当前位置:文档之家› K Lu金属中发现超硬超高稳定性纳米层片结构

K Lu金属中发现超硬超高稳定性纳米层片结构

K Lu金属中发现超硬超高稳定性纳米层片结构
K Lu金属中发现超硬超高稳定性纳米层片结构

金属中发现超硬超高稳定性纳米层片结构

图1.表面机械碾磨处理在金属镍中形成的超细晶结构(A)和纳米层片结构(B,C)。(D)为镍中不同微观结构的硬度与结构粗化温度关系,纳米层片结构(NL)兼具超高硬度和超高稳定性。

对金属材料进行强塑性变形可显著细化其微观组织,使晶粒细化至亚微米(0.1~1微米)级从而大幅度提高其强度。但进一步塑性变形时晶粒不再细化,材料微观结构趋于稳态达到极限晶粒尺寸,形成三维等轴状超细晶结构,绝大多数晶界为大角晶界。出现这种极限晶粒尺寸的原因是位错增殖主导的晶粒细化与晶界迁移主导的晶粒粗化相平衡,其实质是超细晶结构的稳定性随晶粒尺寸减小而降低所致。如何突破这一晶粒尺寸极限,进一步细化微观组织,在继续提高金属材料强度的同时提高其结构稳定性,是当今纳米金属材料研究面临的一个重大科学难题。

最近,中国科学院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组在这一科学难题研究上取得重大突破,他们利用自行研发的新型塑性变形技术(表面机械碾磨处理)在金属镍表层成功突破了这一晶粒尺寸极限,获得纳米级厚度并具有小角晶界的层片结构,同时发现这种纳米层片结构兼具超高硬度和热稳定性。这种新型超硬超高稳定性金属纳米结构突破了传统金属材料的强度-稳定性倒置关系,为开发新一代高综合性能纳米金属材料开辟了新途径。

研究表明,塑性变形过程中提高变形速率和变形梯度可有效提高位错增殖及储存位错密度,从而促进晶粒细化进程。为此,卢柯研究组利用表面机械碾磨处理在金属纯镍棒表层实现了高速剪切塑性变形,这种塑性变形可在材料最表层同时获得大应变量、高应变速率和高应变梯度。随着距表面深度增加,应变量、应变速率和应变梯度呈梯度降低,形成呈梯度分布的微观结构。在距离表面10~50微米深度形成了具有小角晶界的纳米层片结构,层片平均厚度约为20nm,比纯镍中的变形晶粒尺寸极限小一个数量级,其硬度高达6.4 GPa,远远超过其他变形方式细化的纯镍硬度。测量表明,纳米层片结构的结构粗化温度高达506℃,比同成分材料超细晶结构晶粒粗化温度高40℃。纳米尺度的层片厚度是超高硬度的本质原因,而高热稳定性源于其中的平直小角晶界和强变形织构。这种新型超硬超高稳定性金属纳米结构有望在工程材料中得到应用以提高其耐磨性和疲劳性能,为开发新一代的高综合性能纳米金属材料开辟了新途径。

