering, MBSE)。这门学科与传统的系统工程不同,它强调中央系统模型,该模型同时捕捉系统需求和满足这些需求的设计决策。除了作为系统工程的工作构件的知识库之外,还可以通过模拟系统模型来验证成本、性能研究和设计选择。IBM Rational Harmony for Systems Engineers 等广泛应用的 MBSE 流程重点关注的是系统功能分析,也就是说,关注如何将功能要求转换为一致的系统操作描述。然后,使用系统操作获得所分配系统架构块之间的端口和接口。这些接口形成了各子系统之间的正式切换的基础。 Mohit Choudhary, 系统工程师, RealTime TechSolutions 2012 年 3 月 23 日 内容 本系列的这一部分旨在通过一个案例研究来探讨标准 MBSE 流程。首先,我们根据 UAV(无人驾驶飞机)地面站控制器的设计来拟定这个案例研究的范围。然后,我们会介绍 Rational Harmony 系统工程流程的基本概念、工作流和工作产品。最后,我们通过定义任务流来实现 UAV 地面站控制器的设计,同时构造每个阶段所需的构件。 案例研究 本案例研究基于对少部分 UAV 地面站控制器的设计分析,这些控制器的功能必须符合表 1 中的要求。 表 1. UAV 地面站控制器需求

回火炉基础工程施工设计方案概述

回火炉基础施工组织设计概述 -----------------------作者:-----------------------日期:

目录项目回火炉基础施工组织设计4 1、编制依据4 2、工程概况6 3、工程目标7 3.1质量目标7 3.2工期目标7 3.3安全目标7 3.4文明施工目标8 3.5科技进步目标8 4、施工部署9 4.1指导思想9 4.2本工程施工部署10 5、施工准备11 5.1调查准备工作11 5.2施工技术准备12 5.3施工现场准备12 5.4物资准备工作13 5.5施工协调管理13 6、机械设备计划及劳动力安排15

6.1劳动力配备计划15 6.2劳动力准备工作15 6.3劳动力需用量计划16 6.4机械设备配备计划17 7、施工现场平面布置18 8、主要工序施工方法18 8.1施工测量定位18 8.2土方工程19 8.3垫层工程24 8.4模板工程24 8.5钢筋工程26 8.6预埋件和侧墙螺栓30 8.7施工缝31 8.8混凝土工程32 8.9沉降观测34 8.10二次灌浆34 8.11钢平台工程施工方法35 9、工程质量控制及保证措施47 9.1技术保证措施47 9.2质量保证措施48 9.3安全保证措施49

9.4成品保护组织措施51 9.5成品保护技术管理措施52 9.6主要分部分项工程质量保证措施53 9.7质量通病的预防治理57 10、保证工期的措施60 10.1保证工期的准备措施60 10.2保证工期的管理措施62 10.3保证工期的材料进场措施63 10.4保证工期的经济措施64 10.5保证工期的协调措施65 10.6保证工期的具体措施66 11、安全保证体系及确保安全的措施68 11.1安全保证体系68 11.2确保安全的措施70 11.3消防保卫管理71 11.4施工用电管理71 11.5安全施工72 11.6安全注意事项73 12、项目管理机构及项目经理部组成75 12.1项目施工组织机构75 12.2项目工程部与公司的联系76

《系统工程》复习资料

第一章 一、名词解释 1.系统:系统是由两个以上有机联系、相互作用的要素所构成,具有特定功能、结构和环境的整体。 2.系统工程:用定量与定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织的建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。 3.自然系统:自然系统主要指由自然物(动物、植物、矿物、水资源等)所自然形成的系统,像海洋系统、矿藏系统等。 4.人造系统:人造系统是根据特定的目标,通过人的主观努力所建成的系统,如生产系统、管理系统等。 5.实体系统:凡是以矿物、生物、机械和人群等实体为基本要素所组成的系统称之为实体系统。 6.概念系统:凡是由概念、原理、原则、方法、制度、程序等概念性的非物质要素所构成的系统称为概念系统。 二、判断正误 1.管理系统是一种组织化的复杂系统。( T ) 2.大型工程系统和管理系统是两类完全不同的大规模复杂系统。( F ) 3.系统的结构主要是按照其功能要求所确定的。( F ) 4.层次结构和输入输出结构或两者的结合是描述系统结构的常用方式。( T) 三、简答 1.为什么说系统工程时一门新兴的交叉学科? 答:系统工程是以研究大规模复杂系统为对象的一门交叉学科。它是把自然科学和社会科学的某些思想、理论、方法、策略和手段等根据总体协调的需要,有机地联系起来,把人们的生产、科研或经济活动有效地组织起来,应用定量分析和定性分析相结合的方法和电子计算机等技术工具,对系统的构成要素、组织结构、信息交换和反馈控制等功能进行分析、设计、制造和服务,从而达到最优设计、最优控制和最优管理的目的,以便最充分填发挥人力、物力的潜力,通过各种组织管理技术,使局部和整体之间的关系协调配合,以实现系统的综合最优化。 系统工程在自然科学与社会科学之间架设了一座沟通的桥梁。现代数学方法和计算机技术,通过系统工程,为社会科学研究增加了极为有用的定量方法、模型方法、模拟实验方法和优化方法。系统工程为从事自然科学的工程技术人员和从事社会科学的研究人员的相互合作开辟了广阔的道路。 2.简述系统的一般属性 答: (1)整体性:整体性是系统最基本、最核心的特征,是系统性最集中的体现; (2)关联性:构成系统的要素是相互联系、相互作用的;同时,所有要素均隶属于系统整体,并具有互动关系。关联性表明这些联系或关系的特性,并且形成了系统结构问题的基础; (3)环境适应性:任何一个系统都处于一定的环境之中,并与环境之间产生物质、能量和信息的交流。环境的变化必然会引起系统功能及结构的变化。 除此之外,很多系统还具有目的性、层次性等特征。

