当前位置:文档之家› 高中数学必修2-1抛物线教学讲义(精品)

高中数学必修2-1抛物线教学讲义(精品)

高中数学必修2-1抛物线教学讲义(精品)
高中数学必修2-1抛物线教学讲义(精品)

卓越个性化教案GFJW0901

03-抛物线

【知识点】

一、抛物线的标准方程、类型及其几何性质 ():

轴轴

1.焦点弦:过抛物线焦点的弦,若,则

(1)x0+,(2),-p2

(3) 弦长,,即当x1=x2时,通径最短为2p

(4) 若AB的倾斜角为θ,则=

(5)+=

2. 通径:过抛物线的焦点且垂直于对称轴的弦。过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.

3. 的参数方程为(为参数),的参数方程为(为参数).

4、弦长公式:

1.直线与抛物线的位置关系

直线,抛物线,

,消y得:

(1)当k=0时,直线与抛物线的对称轴平行,有一个交点;

(2)当k≠0时,

Δ>0,直线与抛物线相交,两个不同交点;

Δ=0,直线与抛物线相切,一个切点;

Δ<0,直线与抛物线相离,无公共点。

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)

2.关于直线与抛物线的位置关系问题常用处理方法

直线:抛物线,

①联立方程法:

设交点坐标为,,则有,以及,还可进一步求出

在涉及弦长,中点,对称,面积等问题时,常用此法,比如

a.相交弦AB的弦长

b. 中点, ,

②点差法:

设交点坐标为,,代入抛物线方程,得

将两式相减,可得

a.在涉及斜率问题时,

b.在涉及中点轨迹问题时,设线段的中点为,

即,

同理,对于抛物线,若直线与抛物线相交于两点,点是

弦的中点,则有

(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)

【典型例题】

考点1 抛物线的定义

题型利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换

[例1 ]已知点P在抛物线y2 = 4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和的最小值为

[解析]过点P作准线的垂线交准线于点R,由抛物线的定义知,,当P点为抛物线与垂线的交点时,取得最小值,最小值为点Q到准线的距离 ,因准线方程为x=-1,故最小值为3

1.已知抛物线的焦点为,点,在抛物线上,且、、成等差数列,则有()

A. B.

C. D.

[解析]C 由抛物线定义,即:.

2. 已知点F是抛物线的焦点,M是抛物线上的动点,当最小时, M点坐标是( )

[解析] 设M到准线的距离为,则,当最小时,

M点坐标是,选C

考点2 抛物线的标准方程

题型:求抛物线的标准方程

[例2 ]求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:

(1)过点(-3,2) (2)焦点在直线上

[解析] (1)设所求的抛物线的方程为或,

∵过点(-3,2) ∴

∴抛物线方程为或,

前者的准线方程是后者的准线方程为

(2)令得,令得,

∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,

∴,此时抛物线方程;焦点为(0,-2)时

∴,此时抛物线方程.

∴所求抛物线方程为或,对应的准线方程分别是. 3.若抛物线的焦点与双曲线的右焦点重合,则的值

[解析]

4. 对于顶点在原点的抛物线,给出下列条件:

①焦点在y轴上;

②焦点在x轴上;

③抛物线上横坐标为1的点到焦点的距离等于6;

④抛物线的通径的长为5;

⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).

2

5. 若抛物线的顶点在原点,开口向上,F为焦点,M为准线与Y轴的交点,A为抛物线上一点,且,求此抛物线的方程

[解析] 设点是点在准线上的射影,则,由勾股定理知,点A的

横坐标为,代入方程得或4,抛物线的方程或

考点3 抛物线的几何性质

题型:有关焦半径和焦点弦的计算与论证

[例3 ]设A、B为抛物线上的点,且(O为原点),则直线AB必过的定点坐标为__________.

[解析]设直线OA方程为,由解出A点坐标为

解出B点坐标为,直线AB方程为,

令得,直线AB必过的定点

补充:

抛物线的几个常见结论及其应用

结论一:若AB是抛物线的焦点弦(过焦点的弦),且,,

则:,。

证明:因为焦点坐标为F(,0),当AB不垂直于x轴时,可设直线AB的方程为:

由得:∴,

当AB⊥x轴时,直线AB方程为,则,,∴,同上

例:已知直线AB是过抛物线焦点F,求证:为定值。

证明:设,,由抛物线的定义知:,,又

+=,所以+=-p,且由结论一知:。

则: =

结论二:(1)若AB是抛物线的焦点弦,且直线AB的倾斜角为α,则(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。

证明:(1)设,,设直线AB:

