当前位置:文档之家› 生物化学(10.3)--作业物质代谢的联系与调节(附答案)

生物化学(10.3)--作业物质代谢的联系与调节(附答案)

生物化学(10.3)--作业物质代谢的联系与调节(附答案)
生物化学(10.3)--作业物质代谢的联系与调节(附答案)

第九章 物质代谢的联系与调节

名词解释

物质代谢(metabolism)

限速酶(1imitingvelocityenzymes)

变构酶(Allostericenzyme)与变构调节(Allostericregulation)

酶的化学修饰(chemicalmodifacation)

泛素(Ubiquitin

反馈控制(feedback)

蛋白激酶(ProteinKinase)

酶的诱导剂(enzymeinducer)

变构调节(Allostericregulation)

调节酶(regulatoryenzyme)

问答题

1. 简述丙酮酸在代谢中的作用。

2. 试述乙酰CoA在代谢中的作用。

3. 脂肪能否进行糖异生?

4. 简述甘氨酸的生化作用。

5. 列出至少8种维生素的辅酶形式及其参与的生化代谢。

6. 简述酶的化学修饰的特点。

7 简述人体在长期饥饿状态下,物质代谢有何变化。

8. 体内脂肪酸可否转变为葡萄糖?为什么?

9. 糖、脂、蛋白质在机体内是否可以相互转变?简要说明其转变的途径或不能转变的原因。

10. 为何称三羧酸循环是物质代谢的中枢,有何生理意义?

11. 讨论下列物质能否相互转变?简述其理由。

12. 试述体内草酰乙酸在物质代谢中有什么作用?

13. 试述丙酮酸在体内物质代谢中的重要作用。

14. 三大营养物质,即糖、脂肪和蛋白质在机体内可以相互转变吗?简述其理由。

15. 为什么减肥的人也要限制糖类的摄入量?试从营养物质代谢的角度加以解释。

16. 请列举5种肝脏特有的代谢途径(在正常情况下,其他组织器官很难或很少进行的代谢过程),并分别说明其主要生理意义。

17. 比较脑、肝、骨骼肌在糖、脂代谢和能量代谢上的主要特点。

18. 短期饥饿时,机体如何进行三级水平调节的?

19. 试述人体在短期饥饿和长期饥饿情况下,糖、脂、蛋白质代谢有何特点?

20. 试比较酶的变构调节和化学修饰调节的不同。

参考答案:

名词解释

物质代谢(metabolism)

[答案]

机体在生命活动过程中不断摄人O2及营养物质,在细胞内进行中间代谢,同时不断排出CO2及代谢废物,这种机体和环境之间不断进行的物质交换即物质代谢,包括分解、合成和能量代谢。

限速酶(1imitingvelocityenzymes)

[答案]指整条代谢通路中,催化反应速度最慢的酶,它不但可影响整条代谢途径的

总速度,还可改变代谢方向,是代谢途径的关键酶,常受到变构调节和/或化学

修饰调节。

变构酶(Allostericenzyme)与变构调节(Allostericregulation)

[答案]指代谢途径中受到变构调节的酶称为变构酶,变构酶分子中含与底物结合起

催化作用的催化亚基(部位)和与变构效应剂结合起调节作用的调节亚基(部位)。

而某些物质能以非共价键形式与酶活性中心以外特定部位结合,使酶蛋白分子构象发生改变,从而改变酶的活性,这种调节酶活性的方式即变构调节。

酶的化学修饰(chemicalmodifacation)

[答案]某些酶分子上的一些基团,受其它酶的催化发生共价的化学变化,从而导致酶活性的变化,这种调节酶活性的方式称为酶的化学修饰调节。

泛素(Ubiquitin

[答案]泛素是一种广泛存在于真核细胞胞浆中,高度保守的蛋白质,能与待降解蛋白结合,促进蛋白的降解。

反馈控制(feedback)

[答案]体内代谢终末阶段的某—产物,常可返而影响代谢过程开始阶段的某步反应,从而对代谢过程起调控作用。此种作用称为反馈控制。反馈控制可通过变构调节以及诱导或阻遏等方式进行。

蛋白激酶(ProteinKinase)

[答案]由ATP提供能量与磷酸基,催化酶蛋白或其他蛋白质分子的苏氨酸、丝氨酸或酪氨酸羟基磷酸化的酶,如PKA,PKC等。

酶的诱导剂(enzymeinducer)

[答案]能加速酶生物合成的化合物称为酶的诱导剂。如某些激素、酶催化的底物等。诱导剂是在酶蛋白生物合成的转录或翻译过程中发挥作用,但常影响转录。

变构调节(Allostericregulation)

[答案]某些物质能结合于酶分子上的非催化部位,诱导酶蛋白分子构象发生变化,从而使酶活性改变,进而发挥调节作用叫变构调节。

调节酶(regulatoryenzyme)

[答案]又称关键酶,指在一条代谢途径中,催化反应速度最慢,常催化单向反应或非平衡反应,能受到多种代谢物或效应剂调节的酶。通过变构调节和化学修饰改变调节酶的活性是

细胞代谢调节的重要方式。

简答题

简述丙酮酸在代谢中的作用。

[答案]丙酮酸是糖、脂及氨基酸代谢的共同中间产物,参与糖、脂、氨基酸代谢。丙酮酸可来自:糖酵解及糖有氧氧化;乳酸氧化;脂肪中甘油的氧化;丙氨酸脱氨基作用;色氨酸、丝氨酸的分解。丙酮酸去路有:可异生为糖;还原为乳酸;羧化为草酰乙酸;氧化脱羧为乙酰CoA;转变为磷酸二羟丙酮参与脂肪中甘油合成;氨基化为丙氨酸;可作为丝氨酸等合成的碳骨架。

试述乙酰CoA在代谢中的作用。

[答案]乙酰CoA是糖、脂、蛋白质三大物质代谢的共同中间产物,其来源去路体现了乙酰CoA在代谢中的作用。

来源:糖的有氧氧化;脂酸β氧化;酮体的氧化分解;生酮氨基酸的分解代谢;甘油的分解;乳酸的分解。

去路:进入三羧酸循环彻底氧化分解;合成脂酸;合成酮体;合成胆固醇;合成神经递质乙酰胆碱;参与生物转化。

脂肪能否进行糖异生?