浅基础工程概述

浅基础工程概述 浅基础一般指基础埋深3~5m,或者基础埋深小于基础宽度的基础,且只需排水,挖槽等普通施工即可建造的基础。 1、浅基础的分类 其基础竖向尺寸与其平面尺寸相当,侧面摩擦力对基础承载力的影响可忽略不计。浅基础根据结构形式可分为扩展基础、联合基础、柱下条形基础、柱下交叉条形基础、筏形基础、箱形基础和壳体基础。 扩展基础 扩展基础 浅基础施工 墙下条形基础和柱下独立基础统称为扩展基础。扩展基础的作用是把墙或柱下的荷载侧向扩展到土中,使之满足地基承载力的要求,扩展基础包括无筋扩展基础和钢筋混凝土扩展基础。 1.1墙下条形基础。(1)刚性条形基础:是墙基础中常见的形式,通常用砖或毛石砌筑。为保证基础的耐久性,砖的强度等级不能太低,在严寒地区宜用毛石;毛石需用未风化的硬质岩石。砌筑的砂浆,当土质潮湿或有地下水时要用水泥砂浆。刚性基础台阶宽高比及基础砌体材料最低强度等级的要求,有规范规定。(2)墙下钢筋混凝土条形基础:当基础宽度较大,若再用刚性基础,则其用料多、自

重大,有时还需要增加基础埋深,此时可采用柔性钢筋混凝土条形基础,使宽基浅埋。如果地基不均匀,为增强基础的整体性和抗弯能力,可采用有肋梁的钢筋混凝土条形基础,肋梁内配纵向钢筋和箍筋,以承受由不均匀沉降引起的弯曲应力。 1.2柱下独立基础。是柱基础中最常用和最经济的形式。也可分为刚性基础和钢筋混凝土基础两大类。刚性基础可用砖、毛石或素混凝土,基础台阶高宽比(刚性角)要满足规范规定。一般钢筋混凝土柱下宜用钢筋混凝土基础,以符合柱与基础刚接的假定。 联合基础 联合基础 联合基础主要指同列相邻两柱公共 的钢筋混凝土基础,即双柱联合基础。 在为相邻两柱分别配置独立基础时,常 因其中一柱靠近建筑界限,或因两柱间距较小,而出现基地面积不足或者荷载偏心过大等的情况,此时可考虑采用联合基础。联合基础也可用于调整相邻两柱的沉降差或防止两者之间的相向倾斜等。 柱下条形基础 柱下条形基础 当地基较为软弱、柱荷载或地基压缩性分布不均匀,以至于采用扩展基础可能产生较大的不均匀沉降时,常将同一方向上若干柱子的基础练成一体而形成柱下条形基础。

系统工程基础知识

第一章系统工程概述 第一节系统工程的产生,发展及应用 1、科学系统思想的形成:古代朴素的系统思想用自发的系统概念考察自然现象,其理论是 想象的,有时是凭灵感产生出来。这种普遍的联系和整体性的思想,就是科学系统思想的实质。 2、系统理论的形成与发展:从系统思想发展到系统论,控制论、信息论等系统理论。 a)系统论(一般系统论)是研究系统的模式、原则和规律,并对其功能进行数学描述 的理论。代表人物为奥地利理论生物学家贝塔朗菲。 b)控制论是研究各类系统的控制和调节的一般规律的综合性理论,信息与控制等是其 核心,他是继承一般系统论之后,有数学家维纳在20实际40年代创立的。 c)信息论是研究信息的提取、变换、存储与流通等特点和规律的理论。20世纪60 年代中国科学家学森对系统理论和系统科学的发展有独到的贡献。 第二节系统工程的研究对象 1、系统的概念及特点:系统工程的研究对象是组织化的大规模复杂系统。系统作为系统原 理论、系统工程和整个系统科学的基本研究对象。 2、系统的定义:系统由两个以上有机联系、相互作用的要素所组成,具有特定功能、结构 和环境的整体。 3、系统的四要素包括:简称要、环、结、功 a)系统及其要素 b)系统和环境 c)系统的结构