由得:,∴,,

易验证,结论对斜率不存在时也成立。

(2)由(1):AB为通径时,,的值最大,最小。

例:已知过抛物线的焦点的弦AB长为12,则直线AB倾斜角为。

解:由结论二,12=(其中α为直线AB的倾斜角),

则,所以直线AB倾斜角为或。

结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

已知AB是抛物线的过焦点F的弦,求证:(1)以AB为直径的圆与抛物线的准线相切。

(2)分别过A、B做准线的垂线,垂足为M、N,求证:以MN为直径的圆与直线AB相切。

证明:(1)设AB的中点为Q,过A、Q、B向准线l作垂线,

垂足分别为M、P、N,连结AP、BP。

由抛物线定义:,,

∴,

∴以AB为直径为圆与准线l相切

(2)作图如(1),取MN中点P,连结PF、MF、NF,

∵,AM∥O F,∴∠AM F=∠A F M,∠AM F=∠M FO,

∴∠A F M=∠M FO。同理,∠BFN=∠NFO,

∴∠M FN=(∠A F M+∠M FO+∠BFN+∠NFO)=90°,

∴,

∴∠PF M=∠F M P

∴∠A FP=∠A F M+∠PF M=∠F MA+∠F M P=∠P MA=90°,∴F P⊥AB

∴以MN为直径为圆与焦点弦AB相切。

结论四:若抛物线方程为,过(,0)的直线与之交于A、B两点,则OA⊥OB。反之也成立。

证明:设直线AB方程为:,由得,△>0,,

∵AO ⊥BO ,∴

代入得,

。∴直线AB 恒过定点(0,1)。

∴当且仅当k=0时,

取最小值1。

结论五:对于抛物线,其参数方程为设抛物线上动点坐

标为,为抛物线的顶点,显然,即的几何意义为过抛物线顶点

的动弦的斜率. 例 直线与抛物线相交于原点和点,为抛物线上一点,

垂直,且线段

长为

,求

的值.

解析:设点分别为,则,.

的坐标分别为.

【课堂练习】

A 抛物线

1.抛物线y 2=-8x 的焦点坐标是( )

A .(2,0)

B .(-2,0)

C .(4,0)

D .(-4,0)

2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A .若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )

A .y 2=±4x

B .y 2=±8x

C .y 2=4x

D .y 2=8x

3.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1

和直线l 2的距离之和的最小值是( )

A .2

B .3 C.511 D.1637

4.点A ,B 在抛物线x 2=2py (p >0)上,若A ,B 的中点是(x 0,y 0),当直线AB 的斜率存在时,其斜率为( )

2p p p x0

6.[2010·山东卷] 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )

A .x =1

B .x =-1

C .x =2

D .x =-2 7.[2010·陕西卷] 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )

A.21

B .1

C .2

D .4

8.[2010·辽宁卷] 设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-,那么|PF |=( )

A .4

B .8

C .8

D .16 9.[2011·东北三校模拟] 已知抛物线y =ax 2的准线方程为y =1,则a 的值为________. 10.[2010·浙江卷] 设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.

11.给定抛物线C :y 2=4x ,过点A (-1,0),斜率为k 的直线与C 相交于M ,N 两点,若线段MN 的中点在直线x =3上,则k =________.

12.(13分)[2011·西城一模] 已知抛物线y 2=4x 的焦点为F ,直线l 过点M (4,0). (1)若点F 到直线l 的距离为,求直线l 的斜率;

(2)设A ,B 为抛物线上两点,且直线AB 不与x 轴垂直,若线段AB 的垂直平分线恰好过点M ,求证:线段AB 中点的横坐标为定值.

13.(12分)[2011·西城一模] 已知抛物线y 2=2px (p >0)的焦点为F ,过F 的直线交y 轴正半轴于点P ,交抛物线于A ,B 两点,其中点A 在第一象限.

(1)求证:以线段FA 为直径的圆与y 轴相切;

(2)若→FA =λ1→AP ,→BF =λ2→FA ,λ2λ1∈21

,求λ2的取值范围.

B 抛物线

1.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则P (x ,y )的轨迹方程为( )

A .y 2=8x

B .y 2=-8x

C .x 2=8y

D .x 2=-8y

2.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( )

A.25

B.23 C .-21 D .-23

3.已知抛物线y 2=4x ,若过焦点F 且垂直于对称轴的直线与抛物线交于A ,B 两点,O 是坐标原点,则△OAB 的面积是( )

A .1

B .2

C .4

D .6

4.对于抛物线y 2=4x 上任意一点Q ,点P (a,0)都满足|PQ |≥|a |,则a 的取值范围是( ) A .(-∞,0) B .(-∞,2] C .[0,2] D .(0,2)

5.已知A ,B 是抛物线y 2=2px (p >0)上的两点,O 是原点,若|OA |=|OB |,且△AOB 的垂心恰好是抛物线的焦点,则直线AB 的方程是( )

A .x =p

B .x =3p

C .x =23p

D .x =25

p

6.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)均在抛物线上,且2x 2=x 1+x 3,则有( )

A .|FP 1|+|FP 2|=|FP 3|

B .|FP 1|2+|FP 2|2=|FP 3|2

C .2|FP 2|=|FP 1|+|FP 3|

D .|FP 2|2=|FP 1|·|FP 3| 7.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )

A.217 B .3 C. D.29

8.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=|AF |,则△AFK 的面积为( )

A .4

B .8

C .16

D .32

9.已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为________.