该研究得到科技部国家重大科学研究计划和国家自然基金资助。

该研究成果发表于2013年10月18日出版的《科学》(Science)周刊。

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米材料和纳米结构

纳米材料和纳米结构 1.纳米微粒尺寸的评估 在进行纳米微粒尺寸的评估之前,首先说明如下几个基本概念: (1)关于颗粒及颗粒度的概念 (i)晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 (ii)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。 (iii)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬团聚体 和软团聚体两种。团聚体的形成过程使体系能量下降。 (iv)二次颗粒:是指人为制造的粉料团聚粒子。例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。 纳米粒子一般指一次颗粒,它的结构可以是晶态、非晶态和准晶,可以是单相、多相结构。只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同。 (2)颗粒尺寸的定义对球形颗粒来说,颗粒尺寸(粒径)是指其直径。对不规则颗粒,尺寸的定义常为等当直径,如体积等当直径、投影面积直径等。 粒径评估的方法很多,这里仅介绍几种常用的方法。 A 透射电镜观察法 用透射电镜可观察纳米粒子平均直径或粒径的分布。 该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性。首先将那米粉制成的悬浮液滴在带有碳膜的电镜用Cu网上,待悬浮液中的载液(例如乙醇)挥发后,放入电镜样品台,尽量多拍摄有代表性的电镜像,然后由这些照片来测量粒径。测量方法有以下几种:(i)交叉法:用尺或金相显微镜中的标尺任意的测量约600颗粒的交叉长度,然后将交叉长度的算术平均值乘上一统一因子(1.56)来获得平均粒径;(ii)测量约100个颗粒中每个颗粒的最大交叉长度,颗粒粒径为这些交叉长度的算术平均值。(iii)求出颗粒的粒径或等当半径,画出粒径与不同粒径下的微粒数的分布图,将分布曲线中峰值对应的颗粒尺寸作为平均粒径。用这种方法往往测得的颗粒粒径是团聚体的粒径,这是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法,使超微粉分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,结果在样品Cu网上往往存在一些团聚体,在观察时容易把团聚体误认为是一次颗粒。电镜观察法还存在一个缺点就是测量结果缺乏统计性,这是因为电镜观察用的粉体是极少的,导致观察到的粉体的粒子分布范围并不代表整个粉体的粒径范围。 B X射线衍射线线宽法(谢乐公式) 电镜观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定颗粒晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒度。颗粒为多晶时,测得的是组成单个颗粒的单个晶粒的平均晶粒度。这种测量方法只适用晶态的纳

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

纳米金属材料的进展与挑战

纳米金属材料进展和挑战 1 引言 40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料。 例如,由50%(invol.)的非共植晶界和50%(in vol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为纳米晶体材料(nanocrystalline materials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为纳米材料或纳米结构材料(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;3)纳米晶体和纳米玻璃材料;4)金属键、共价键或分子组元构成的纳米复合材料。 经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓

宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。 2纳米材料的制备与合成材料的纳米结构化可以通过多种制备途径来实现。 这些方法可大致归类为两步过程和一步过程.两步过程是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以惰性气体冷凝法最具代表性。一步过程则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量; 2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。 3 纳米材料的奇异性能 1)原子的扩散行为原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。 2)力学性能目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。

金属纳米材料的应用研究

金属纳米材料的应用与研究 【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1] 1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技

是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新名词。这些新名词所体现的研究内容又有交叉重叠。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。目前人们对纳米科技的理解,似乎仅仅是讲纳米材料,只局限于纳米材料的制备,这是不全面的。主要原因:国内科研经费的资助以及有影响的成果的获得,主要集中在纳米材料领域,而且我国目前纳米科技在实际生活中的应用也最先在纳米材料这一领域表现出来。我国现在300余家从事纳米科技研发的公司也主要是从事纳米材

基于局域表面等离激元共振的金属纳米结构折射率传感

基于局域表面等离激元共振的金属纳米结构折射率传感 高灵敏度的折射率传感结构在生物化学传感等领域有着很大的潜在应用价值。因为金属纳米结构在表面等离激元共振(SPR)产生时会有明显的电磁场增强,所以在高灵敏度传感应用上受到广泛关注。 有两种SPR被用于折射率传感应用:传播的SPR(PSPR)和局域的SPR (LSPR)。由于传播SPR传感需要非常光滑的金属表面,所以对加工精度要求高。 因此,本文这里主要讨论基于LSPR的折射率传感。金属纳米结构的尖端在LSPR产生时会有很强的局域电场,因此带有尖端的金属纳米结构传感灵敏度很高。 本文第一部分工作中我们研究了带有四个尖端的X形金属纳米孔阵列结构的LSPR传感。实验和数值模拟的结果均证实了该结构拥有高折射率传感灵敏度。 此外特异介质结构在磁响应共振产生时也会有很强的局域电场,因此他们可以应用于高灵敏度折射率传感。本文余下的工作就是制备用于传感的特异介质结构。 金属纳米环形圆盘结构有很大的局域电场和周围用于传感的电介质环境相 互叠加的空间。X形金属纳米颗粒结构有四个尖端,在LSPR产生时会有很强的局域电场。 所以上面提的这2种结构都有很高的传感灵敏度。基于此,我们制备了由金属纳米环形圆盘、电介质层和金属膜以及由X形金属纳米颗粒、电介质层和金属膜组成的环形圆盘和X形2种特异介质结构。 实验测试和数值模拟证实了这2种结构有着非常高的传感灵敏度。本文的主要工作分为如下几个方面:1.X形金属纳米孔阵列折射率传感带有尖端的金属纳