[答案]脂肪分解生成甘油和脂酸。产生的甘油可以进行糖异生。偶数碳的脂酸完全不能,因为脂酸β—氧化的产物为乙酰辅酶A,后者不能转变成丙酮酸,故不能进行糖异生。而奇数碳原子的脂酸经β—氧化最后剩1分子的丙酰辅酶A,丙酰辅酶A→琥珀酰辅酶A→草酰乙酸而进行糖异生。

简述甘氨酸的生化作用。

[答案]甘氨酸在物质代谢中具有重要的作用,具体的生化作用如下:

(1)甘氨酸是蛋白质的合成原料,参与蛋白质的合成。

(2)甘氨酸是谷胱甘肽的合成原料,参与组成谷胱甘肽。

(3)在氨基酸代谢中甘氨酸代谢可以产生一碳单位。

(4)甘氨酸是合成血红素的原料。

(5)甘氨酸是结合胆汁酸的组成成分。

(6)甘氨酸是嘌呤环的合成原料。

列出至少8种维生素的辅酶形式及其参与的生化代谢。

[答案]

(1)维生素B1:辅酶形式为TPP,参与α—酮酸的氧化脱羧。

(2)维生素B2:辅酶形式为FMN、FAD,脱氢酶的辅酶,参与氢的转移。

(3)维生素B6:辅酶形式为磷酸吡哆醛,参与氨基酸代谢的转氨基作用及氨基酸脱羧。

(4)维生素PP:辅酶形式为NA D+、NAD P+,脱氢酶的辅酶,参与氢的转移。

(5)维生素B12:辅酶形式为B12,参与甲基的转移。

(6)叶酸:辅酶形式为FH4,参与一碳单位的转移。

(7)泛酸:辅酶形式为CoA,参与酰基的转移。

(8)生物素:辅酶形式为生物素,参与CO2固定的羧化反应。

简述酶的化学修饰的特点。

[答案]

(1)瀑布式效应。酶促化学修饰是由酶所催化的反应,故有逐级放大的瀑布式效应。调节因素只需少量即可使大量的另一种酶发生化学修饰,引起的效应一般比变构调节强。

(2)大多数酶促化学修饰的酶都具有无活性(或低活性)与有活性(或高活性)两种形式,由不同的酶催化两者之间的相互转变反应,而催化这互变反应的酶又受机体其他调节物质(如激素)的控制。

(3)磷酸化与去磷酸化是最常见、有效的调节方式。

(4)酶促化学修饰调节的强度同生理的需要相适应,以调节代谢强度为主。

简述人体在长期饥饿状态下,物质代谢有何变化。

[答案]

长期饥饿时

(1)糖代谢:肾脏糖异生作用加强,乳酸和甘油成为肝糖异生的主要原料。

(2)脂代谢:脂肪进一步动员,使大量酮体生成,脑组织利用的酮体增加,超过葡萄糖,肌肉则主要以脂酸供能。

(3)蛋白质代谢:肌肉蛋白质分解减少,肌释出氨基酸减少,负氮平衡有所改善。

问答题

体内脂肪酸可否转变为葡萄糖?为什么?

[答案]在体内脂肪酸绝大部分不能转变成糖。脂肪酸分解生成的乙酰CoA不能转变为丙酮酸因此不能异生成葡萄糖。乙酰CoA可在肝合成酮体,包括乙酰乙酸、β—羟丁酸和丙酮,然后被肝外组织摄取利用。前两者均生成乙酰CoA而进入三羧酸循环彻底氧化,不能转变为葡萄糖,但丙酮可在一系列酶的作用下转变为丙酮酸或乳酸,进而异生成糖,这是脂肪酸的碳原子转变成葡萄糖的一条途径。另外,人体内和膳食中含极少量的奇数碳原子脂肪酸,经过β氧化除生成乙酰CoA外还生成一分子丙酰CoA,丙酰CoA经过羧化反应和分子内重排,可转变生成琥珀酰CoA,可进一步氧化分解,也可经草酰乙酸异生成葡萄糖。但转变成糖的乙酰CoA量和脂肪酸分解生成的乙酰CoA相比是非常少的,因此说,脂肪酸大部分不能变成糖。

糖、脂、蛋白质在机体内是否可以相互转变?简要说明其转变的途径或不能转变的原因。[答案]

为何称三羧酸循环是物质代谢的中枢,有何生理意义? [答案]

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

关于生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO和HO可净生成多少molATP。22答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一 次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成、的ATP,因此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×+1×+3-1=。

4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO和HO时净生成的ATP的22摩尔数。. 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。 7、为什么在大多数情况下,真核生物仅限于合成软脂酸? 答:因为在真核生物中,β—酮脂酞—ACP缩合酶对链长有专一性,它接受14碳酸基的活力最强,所以,在大多数情况下,仅限于合成软脂酸。另外,软脂酸CoA对脂肪酸合成的限速酶乙酰CoA羧化酶