d)系统的功能 4、系统的一般属性简称:整、关、环、目、层 a)整体性:是系统最基本、最核心的特性、是系统性最集中的体现。 b)关联性:构成系统的要素是相互联系、相互作用,所有要素均隶属于系统整体,并 具有互动关系, c)环境适应性:环境的变化必然会引起系统功能及结构的变化,系统必须首先适应环 境的变化,并在基础上使环境得到持续改善。除了三个基本的属性之外,系统还具 有目的性、层次性等特征。 5、大规模复杂系统的特点:表现在 a)系统的功能和属性多样, b)系统通常由多维且不同性质的要素所构成 c)一般为人—机系统,而人及其组织或群体表现出固有的复杂性 d)由要素间相互作用关系所形成的系统结构日益复杂化和动态化。 6、系统的类型简称:自然和人造、实体和概念、动态和静态、封闭和开发 a)自然系统和人造系统:自然系统是由自然物所自然形成的系统,人造系统是根据特 定目标,通过人的主观努力所建成的系统。 b)实体系统和概念系统:实体系统由矿物、生物、机械和人群等实体为基本要素所组 成的系统。概念系统:是由概念、原理、原则、法、制度、程序等概念性的非物质 要素所构成的系统。实体系统是概念系统的物质基础,概念系统往往是实体系统中 枢神经,指导实体系统的行动或为之服务。 c)动态系统和静态系统:动态系统是系统的状态随时间而变化的系统,静态系统则是 表征系统运行规律的模型中不含有时间因素

系统工程概论知识点总结

1.系统(System):是由相互作用和相互依赖的若干组成部分(要素)结合而成的、具有特定功能的有机体。Ch1 2.系统工程(System Engineering):系统工程是组织管理系统的规划、研究、设计、制造、试验与使用的科学方法,是一种对所有系统都具有普遍意义的方法。简言之“系统工程是一门组织管理的技术”。 4.系统必须具备的3个条件:第一,系统是由两个或两个以上可以相互区别的元素组成的(单个元素构不成系统);第二,要素与要素之间存在有机联系(彼此独立的各元素不能称其为系统);第三,系统具有特定的功能(新功能)。 5系统的特性: (1)整体性 a含义:1. 系统内部的不可分割性(军阀混战); 2. 系统内部的关联性(欧元明天?); b内容体现:1. 系统目标最佳化; 2. 系统的运动规律是整体的规律; 3. 功能的整体性(两方面理解) c类型:时间、空间、逻辑整体性 d系统中的地位: 1.系统的核心(无整体性即无系统性); 2.整体性变化影响系统性能。 (2)相关性 含义:组成要素之间的关系 (3)层次性 含义:组成系统的要素之间按照整体和部分的构成关系形成的不同质态及其排列次序。 类型:数量、时间、空间、逻辑层次性 a层次间的对立统一关系(对立基础;相互作用) b层次与等级、类别、要素的关系?①层次与等级的关系:首先层次与等级之间的区别在于等级性体现的主要是物质之间量的差别。其次,层次与等级之间也有某种联系,由于不同层次之间不仅有质的差异,而且还有量的不同,所以不同层次之间会有等级特征。 ②层次与类别的关系:首先,层次和类别是相互区别的。层次本是系统在纵向意义上的一种差别,不同层次事物之间存在着整体与部分之间的构成关系,而不同种事物之间则不一定存在着这种关系;其次,层次与类别相似或相互联系之处在于物质系统的层次差别有时与类型划分相重合,即同一层次的要素往往具有很多共性,因而属于同一类型。 ③层次与要素的关系:层次是指构成系统的要素在纵向上的不同质态及其排列的次序,它形成系统的纵向结构;而要素则是构成系统的各个单元,这些单元相互联系相互作用,形成系统的横向结构。层次的形成以要素为基础,构成系统的要素不同,其层次性必然有差别;反过来,要素又总是存在于一定的层次之中的,层次不同,其要素也必然相异。 (4)综合性(多要素、多层次、多结构、多环境因素、多功能) 综合程度越强,系统生命力就越强,系统功能越高。 (5)目的性(实践性、多目的性)