米结构在产生LSPR共振时有着很强的局域电场。 这一现象使得局域的电场与周围电介质环境的相互作用就很强,因此这种结构有着高传感灵敏度。基于此,我们制备了带有四个相对尖端的X形金属纳米孔阵列结构。 四个尖端的存在使得电场在LSPR产生时被很好的局域和增强了。透射光谱的实验测试结果表明了该结构的折射率传感灵敏度可以达到945nm RIU-1,高于其他诸如圆环形和月亮形这样的拥有高折射率传感灵敏度的金属纳米结构。 我们通过使用电介质支撑柱将X形金属孔阵列支撑起来远离玻璃衬底来增加局域电场与周围用于传感的电介质环境的叠加区域,然后减少尖端间距进一步增强局域电场。经过这两步之后,该结构在近红外区域传感灵敏度达到了非常高的1398nm RIU-1。 这一高传感灵敏度使得该结构在芯片集成高灵敏度生物医学传感和光学集成器件中有很大的潜在应用。2.环形圆盘特异介质折射率传感由于磁共振的产生导致特异介质结构周围有很强的局域电场。 这使得局域的电场与周围用于传感的电介质环境有强相互作用。因此特异介质有很高的传感灵敏度。 环形圆盘金属纳米结构在LSPR共振时比其他如圆盘和球形金属纳米结构有着更大的局域电场与周围用于传感的电介质环境相互叠加的区域,因此该结构有更高的传感灵敏度。基于上面提的这两点,我们制备了在金属膜上由电介质层支撑的金属环形圆盘构成的特异介质结构。 反射光谱的测量表明该结构的传感灵敏度可达到1304nm RIU-1.我们通过增加电介质层的厚度和环形圆盘内半径进一步的增加局域电场和电介质环境相互

微纳制造技术作业

问题:1、微机械制造材料大致分为几类而常用的制造微机电产品的材料有哪些,MEMS装置为何大多选用硅材料制造 2、纳米材料与常规的材料相比,有哪些优点 答:1、(1)微机械制造材料大致分为结构材料、功能材料和智能材料三大类。 (2)常用的制造微机电产品的材料有: a,结构材料:是以力学性能为基础,具有一定强度,对物理或化学性能也有一定要求,一般用于构造微机械器件结构机体的材料,如硅晶体。 b,功能材料:指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。如压电材料、光敏材料等。 c,智能材料:一般具备传感、致动和控制3个基本要素。如形状记忆合金、磁/电致伸缩材料、导电聚合物、电流变/磁流变材料等。 (3)由于硅材料具有众多优点,所以MEMS装置大多选用硅材料制造。 其优点如下:?? ①优异的机械特性:在集成电路和微电子器件生产中,主要利用硅的电学特性;在微机械结构中,则 是利用其机械特性。或者同时利用其机?械特性和电学特性,即具有机电合一的特性,便于实现机电器件的集?成化。? ②储量丰富,成本低。硅是地壳中含量最多的元素之一,自然界的硅元素通常以氧化物如石英(sio2) 的形式存在,使用时要提纯处理,通?常加工成为单晶形式(立方晶体,各向异性材料)? ③便于批量生产微机械结构和微机电元件。硅材料的制造工艺与基层电路工艺有很好的兼容性,便于 微型化、集成化和批量生产。硅的微细?加工技术比较成熟,且加工精度高,容易生成绝缘薄膜。? ④具有多种传感特性,如压电阻效应、霍尔效应。? ⑤纯净的单晶硅呈浅灰色,略具有金属性质。可以抛光加工,属于硬脆材料,热传导率较大,对温度 敏感。 2、纳米材料内部粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。对纳米体 材料,可以用“更轻、更高、更强”这六个字来概括。 ①“更轻”是指借助于纳米材料和技术,可以制备体积更小性能不变甚至更好的器件,减小器件的体