第十章核苷酸代谢

第十章核苷酸代谢习题 一、选择题 1.下列既参与嘌呤核苷酸合成又参与嘧啶核苷酸合成的物质() A.谷氨酰胺和天冬氨酸 B.谷氨酸和甘氨酸 C. 丙氨酸和谷氨酸 D.天冬酰胺和甘氨酸 2. 下列参与核苷酸重建最重要的酶() A.腺苷激酶 B.尿苷-腺苷激酶 C. 腺嘌呤-鸟嘌呤磷酸核糖转移酶 D.脱氧胞苷激酶 3.人体内嘌呤化合物分解代谢的最终产物() A.6-巯基嘌呤 B.6-氨基嘌呤 C.2-氨基-6-羟基嘌呤 D.黄嘌呤氧化酶催化黄嘌呤氧化的产物尿酸 二、填空题 1.嘌呤和嘧啶核苷酸从头合成均需要原料有__________、___________、____________和谷氨酰胺。 2.嘌呤核苷酸从头合成的第一个核苷酸产物是_________。 3.催化IMP转变为AMP的酶有___________。 4.催化IMP转变为GMP的酶有___________。 5. 嘌呤核苷酸从头合成途径是在___________基础上装配碱基,首先合成的核苷酸是___________,然后才能分别合成AMP和GMP。 6.人类嘌呤化合物分解代谢的最终产物是_________,痛风病人尿酸含

量升高,可用_________阻断尿酸的生物进行治疗。 7.催化鸟嘌呤重建核苷酸的酶是_________,此反应还需要________参加。 8.嘧啶核苷酸从头合成所需要的原料有_________、_________、 __________和CO2。 9.嘧啶核苷酸从头合成第一个合成的核苷酸是_________,然后脱羧生成_________。 10.CTP是由________转变而来,dTMP是由_______转变而来。 11.催化UDP转变为dUDP的酶是_________,此酶需要________和__________为辅因子。 12.催化氧化型硫氧化还原蛋白还原的酶是_________。 13.催化dUMP转变为dTMP 的酶是__________,此酶的辅酶是_______,它转运__________给dUMP生成dTMP。 14.N5,N10-亚甲基四氢叶酸参与dTMP合成后生成__________,需经___________酶催化转变为FH4,抑制此酶的常用免疫抑制剂是__________。 (五)问答题 二、参考答案 (一)选择题 AED (二)填空题 1.CO2;天冬氨酸;磷酸核糖焦磷酸(PRPP)

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

生物化学 糖代谢

糖代谢 一、多糖的代谢 1.淀粉 凡能催化淀粉分子及片段中α- 葡萄糖苷键水解的酶,统称淀粉酶(amylase)。 主要可以分为α-淀粉酶、β-淀粉酶、γ-淀粉酶、和异淀粉酶4类。 (一)α-淀粉酶 又称液化酶、淀粉-1,4-糊精酶 1)作用机制 内切酶,从淀粉分子内部随机切断α-1,4糖苷键,不能水解α-1,6-糖苷键及与非还原性末端相连的α-1,4-糖苷键。 2)水解产物 直链淀粉 大部分直链糊精、少量麦芽糖与葡萄糖 支链淀粉 大部分分支糊精、少量麦芽糖与葡萄糖,底物分子越大,水解效率越高。 (二)β-淀粉酶 又叫淀粉-1,4-麦芽糖苷酶。 1)作用机制 外切酶,从淀粉分子的非还原性末端,依次切割α-1,4-糖苷键,生成β-型的麦芽糖;作用于支链淀粉时,遇到分支点即停止作用,剩下的大分子糊精称为β-极限糊精。 2)β-淀粉酶水解产物 支链淀粉 β-麦芽糖和β-极限糊精。 直链淀粉 β-麦芽糖。 (三)γ-淀粉酶 又称糖化酶、葡萄糖淀粉酶。 1)作用方式 它是一种外切酶。从淀粉分子的非还原性末端,依次切割α-1,4-葡萄糖苷键,产生β-葡萄糖。遇α-1,6和α-1,3-糖苷键时也可缓慢水解。 2) 产物 葡萄糖。 (四)异淀粉酶 又叫脱支酶、淀粉-1,6-葡萄糖苷酶。 1)作用方式 专一性水解支链淀粉或糖原的α-1,6-糖苷键,异淀粉酶对直链淀粉不作用。 2)产物 生成长短不一的直链淀粉(糊精)。 3)现象 碘反应蓝色加深 2.糖原 (一)糖原分解 糖原的降解需要三种酶,即糖原脱支酶,磷酸葡糖变位酶和糖原磷酸化酶。 (1)糖原磷酸化酶

该酶从糖原的非还原性末端以此切下葡萄糖残基,降解后的产物为1-磷酸葡萄糖。 (2)磷酸葡糖变位酶 糖原在糖原磷酸化酶的作用下降解产生1-磷酸葡糖。1-磷酸葡萄糖必须转化为6-磷酸葡糖后方可进入糖酵解进行分解。1-磷酸葡糖到6-磷酸葡糖的转化是由磷酸葡糖变位酶催化完成的。 (3)糖原脱支酶 该酶水解糖原的α-1,6-糖苷键,切下糖原分支。糖原脱支酶具有转移酶和葡糖甘酶两种活性。在糖原脱支酶分解有分支的糖原时,首先转移酶活性使其3个葡萄糖残基从分支处转移到附近的非还原性末端,在那里它们以α-1,4-葡萄糖苷键重新连接的单个葡萄糖残基,在葡萄糖苷酶的作用下被切下,以游离的葡萄糖形式释放。 补充: 1.糖原磷酸化只催化1,4-糖苷键的磷酸解,实际上磷酸化酶的作用只到 糖原的分支点前4个葡萄糖残基处即不能再继续进行催化,这时候就 需要糖原脱支酶。磷酸吡哆醛是磷酸化酶的必需辅助因子。 2.糖原的降解采用磷酸解而不是水解,具有重要的生物意义。 (1)磷酸解使降解下来的葡萄糖分子带上磷酸基团,葡萄糖-1-磷