一种基于规则的专家系统改进模型及其应用

一种基于规则的专家系统改进模型及其应用 摘要:针对现有基于规则的专家系统模型在实际应用中的不足,提出一种相对完善的改进模型,该模型中规则知识库采用“IF THEN SO THAT”闭环结构;在其中引入了模糊集理论与概率理论,并实现了定性知识与定量知识融合;然后,对改进模型的应用场景进行了探讨。 ABSTRACT: For lack of the existing rule-based expert system model in practical applications, we propose a relatively perfect improved model, In this model,the rule knowledge base using "IF THEN SO THAT" closed-loop structure;In which we introduce fuzzy set theory and probability theory, and we realize the integration of qualitative knowledge and quantitative knowledge; then, the application scenarios of this improved model were discussed. 关键字:专家系统;基于规则;知识结构;推理机 KEY WORDS: Expert system; Rule-Based; Knowledge structure; Inference engine 1. 引言 专家系统是人工智能领域最活跃、最有成效的分支,应用人工智能技术和计算机技术,根据一个或多个专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,能够解决那些需要人类专家处理的复杂问题[???]。 早期的专家系统大部分都基于规则,而且到目前为止,基于规则的专家系统也是应用最广泛的人工智能系统之一[???]。基于规则的专家系统相对其它人工智能技术,最大的优点是能够充分利用已有的知识和经验,不需要依赖海量学习数据;并且专家系统不需要依赖完整的、确定的数学模型,即可实现对复杂问题的求解[???]。

系统工程课程总结

系统工程课程总结 一.知识梳理 第一章: 1.早期的系统思想具有”只见森林”和比较抽象的特点.15世纪以后的系统思想具有”只见树木”和比较具体化的特点.19世纪自然科学取得巨大成就,尤其是能量转化,细胞学说,进化论这三 大发现,这个阶段的系统思想具有”先见森林,后见树木”的特点. 2.信息论是研究信息的提取,变换,存储与流通等特点和规律的理论. 3.中国学者在系统工程领域的代表作有钱学森的《工程控制论》,华罗庚的《统筹法》和许国志的《运筹学》。 4.系统工程的研究对象是组织化的大规模复杂系统。 5.系统是由两个以上有机联系,相互作用的要素组成,具有特定的功能,结构和环境的整体。该定义有以下四个要点:①系统及其要素②系统和环境③系统的结构④系统的功能 6.系统的一般属性:①整体性②关系统联性③环境适应性 7.大规模复杂系统的特点:①系统的功能和属性多样②系统通常由多维且不通质的要素构成③一般为人—机系统,而人及其组织或群体表现出固有的复杂性④由要素间相互作用关系所形成的系统结构日益复杂化和动态化⑤具有规模庞大和经济性突出等特点。 8.系统的类型:①自然系统和人造系统②实体系统和概念系统③动态系统和静态系统④封闭系统和开放系统(封闭系统是指系统和环境之间没有物质,能量和信息的交换,因而呈现出一种封闭状态的系统) 9.系统工程:用定量和定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。 10.软件工程处理的对象主要是信息,着重为决策服务。 第二章: 11.系统工程方法论:就是分析和解决系统开发,运作及管理实践中的问题所应遵循的工作 程序,逻辑步骤和基本方法。 12.霍尔三维结构是由美国学者A.D.霍尔等人在大量工程实践的基础上,于1969年提出的。霍尔三维结构集中体现了系统工程方法的系统化,综合化,最优化,程序化和标准化等特点。 13.霍尔三维结构:①时间维②逻辑维③知识维(专业维) ▲时间维表示系统工程的工作阶段或进程。系统工程工作整个过程或寿命周期分为七个阶段:①规划阶段②设计阶段③分析或研制阶段④运筹或生产阶段⑤系统实施或“安装”阶段⑥运行阶段⑦更新阶段。其中规划,设计与分析或研制阶段共同构成系统的开发阶段。 ▲逻辑维是指系统工程每个阶段工作所应遵循的逻辑顺序和工作步骤。一般分为:①摆明问题②系统设计③系统综合④模型化⑤最优化⑥决策⑦实施计划 ▲知识维的内容表征从事系统工程工程工作所需要的知识。 霍尔三维结构强调明确目标,核心是最优化。 14.切克兰德方法论的主要内容:①认识问题②根底定义③建立概念模型④比较及探寻⑤ 选择⑥设计与实施⑦评估与反馈 切克兰德方法论的核心是“比较与探寻” 15.系统分析概念:是运用建模及预测,优化,仿真,评价等技术对系统的各有关方面进行

相关主题
文本预览
相关文档 最新文档