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

金属纳米微粒晶体结构的稳定性及其结合能

万方数据

万方数据

万方数据

万方数据

万方数据

548中固有色金属学报2009年3月降低,随着微粒尺寸的增加趋近于块体结合能。 2)在一定形状下,在一定的临界尺寸时纳米微粒 bcc结构的结合能和fee结构的结合能相等。当微粒尺 寸大于该临界尺寸时,bee结构更稳定,小于该尺寸 时,fee结构更稳定。 3)球形和正四面体形可以看作近正多面体形的 两个极限,多面体形微粒发生结构转变的临界尺寸也 介于两个极限尺寸之间,这和v、Cr、Nb、Mo、Ta、 W和Fe元素纳米微粒在文献中报道的结果一致。 REFERENCES 【2]【3】【4】[5】【6】【7】【8】【9】9CHATTOPADHYAYPP'PABISK.MANNAI.Ametastable allotropictransformation inNbinducedby planetaryball milling[J].MaterSciEngA,2001.304/306:424-428. MANNAI。CHATTOP_ADHYAYPP’BANHARTF'FECHTHJ Formationofface--centered—?cubiczirconiumbymechanical attrition[J].AppliedPhysicsLetters,2002,81(22):4136—4138. KIT八KAMIO.SATOH.SHIⅣ【ADAY.Sizeeffectonthe crystalphaseofcobaltfineparticles[J].PhysicsReviewB,1997, 56(211:13849—13854. HANEDAkZHOUZX,MOR刚SHAH.Low-temperature stablenanometer-sizefcc—Feparticleswithnomagnetic ordering[J].PhysicsReviewB,1992,46(21):13832—13837. HUHSH,KIMHK.PARKJW.LEEGH.Criticalclustersize ofmetallicCrandMonanoclusters[J].PhysicsReviewB,2000, 62(4):2937—2943. TESSIER凡BRENNECKEF,STADTHERRA.Reliablephase stabilityanalysis forexcessGibbsenergymodels[J].Chemical EngineeringScience,2000,55:1 785—1796. MENGQ。zHOUN,RONGY,CHENS,HSUTYxuZu-yao. Sizeeffect00theFenanoerystallinephasetransformation[J]. ActaMaterialia,2002.50:4563—4570. QIWH.Size,shapeandstructuredependentcohesiveenergy andphasestabilityofmetallicnanocrystals[J].SolidState ComratmicatiOIlS,2006,l37:536--539. ToMA7NEKD,MIⅨHEluEES。BENNERMANNKH- 【lO】 【12] 【13】 【14】 Simpletheoryfortheelectronicandatomicstructureofsmall clusters[J].PhysicsReviewB,1983,28(2):665-673. SUNCQ,WANGYTAYBkLIS,HUANGH,ZHANGY Correlationbetweenthemeltingpointofananosolidandthe cohesiveenergyofasurfaceatom[J].JournalofPhysics ChemicalB,2002,106(41):10701—10705. .RANGQ,LIJC,CHIBQ.Size-dependentcohesiveenergyof nanocrystals[J].ChemicalPhysicsl捌[1ct2002,366(5/6): 55l-554. NANDAKI(,SAHUSN.BEHERASN.Liquid?dropmodel forthesize?dependentmeltingoflow?dimensionalsystems[j]. PhysicsReviewA,2002,66(1):013208-013209. QIWH,WANGMP'XUGYTheparticlesizedependenceof cohesiveenergyofmetallicnanoparticles[J].ChemicalPhysical Letter,2003,376(3/4):538—538. ⅪMHK,HUHSH,PARKJWTheclustersizedependenceof thermalstabilitiesofbothmolybdenumand tungsten nanoclusters[J].ChemicalPhysicsLetter,2002,354(1/2): 165-172. Q1wH,WANGMPSizeandshapedependentmelting temperatureofmetallicnanoparticles[J].MaterialsChemistry andPhysics。2004,88(2/3):280—284. NAHERU。BJRNHOLMS,FRAUENDORFS,GARCIASF' GUETF.Fissionofmetalclusters[J].PhysicsReports,1997, 285(6):245-320. }兀兀TGRENRDESAIDPD,HAWKINST'GLEISERM, KELLYKK,WAGMANKK.Electedvaluesofthe thermodynamicpropertiesoftheelements[M].Cleveland: AmericanSocietyofMetals,1973. PETTIFORDGTheoryofthecrystalstructuresoftransition metals[J].JournalPhysicsC,l970,3:367—377. 张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科 学中的应用【M】.长沙:湖南大学出版社,2002:249-260. ZHANG Bang?wei,HUWang—yu,SHUXiao—lin.Theoryof embeddedatommethodanditsapplicationtOmaterials[M]. Changsha:HunanUniversity,2002:249—260. (编辑龙?际中) 珂 q 刀 明 卅 【  万方数据