生物化学习题及答案_代谢调节

代谢调节 (一)名词解释 1.诱导酶(Inducible enzyme) 2.标兵酶(Pacemaker enzyme) 3.操纵子(Operon) 4.衰减子(Attenuator) 5.阻遏物(Repressor) 6.辅阻遏物(Corepressor) 7.降解物基因活化蛋白(Catabolic gene activator protein) 8.腺苷酸环化酶(Adenylate cyclase) 9.共价修饰(Covalent modification) 10.级联系统(Cascade system) 11.反馈抑制(Feedback inhibition) 12.交叉调节(Cross regulation) 13.前馈激活(Feedforward activation) 14.钙调蛋白(Calmodulin) (二)英文缩写符号 1. CAP(Catabolic gene activator protein): 2. PKA(Protein kinase): 3. CaM(Calmkdulin): 4. ORF(Open reading frame): (三)填空题 1. 哺乳动物的代谢调节可以在、、和四个水平上进行。 2. 酶水平的调节包括、和。其中最灵敏的调 节方式是。 3. 酶合成的调节分别在、和三个方面进行。

4. 合成诱导酶的调节基因产物是,它通过与结合起调节作用。 5. 在分解代谢阻遏中调节基因的产物是,它能与结合而 被活化,帮助与启动子结合,促进转录进行。 6. 色氨酸是一种,能激活,抑制转录过程。 7. 乳糖操纵子的结构基因包括、和。 8. 在代谢网络中最关键的三个中间代谢物是、和。 9. 酶活性的调节包括、、、、 和。 10.共价调节酶是由对酶分子进行,使其构象在和 之间相互转变。 11.真核细胞中酶的共价修饰形式主要是,原核细胞中酶共价修饰 形式主要是。 (四)选择题 1. 利用操纵子控制酶的合成属于哪一种水平的调节: A.翻译后加工 B.翻译水平 C.转录后加工 D.转录水平 2. 色氨酸操纵子调节基因产物是: A.活性阻遏蛋白 B.失活阻遏蛋白 C.cAMP受体蛋白 D.无基因产物 3. 下述关于启动子的论述错误的是: A.能专一地与阻遏蛋白结合 B.是RNA聚合酶识别部位 C.没有基因产物 D.是RNA聚合酶结合部位 4. 在酶合成调节中阻遏蛋白作用于: A.结构基因 B.调节基因 C.操纵基因 D.RNA聚合酶 5. 酶合成的调节不包括下面哪一项: A.转录过程 B.RNA加工过程 C.mRNA翻译过程 D.酶的激活作用 6. 关于共价调节酶下面哪个说法是错误的:

生化糖代谢练习题

糖代谢练习题 第一部分填空 1、TCA循环中有两次脱羧反应,分别是由____异柠檬酸脱氢酶____和___α- 酮戊二酸脱氢酶_____催化。 2、在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是___1、3二磷酸甘油酸________ 和________磷酸烯醇式丙酮酸________ 3、糖酵解途径中的两个底物水平磷酸化反应分别由_____磷酸甘油酸激酶 ________ 和______丙酮酸激酶_______ 催化。 4、三羧酸循环在细胞____线粒体_______进行;糖酵解在细胞___细胞质(或胞液)________进行。 5、一次三羧酸循环可有____4____次脱氢过程和_____1___次底物水平磷酸化过程。 6、每一轮三羧酸循环可以产生____1个_____分子GTP,____3个_____分子NADH和____1个_____分子FADH2。 7、丙酮酸还原为乳酸,反应中的NADH+H+来自的氧化。 8、糖酵解在细胞内的中进行,该途径是将转变为,同时生成的一系列酶促反应。 9、许多非糖物质如______,______,以及某些氨基酸等能在肝脏中转变为糖原,称为___________ 10、线粒体内部的ATP是通过载体,以方式运出去的。 11、1分子葡萄糖经糖酵解代谢途径转化为_________分子乳酸净生成_________

分子ATP。

12、糖酵解在细胞_________中进行,该途径能将_________转变为丙酮酸。 13、三羧酸循环脱下的_________通过呼吸链氧化生成_________的同时还产生ATP。 14、糖酵解过程中有3 个不可逆的酶促反应,这些酶是__________、 ___________ 和_____________。 15、由非糖物质生成葡萄糖或糖元的作用,称为__________作用。 16、糖是人和动物的主要物质,它通过而放出大量,以满足生命活动的需要。 17、lmol 葡萄糖氧化生成CO2和H2O时,净生成__________mol ATP。 18、三羧酸循环的第一步反应产物是___________。 19、蔗糖是由一分子和一分子组成,它们之间通过 糖苷键相连。 1、异柠檬酸脱氢酶,α-酮戊二酸脱氢酶 2、1、3二磷酸甘油酸,磷酸烯醇式丙酮酸 3、磷酸甘油酸激酶,丙酮酸激酶 4、线粒体,细胞质(或胞液) 5、4,1 6、1个,3个,1个 7、3-磷酸甘油醛 8、细胞质,葡萄糖,丙酮酸,ATP和NADH 9、甘油,丙酮酸,糖原异生作用10、腺苷酸,交换11、2,2 12、浆,葡萄糖13、氢,水14、己糖激酶,磷酸果糖激酶,丙酮酸激酶