纳米材料功能化宏观体系的构筑和性能研究

项目名称:纳米材料功能化宏观体系的构筑和性能 研究 首席科学家:姜开利清华大学 起止年限:2012.1至2016.8 依托部门:教育部

一、关键科学问题及研究内容 本项目拟解决的关键科学问题是: 1、纳米材料单元构筑宏观尺度纳米材料体系的界面结构控制 (1)不同材质纳米结构单元界面结构的设计和构筑方法 (2)不同尺寸和维度纳米结构单元组合的原理 2、不同纳米材料单元组装后性能演变和调控 (1)纳米材料单元组装后性能变化的机理和优化的方法 (2)多尺度单元组合对性能的影响以及单元耦合所产生的新功能 3、宏观尺度纳米材料体系中电子、光子和能量传输的新规律 (1)异质界面电子、光子和能量传输的新规律 (2)纳微尺度下的界面效应对性能的调控 4、宏观尺度纳米结构服役过程中的性能稳定性 (1)对外场的响应 (2)结构稳定性和性能稳定性的关系 以解决上述科学问题为核心,本项目的主要研究内容是: 1、不同材质纳米结构单元界面结构的设计,多元异质宏观尺度纳米结构单元构筑的新原理和新方法,包括从纳米结构单元的制备,纳米结构单元组合成微米结构,到由微米结构构筑宏观尺度的材料体系,发展不同尺度、不同维度纳米单元构筑宏观尺度纳米材料体系的新技术。构筑宏观尺度纳米材料体系的单元材质为:(a)半导体/金属肖特基结;(b)磁性/非磁性、磁性/铁电组合体;(c)碳管、碳管束和其他碳纳米结构单元。 2、纳米材料单元组装后性能变化的机理和优化的方法,宏观尺度纳米材料体系中纳米单元的耦合效应产生的新现象和新性能。主要研究内容为:碳纳米管与金属、高聚物复合体系界面的耦合效应,半导体量子点和贵金属纳米线异质界面耦合和光传输行为,肖特基结能量传递(光→电),磁性/非磁性和磁性/铁电性复合纳米单元界面耦合效应及能量传递的新规律(电→磁、磁→光)。通过耦合尺度效应的研究实现纳米单元组成的宏观尺度体系的综合性能的调控和优化。 3、宏观尺度纳米材料体系中异质界面对电、光、磁性能调控和输运性质的影响,能量传递和转化的新规律,探索其可能的应用。主要研究内容为:磁性/铁电复合纳米单元之间能量传递和转换的新规律(电→力、力→磁),实现增强电控磁效应的最佳条件,探索基于磁性/铁电复合纳米单元的电控磁存储技术,以纳微光学器件为导向,研究半导体量子点、金属纳米线等组合单元协同传递光子的行为,通过尺度效应和耦合效应的研究,探索能量传输、转换的新规律,发展基于纳米材料的红外波段探测器件,研究红外示范探测器件性能的稳定性。 4、宏观尺度纳米材料体系的结构性能关系及其在服役过程中的性能稳定性,主要研究内容为:研究复合纳米材料体系中,界面结构和特性对宏观性质的影响,探索提高材料综合性能的途径,研究碳纳米结构复合材料在外场作用下材料性能的变化与纳微结构的关系,能量和物质转化和传输的规律,服役条件下材料和结构的稳定性,探讨在高性能储能器件中的应用。