生物化学作业

生物化学作业 1. 基因如何决定糖蛋白中寡糖链的结构信息。 答:生物体内的糖链的合成大多需要酶的催化调节,并且糖链的结构受到某些蛋白所携带的信息的控制,而蛋白质的功能和其携带的信息取决于基因的控制,因此在由某些蛋白质和酶的协同作用下合成的糖链会由于基因中的不同信息的表达和控制而产生不同的结构。不同结构的糖链携带了不同的生物信息。 2. 组成生物膜的脂质分子主要有哪几类?分别简述其功能。 答:组成生物膜的脂质分子主要有磷脂、糖脂、胆固醇。 磷脂:主要包括甘油磷脂和鞘磷脂两大类。是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂。它是维持生命活动的基础物质,对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用。人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张。而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱。而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体。磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任。 糖脂:包括鞘糖脂和甘油糖脂两大类。细胞膜上的鞘糖脂与细胞生理状况密切相关。鞘糖脂的疏水尾部深入膜的脂双层,极性糖基露在细胞表面,它们不仅是血型抗原而且与组织和器官的特异性,细胞-细胞识别有关。同一类细胞在不同的发育阶段,鞘糖脂的组成也不同。正因为某些类型鞘糖脂是某种细胞在某个发育阶段所特有的,所以糖脂常常被作为细胞表面标志物质。糖脂又是细胞表面抗原的重要组分,某些正常细胞癌化后,表面糖脂成分有明显变化。细胞表面的糖脂还是许多胞外生理活性物质的受体,参与细胞识别和信息传递过程。 胆固醇:胆固醇的两亲性特点对生物膜中脂质的物理状态有一定的调节作用。在相变温度以上时,胆固醇阻扰脂分子脂酰链的旋转异构化运动,从而降低膜的流动性。在相变温度以下时,胆固醇的存在又会阻止磷脂脂酰链的有序排列,从而降低其相变温度,防止磷脂向凝胶态转化,保持了膜的流动性。 胆固醇还是血中脂蛋白复合体的成分,是类固醇激素和胆汁酸的前体。 3.“超级氨基酸”海选开始了!请选出你最喜爱的三种氨基酸,并分别陈述理由。 答:①甘氨酸:Glycine,是最简单的氨基酸,又名氨基乙酸,人体非必需的一种氨基酸,在分子中同时具有酸性和碱性官能团,在水溶液中为强电解质,在强极性溶剂中溶解度较大,基本不溶于非极性溶剂,而且具有较高的沸点和熔点,通过水溶液酸碱性的调节可以使甘氨酸呈现不同的分子形态。参与嘌呤类、卟啉类、肌酸和乙醛酸的合成,可与多种物质结合由胆汁或从尿中排出。作为营养增补剂广泛应用于医药、食品等领域。根据甘氨酸的制备工艺和产品的纯度可分为食品级、医药级、饲料级和工业级四种规格产品,可见甘氨酸的用途之广泛。 ②半胱氨酸cystein e:是人体常见的必需氨基酸,蛋白质中重要的“二硫键”多半出自它手。半胱氨酸是一种天然产生的氨基酸,在食品加工中具有许多用途,它主要用于焙烤制品,作为面团改良剂的必需成分。半胱氨酸是一种还原剂,它可以促进面筋的形成,减少混合所需的时间和所需药用的能量,半胱氨酸通过改变蛋白质分子之间和蛋白质分子内部的二硫键,减弱了蛋白质的结构,这样蛋白质就伸展开来。我们去美发店的烫发,那些好看的卷发也是半胱氨酸在特殊条件下改变二硫键而形成的! ③苯丙氨酸:Phenylalanine,是人体的必需氨基酸之一。苯丙氨酸系统命名为“2-氨基苯丙酸”,是α-氨基酸的一种,L-苯丙氨酸可作为抗癌药物的载体将药物分子直接导入癌瘤区,其效果是其他氨基酸的3~5倍。这样既可以抑制癌瘤生长,又可以降低药物的毒副作用。

核苷酸代谢

第十章核苷酸代谢 一、A型选择题 1.从头合成嘌呤核苷酸,首先合成出来的是 A.PRPP B.GMP C.XMP D.AMP E.IMP 2.下列哪种物质不是嘌呤核苷酸从头合成的直接原料 A.甘氨酸B.天冬氨酸C.谷氨酸D.CO2 E.一碳单位3.嘧啶环中的两个氮原子来自 A.谷氨酰胺和氨B.谷氨酰胺和天冬酰胺C.谷氨酰胺和谷氨酸D.谷氨酰胺和氨甲酰磷酸E.天冬氨酸和氨甲酰磷酸 4.下列关于氨基甲酰磷酸的叙述哪项是正确的 A.主要用来合成谷氨酰胺B.用于尿酸的合成 C.合成胆固醇D.为嘧啶核苷酸合成的中间产物E.为嘌呤核苷酸合成的中间产物 5.提供嘌呤环N-3和N-9的化合物是 A.天冬氨酸B.丝氨酸C.丙氨酸D.甘氨酸E.谷氨酰胺6.嘧啶合成所需的氨基甲酰磷酸的氨源来自 A.NH3 B.天冬氨酸C.天冬酰胺D.谷氨酸E.谷氨酰胺7.临床上常用哪种药物治疗痛风症 A.消胆胺B.5-氟尿嘧啶C.6-巯基嘌呤D.氨甲蝶呤E.别嘌呤醇8.5-FU的抗癌作用机制为 A.合成错误的DNA,抑制癌细胞生长 B.抑制尿嘧啶的合成,从而减少RNA的生物合成 C.抑制胞嘧啶的合成,从而抑制DNA的生物合成 D.抑制胸腺嘧啶核苷酸合成酶的活性,从而抑制DNA的生物合成 E.抑制二氢叶酸还原酶的活性,从而抑制了TMP的合成 9.下列关于嘌呤核苷酸从头合成的叙述哪些是正确的 A.嘌呤环的氮原子均来自氨基酸的α-氨基 B.合成过程中不会产生自由嘌呤碱 C.氨基甲酰磷酸为嘌呤环提供氨甲酰基 D.由IMP合成AMP和GMP均由A TP供能 E.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变成GMP 10.体内进行嘌呤核苷酸从头合成最主要的组织是 A.胸腺B.小肠粘膜C.肝D.脾E.骨髓11.能在体内分解产生β-氨基异丁酸的核苷酸是 A.CMP B.AMP C.TMP D.UMP E.IMP 12.关于天冬氨酸氨基甲酰基转移酶的下列说法,哪一种是错误的 A.GTP是其反馈抑制剂B.是嘧啶核苷酸从头合成的调节酶C.是由多个亚基组成D.是变构酶 E.服从米-曼氏方程 13.嘧啶核苷酸合成中,生成氨基甲酰磷酸的部位是 A.线粒体B.微粒体C.胞浆D.溶酶体E.细胞核