纳米科学与微纳制造》复习材料.docx

《纳米科学与微纳制造》复习材料1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性: 1)在常态下对动植物体友好的金,在纳米态下则有剧毒; 2)小于 100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存; 3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。 纳米材料有两层含义: 其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结 构单元的尺度小于 100nm ,如纳米晶合金中的晶粒 ; 其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在1-100nm 内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和 微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的 源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的 学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大 的好奇心和探索欲望。 5、纳米材料有哪 4 种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒

纳米材料与纳米结构21个题目完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

微光刻与微纳米加工技术

万方数据

万方数据

万方数据

万方数据

陈宝钦:微光刻与微/纳米加工技术 源的选择),选择相应的分辨率增强技术,以及分析相关的数据并对已有模型进行校准等工作。光刻模型主要包括光刻胶模型、()PC模型以及成像模型等。随着光刻设备的升级换代、RET的广泛应用,精确的模型需要充实。如超高数值孔径的浸没式光刻中的光学极化效应等。DFM可理解为,以快速提升芯片成品率及降低生产成本为目的,统一描述芯片设计中的规则、工具和方法,从而更好地控制设计电路向物理芯片的复制。是一种可预测制造过程中工艺可变性的设计,使得从设计到芯片制造的整个过程达最优化。DFM包括参数成品率、系统成品率和随机成品率的设计,以及可靠性、测试和诊断的设计,而相关EDA算法工具的开发应用是解决问题的关键所在。 1.3浸没透镜与两次曝光光刻技术 提高光刻分辨率有三种途径。一是缩短曝光光源波长,需要价格高昂的原理性设备换代;二是改善工艺因子K,。其代价是缩小了制造工艺窗口,同时还需要改变集成电路版图的设计规则、改善光刻胶的工艺和分辨率增强技术。对于目前主流的193nm光源的光刻技术来说,还难以满足45nm节点生产的需求;第三种途径就是在改善光学系统数值孔径上继续做文章。由于目前曝光镜头数值孔径已经接近1,再要提高光学透镜的数值孔径就需要设计更大口径、更复杂的镜头,这已经不太现实了。因此光刻专家们根据高倍油浸显微镜提高分辨率的原理,设法在曝光镜头的最后一个镜片与硅片之间增加高折射率的液体(如水)作为介质,以达到提高分辨率的目的。因为提高该介质的折射率町以加大光线的折射程度,等效地加大镜头口径尺寸与数值孔径,同时可以显著提高焦深(DOF)和曝光工艺的宽容度(El。)。浸没光刻技术莺点需要解决的问题是水迹、气泡和污染等缺陷困扰。目前采用193nm光源的浸没光刻(Immersion,193i)技术已经成为65nm和45nm光刻的主流技术。要想把193i技术进一步推进到32nm和22nm的技术节点,光刻专家还在寻找新技术,在没有更好的新光刻技术出现前。两次曝光技术(或叫两次成型技术,DPT)成为人们关注的热点。DPT的原理很简单,就是把原来一次光刻难以分辨的掩模图形交替式地分成两块掩模,每块掩模上图形的分辨率可以减少一半,减少了曝光设备分辨率的压力,同时还可以利用第二块掩模版对第一次曝光的图形进行修整。两次曝光有效地拓展了,现有曝光设备干法光刻的应用,不必等待更高的分辨率和更高数值孔径系统的出现就可以投入下一个节点产品的生产。两次曝光技术在使用中。很像移相掩模技术中的位相冲突问题,需要重点解决分色冲突问题。为此还有可能需要三次曝光光刻(TPT)。两次曝光技术可以是两次曝光两次刻蚀方式(1itho—etch—litho—etch);也可以是第一次曝光显影后进行抗蚀剂固化处理后再涂胶进行第二次曝光显影,最后一起刻蚀的方式(1itho-process—litho—etchalterna-tives)。此外。过去经常使用的牺牲体结构侧墙技术的自对准两次成型技术(self—aligned(spacer)doublepatterning)也可以归入两次曝光技术中。当然,两次曝光技术也有问题,如对套刻精度要求更苛刻和生产效率降低等问题。 (未完待续) 作者简介: 陈宝钦(1942一)男,福建人.中国 科学院微电子研究所研究员,博士生导师。 主要从事光掩模、电子束光刻、微光刻与 微纳米加工与技术的研究。 -??..-?-卜_?-..-—卜-?卜-—卜-?..。+-?卜-?卜??..-?..-—..-—-.-。+。+‘+*?卜-?—卜-—..-?卜-?..。+-—..?—-卜-?..。+-—.-?—-..-?.. 下期部分目次预告 高压I.DM()s两层金属场板的优化设计 高方块电阻发射区单晶硅太阳电池的性能优化 AlGaN/GaNHEMT器件工艺的研究进展 大孔Ti02一ZnO复合纳米材料的制备及其光催化性能一种适用于高灵敏微磁传感器的I,M()膜制备与分析 2011年1月聚苯胺纳米材料的合成与应用 基于MEMS的新型高场不对称波形离子迁移谱 纳米磁性液体合成装置的研制及其应用 基于光诱导介电泳的微粒自动化操作方法研究 MEMS集成宽町调范围滤波器的设计与制作 微纳电子枝术948卷第1期 5 万方数据