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

生物化学-知识点_6核苷酸代谢整理

核苷酸的代谢 1从头合成和补救合成的概念: (嘌呤)从头合成:利用磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸的途径。 从头合成途径(de novo synthesis pathway)部位:肝脏、多数细胞 (嘧啶)从头合成:嘧啶核苷酸的从头合成是指利用磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘧啶核苷酸的途径。 部位:主要是肝细胞胞液 (嘌呤)补救合成:利用细胞内、食物中核酸分解代谢产生的嘌呤碱或嘌呤核苷,经过简单的反应,合成嘌呤核苷酸的过程意义:避免嘌呤从体内过多丢失,节省ATP和一些氨基酸的消耗 补救合成途径 (salvage synthesis pathway)部位:脑、骨髓。 (嘧啶)补救合成:

2嘌呤核苷酸的从头合成原料,特点。 2.1原料:磷酸核糖、氨基酸、一碳单位及二氧化碳 2.2特点: 2.2.1嘌呤核苷酸是在磷酸核糖分子上逐步合成的。 2.2.2嘌呤核苷酸的合成需要消耗ATP。 2.2.3磷酸核糖酰胺转移酶是变构酶。 2.2.4活性受嘌呤核苷酸的反馈抑制. 2.2.5IMP是重要的中间代谢物, 2.2.6可转变为AMP, GMP 3嘧啶核苷酸的从头合成原料,特点。 3.1原料:磷酸核糖、氨基酸、一碳单位及二氧化碳 3.2特点: 3.2.1先合成嘧啶环,再加PRPP生成乳清酸核苷酸 3.2.2UMP是CTP与dTMP的共同前体,UMP为重要的终产物 之一 3.2.3天冬氨酸氨基甲酰转移酶是变构酶,CTP为变构抑制 3.2.4氨基甲酰磷酸合成酶II的活性受UMP反馈抑制

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃肠腔肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收吸收途径:

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化 CO 2 NADH+FADH 2 H 2 O [O] TAC 循环 ATP ADP 变 五、糖的有氧氧化 1、反应过程 -1 NAD + 乳 酸 NADH+H + 调节方式 ① 别构调节 ② 共价修饰调 第一阶段:糖酵解途径 G (Gn ) 丙酮酸乙酰CoA 胞液 线粒体

○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: ③乙酰CoA 进入柠檬酸循环及氧化磷酸化生成ATP 概述:三羧酸循环(Tricarboxylic acid Cycle, TAC )也称为柠檬酸循环或 Krebs 循环,这是因为循环反应中第一个中间产物是含三个羧基的柠檬酸。它由一连串反应组成。 反应部位:所有的反应均在线粒体(mitochondria)中进行。 涉及反应和物质:经过一轮循环,乙酰CoA 的2个碳原子被氧化成CO 2;在循 环中有1次底物水平磷酸化,可生成1分子ATP ;有4次脱氢反应,氢的接受体分别为NAD +或FAD ,生成3分子NADH+H+和1分子FADH2。 总反应式:1乙酰CoA + 3NAD + + FAD + GDP + Pi + 2H 2O2CO 2 + 3(NADH+H + ) + FADH 2 + CoA + GTP 特点:整个循环反应为不可逆反应 生理意义:1. 柠檬酸循环是三大营养物质分解产能的共同通路 。 2. 柠檬酸循环是糖、脂肪、氨基酸代谢联系的枢纽。 丙酮酸乙酰CoA + + 丙酮酸脱氢酶复合体

最新生物化学复习资料重点试题第十一章代谢调节解读

第十一章代谢调节 一、知识要点 代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。 细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。细胞内酶的区域化为酶水平的调节创造了有利条件。 生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。操纵子是在转录水平上控制基因表达的协调单位,由启动子(P、操纵基因(O和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA 转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA 本身核苷酸组成和排列(如SD序列,反义RNA的调节,mRNA 的稳定性等方面。