金属纳米结构材料的研制

大连理工大学 硕士学位论文 金属纳米结构材料的研制姓名:陈慧玉 申请学位级别:硕士 专业:无机化学 指导教师:辛剑;汤皎宁 20050601

大连理工大学硕士学位论文 摘要 高温液相法是近些年发展起来的制备磁|生=金属纳米粒子的新方法,包括高温液相还原法、高温液相醇解法和金属有机化合物热分解法。本文首先介绍了采用高温液相醇解法制备钴纳米粒子,即在二苯醚溶剂中,通过复合表面活性剂油酸和乙二醇辛基苯基醚(OP)的保护,用1,10一癸二醇还原钴盐制备了粒径约20hm的钴纳米粒子,通过XRD、XPS、TEM和激光粒度仪的表征,发现该种方法制备的钴纳米粒子具有hcp相,是未被氧化的单质钴,呈球状颗粒。改变工艺条件,首次制备出纳米钴环,这种钴环的外直径约65nnl,内直径约55rim。 以高分子聚乙烯吡咯烷酮(PVP)作为表面活性剂,在乙醇体系中用水合联氨还原钴盐(CoOl。?6}120)而得到粒径约30hm的磁性钴纳米粒子,通过XRD检验确认该种方法合成的钴纳米粒子具有hcp相;XPS的表征结果显示:钴粒子表面价态为零价,说明制备过程中没有被氧化;粒子近似圆球形,在正己烷中分散效果较好。改变工艺条件,以PvP作为软模板,首次制各出钴纳米多孔棒和普通钴纳米棒。钴纳米多孔棒的长度约为200~500nm,直径在20~40nm,棒上的孔径约为8nm。随着反应物中钴盐浓度的增加,钴纳米多孔棒的长度基本不变,而直径增加到40~60nm。普通钴纳米棒的长度约为3~41xm,直径约为70~lOOnm。本论文分别对钴纳米多孔棒和普通钴纳米棒的形成机理作了简单的探讨。 采用同样的合成方法,利用形成普通钴纳米棒的机理,首次制备出普通镍纳米棒。经过XRD、XPS和TEM的表征,发现这种棒长度约为500~650nm,直径约为50nm,为fcc相的零价单质镍。同时,还制各出粒径在40hm左右、具有fcc相镍纳米粒子;粒径约在35rim、具有fcc相的铜纳米粒子;粒径在50nm左右、具有fcc相的银纳米粒子,这些纳米粒子均为单质金属,制备过程中没有被氧化,TEM照片显示其均为球形,在正己烷中分散较好。 关键词:金属盐醇解法,钴,镍,水合联氨

相关主题
文本预览
相关文档 最新文档