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

生物化学 糖代谢小结

糖代谢知识要点 (一)糖酵解途径: 糖酵解途径中,葡萄糖在一系列酶的催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H+与2 分子ATP。主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛与磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸, 脱去的2H 被NAD+所接受,形成NADH+H+。 (二)丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H+。乙酰辅酶 A 进入三羧酸循环,最后氧化为CO2 与H2O。 (2)在厌氧条件下,可生成乳酸与乙醇。同时NAD+得到再生,使酵解过程持续进行。 (三)三羧酸循环: 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧与脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 与琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2 分子CO2,产生3 分子NADH+H+,与一分子FADH2。 (四)磷酸戊糖途径: 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段与非氧化阶段被氧化分解为 CO2,同时产生NADPH + H+。其主要过程就是G-6-P 脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6 分子核酮糖-5-磷酸经转酮反应与转醛反应生成5 分子6-磷酸葡萄糖。中间产 物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸就是合成核酸的原料,4-磷酸赤藓糖参 与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 (五)糖异生作用: 非糖物质如丙酮酸,草酰乙酸与乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。糖异生作用不就是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程就是在线粒体与细 胞液中进行的。2 分子乳酸经糖异生转变为1 分子葡萄糖需消耗4 分子ATP 与2 分子GTP。 (六)糖原与淀粉的降解与生物合成 糖原磷酸化酶与脱枝酶就是糖元降解过程的主要酶类,糖原磷酸化酶作用于糖原的直链部分,从 糖原的非还原端分解末端葡萄糖残基,生成1- 磷酸葡萄糖与少一个葡萄糖分子的糖原,脱枝酶就是具有双重功能的酶,一种起转移葡萄糖残基作用的酶,称糖基转移酶。另一种就是水解葡萄糖α-1,6-糖苷键作用的酶,称糖原脱枝酶,又称α-1,6-糖苷酶。 淀粉则在α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、α-1,6-糖苷酶的作用下淀粉切断成分子量较小的糊精、麦芽糖或葡萄糖。 在蔗糖与多糖合成代谢中糖核苷酸起重要作用,糖核苷酸就是单糖与核苷酸通过磷酸酯键结合所形成的化合物。在植物体中主要以UDPG 为葡萄糖供体,由蔗糖磷酸合酶催化蔗糖的合成;淀粉的合成以ADPG 或UDPG 为葡萄糖供体,小分子寡糖引物为葡萄糖受体,淀粉合酶催化直链淀粉合成,Q 酶催化分枝淀粉合成。 糖代谢中有很多变构酶可以调节代谢的速度。酵解途径中的调控酶就是己糖激酶,6-磷酸果糖激酶与丙酮酸激酶,其中6-磷酸果糖激酶就是关键反应的限速酶;三羧酸反应的调控酶就是柠檬酸合酶,柠檬酸脱氢酶与α-酮戊二酸脱氢酶,柠檬酸合酶就是关键的限速酶。糖异生作用的调控酶有丙酮酸羧激酶,二磷酸果糖磷酸酯酶,6-磷酸葡萄糖酶。 磷酸戊糖途径的调控酶就是6-磷酸葡萄糖脱氢酶;它们受可逆共价修饰、变构调控及能荷的调控。二、习题

生物化学下册作业

第八和九章.DNA和RNA的生物合成练习题 一、名词解释 1.DNA半保留半连续复制 2. 前导链、滞后链、岗崎片断 3. 中心法则 4. 复制叉与复制子 5. 限制性核酸内切酶 6.模板链(或反义链即负链)与编码链(或有义链即正链) 7. 转录、逆转录、不对称转录8. 外显子与内含子 9. 单顺反子与多顺反子10. 基因、结构基因、调节基因 11. 操纵子11. 启动子、终止子、转录因子 13. 顺式作用元件与反式作用元件14. 衰减子与增强子 15. RNA加工与RNA剪切16. 光复活 二、问答题 1.试述DNA的半保留半连续的复制过程。(以原核生物为例) 2.试述逆转录病毒的逆转录过程。 3.试述原核生物DNA的转录过程。 4.试述四类RNA病毒的复制过程。 5.简述复制叉上进行的基本活动及参与的酶(以原核生物为例说明)。 6.由RNA聚合酶Ⅱ合成的初始转录物(mRNA前体)需经过哪些加工过程才能成为成熟的mRNA. 第十章.蛋白质的生物合成练习题 一、名词解释 1. 密码子与反密码子 2. 翻译与翻译后加工 3. 多聚核糖体

二、问答题 1.三种RNA在蛋白质生物合成中的作用? 2.以原核生物为例说明蛋白质的生物合成过程? 3.何谓‘‘转译后加工”,蛋白质生物合成的加工修饰方式有哪些?(以真核生物 为例)。 4.保证准确翻译的关键是什么? 5.图示并简述中心法则。 三、计算题 DNA的MW(分子量)=1.3×108(双链)。(注:DNA分子中脱氧核苷酸1. 噬菌体T 4 对的平均分子量是640,核苷酸残基平均分子量为320) 可为多少个AA编码? 1)T 4 2)T DNA可为多少MW=55000的蛋白质编码?(注:多肽链中平均每个AA残 4 基的分子量为110) 2.合成一个九肽需要多少个ATP?如果这个九肽含有起止AA残基(Met)至少需要 多少个ATP? 3. 按下列DNA单链 5’ TCGTCGACGATGATCATCGGCTACTCG 3’ 试写出: 1) DNA复制时另一条单链的序列。 2) 以此链为摸板转录的mRNA的序列。 3) 合成的多肽的序列。 (注:三题答案均须注明方向。) 四、论述题 1.围绕中心法则论述遗传的稳定性(注:DNA、RNA复制)以及基因表达中如何实现遗信息碱基序列到蛋白质AA序列的转变?

10 核苷酸代谢

第十章核苷酸代谢 一、选择题 1.关于嘌呤核苷酸的合成描述正确的是 A.利用氨基酸、一碳单位和CO2为原料,首先合成嘌呤环再与5-磷酸核糖结合而成 B.以一碳单位、CO2、NH3和5—磷酸核糖为原料直接合成 C.5—磷酸核糖为起始物,在酶的催化下与ATP作用生成PRPP,再与氨基酸、CO2和一碳单位作用,逐步形成嘌呤核苷酸 D.在氨基甲酰磷酸的基础上,逐步合成嘌呤核苷酸 E.首先合成黄嘌呤核苷酸(XMP),再转变成AMP和GMP 2.体内脱氧核糖核苷酸由核糖核苷酸还原而生成时其供氢体是 A.FADH2 B.NADH+H+ C.FMNH2 D.NADPH+ H+ E.GSH 3.下列哪种物质不是嘌呤核苷酸从头合成的直接原料 A.甘氨酸 B.天冬氨酸 C.谷氨酸 D.CO2 E.一碳单位 4.GMP和AMP分解过程中产生的共同中间产物是 A.XMP B.黄嘌呤(X) C.腺嘌呤(A) D.鸟嘌呤(G) E.CO2 5.痛风症患者血中含量升高的物质是 A.尿素 B.NH3 C.胆红素 D.尿酸 E.肌酸 6.5—FU的抗癌作用机制为 A.合成错误的DNA,抑制癌细胞生长 B.抑制尿嘧啶的合成,从而减少RNA的生物合成 C.抑制胞嘧啶的合成,从而抑制DNA的生物合成 D.抑制胸腺嘧啶核苷酸合成酶的活性,从而抑制DNA的生物合成 E.抑制FH2还原酶的活性,从而抑制DNA的生物合成 7.氮杂丝氨酸能以竞争性抑制作用干扰或阻断核苷酸合成,因为它在结构上与 A.丝氨酸类似 B.谷氨酰胺类似 C.甘氨酸类似 D.天冬氨酸类似 E.天冬酰胺类似8.下列哪种物质是嘌呤核苷酸和嘧啶核苷酸从头合成的共同原料 A.甘氨酸 B.天冬氨酸 C.谷氨酸 D.NH3 9.动物体内直接催化尿酸生成的酶是 A.尿酸氧化酶 B.腺苷酸脱氨酶 C.黄嘌呤氧化酶 D.次黄嘌呤氧化酶 10.甲氨蝶呤(MTX)在临床上用于治疗白血病的依据是 A.嘌呤类似物 B.嘧啶类似物 C.叶酸类似物 D.二氢叶酸类似物 二、名词解释 1.嘌呤核苷酸的从头合成; 2. 嘌呤核苷酸的补救合成; 3.核苷酸合成的抗代谢物; 4.痛风症。

生物化学核苷酸代谢试题及答案

【测试题】 一、名词解释 1.嘌呤核苷酸的补救合成 2.嘧啶核苷酸的从头合成 3.Lesch-Nyhan综合征 4.de novo synthesis of purine nucleotide 5.嘧啶核苷酸的补救合成 6.核苷酸合成的抗代物 7.feed-back regulation of nucleotide synthesis 二、填空题 8.嘧啶碱分解代的终产物是_______。 9.体的脱氧核糖核苷酸是由各自相应的核糖核苷酸在水平上还原而成的,-酶催化此反应。10.嘌呤核苷酸从头合成的原料是及等简单物质。 11.体嘌呤核苷酸首先生成,然后再转变成和。 12.痛风症是生成过多而引起的。 13.核苷酸抗代物中,常用嘌呤类似物是____;常用嘧啶类似物是_____。 14.嘌呤核苷酸从头合成的调节酶是______和______。 15.在嘌呤核苷酸补救合成中HGPRT催化合成的核苷酸是____和____。 16.核苷酸抗代物中,叶酸类似物竞争性抑制______酶,从而抑制了______的生成。 17.别嘌呤醇是______的类似物,通过抑制_____酶,减少尿酸的生成。 18.由dUMP生成TMP时,其甲基来源于_____,催化脱氧胸苷转变成dTMP的酶是___ __,此酶在肿瘤组织中活性增强。 19.体常见的两种环核苷酸是______和____。 20.核苷酸合成代调节的主要方式是____,其生理意义是____。 21.体脱氧核苷酸是由_____直接还原而生成,催化此反应的酶是______酶。 22.氨基蝶呤(MTX)干扰核苷酸合成是因为其结构与_____相似,并抑制___ __酶,进而影响一碳单位代。 三、选择题 A型题 23.下列关于嘌呤核苷酸从头合成的叙述哪些是正确的? A.嘌呤环的氮原子均来自氨基酸的α氨基 B.合成过程中不会产生自由嘌呤碱 C.氨基甲酰磷酸为嘌呤环提供氨甲酰基 D.由IMP合成AMP和GMP均由ATP供能 E.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变成GMP 24.体进行嘌呤核苷酸从头合成最主要的组织是 A.胸腺 B.小肠粘膜 C.肝 D.脾 E.骨髓 25.嘌呤核苷酸从头合成时首先生成的是 A.GMP B.AMP C.IMP D.ATP E.GTP 26.人体嘌呤核苷酸分解代的主要终产物是 A.尿素 B.肌酸 C.肌酸酐 D.尿酸 E.β丙氨酸 27.胸腺嘧啶的甲基来自 A.N10-CHO FH4 B.N5,N10=CH-FH4 C.N5,N10-CH2-FH4 D.N5-CH3 FH4 E.N5-CH=NH FH4 28.嘧啶核苷酸生物合成途径的反馈抑制是由于控制了下列哪种酶的活性? A.二氢乳清酸酶 B.乳清酸磷酸核糖转移酶 C.二氢乳清酸脱氢酶

相关主题
文本预览
相关文档 最新文档