10.[2010·全国卷Ⅱ] 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为的直线与l 相交于点A ,与C 的一个交点为B .若→AM =→MB

,则p =________.

11.[2010·重庆卷] 已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足→AF =3→FB

,则弦AB 的中点P 到准线的距离为________.

12.(13分)[2012·珠海模拟] 在平面直角坐标系xOy 中,设点F ,01,直线l :x =-21,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l . (1)求动点Q 的轨迹方程C ;

(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.

13.(12分)[2010·湖北卷] 已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.

(1)求曲线C 的方程;

(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有→FA ·→FB

<0?若存在,求出m 的取值范围;若不存在,请说明理由.

A

1.B [解析] 由y 2=-8x ,易知焦点坐标是(-2,0).

2.B [解析] 抛物线y 2=ax (a ≠0)的焦点F 坐标为,0a ,则直线l 的方程为y =24a

,它与y 轴的交点为A 2a ,所以△OAF 的面积为214a ·2a

=4,解得a =±8.所以抛物线方程为y 2=±8x . 3.A [解析] 设动点p 到直线l 2的距离之和为d ,直线l 2:x =-1为抛物线y 2=4x 的准线,由抛物线的定义知,P 到l 2的距离等于P 到抛物线的焦点F (1,0)的距离,故本题转化为在抛物线y 2=4x 上找一个点P 使得P 到点F (1,0)和直线l 2的距离之和最小,最小值为F (1,0)到直线l 1:4x -3y +6=0的距离,即d min =5|4-0+6|=2.

4.D [解析] 设A (x 1,y 1),B (x 2,y 2),则x 12=2py 1,x 22

=2py 2,两式相减得(x 1+x 2)(x 1

-x 2)=2p (y 1-y 2),即k AB =x1-x2y1-y2=2p x1+x2=p x0

.

5.D [解析] 因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心.又知该圆过原点,所以圆的半径为r =1,故所求圆的方程为(x -1)2+y 2=1,即x 2-2x +y 2=0.

p p

将其代入y 2=2px ,得y 2-2py -p 2=0, 所以2y1+y2

=p =2,所以抛物线方程为y 2=4x , 准线方程为x =-1.

7.C [解析] 方法1:∵抛物线的准线方程为x =-2p

,圆的标准方程为(x -3)2+y 2=16. ∴3-2p

=4,∴p =2.

方法2:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切于点(-1,0),所以-2p

=-1,解得p =2.

8.B [解析] 设准线l 与x 轴交于点B ,连接AF 、PF ,则|BF |=p =4,∵直线AF 的斜率为-,∴∠AFB =60°.在Rt △ABF 中,|AF |=cos60°4

=8.又根据抛物线的定义,得|PA |=|PF |,PA ∥BF ,∴∠PAF =60°,∴△PAF 为等边三角形,故|PF |=|AF |=8.

9.-41 [解析] 抛物线方程为x 2

=a 1y ,故其准线方程是y =-4a 1=1,解得a =-41. 10.42 [解析] 设抛物线的焦点F ,0p ,由B 为线段FA 的中点,所以B ,1p

,代入抛物线方程得p =,则B 到该抛物线准线的距离为4p +2p =43p =42

.

11.±22 [解析] 过点A (-1,0),斜率为k 的直线为y =k (x +1),与抛物线方程联立后消掉y 得k 2x 2

+(2k 2

-4)x +k 2

=0,设M (x 1,y 1),N (x 2,y 2),有x 1+x 1=k24-2k2

,x 1x 2=1.

因为线段MN 的中点在直线x =3上,所以x 1+x 2=6,即k24-2k2=6,解得k =±22

. 而此时k 2x 2+(2k 2-4)x +k 2=0的判别式大于零,所以k =±22.

12.[解答] (1)由已知,x =4不合题意.设直线l 的方程为y =k (x -4).由已知,抛物线C 的焦点坐标为(1,0),因为点F 到直线l 的距离为,所以1+k2|3k|

=,

解得k =±22,所以直线l 的斜率为±22

.

(2)证明:设线段AB 中点的坐标为N (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则直线MN 的斜率为x0-4y0,因为AB 不垂直于x 轴,所以直线AB 的斜率为y04-x0,

直线AB 的方程为y -y 0=y04-x0

(x -x 0), 联立方程y2=4x ,(x -x0,

消去x ,得4x0y 2-y 0y +y 02

+x 0(x 0-4)=0, 所以y 1+y 2=4-x04y0

y1+y22y0

13.[解答] (1)证明:由已知F ,0p

,设A (x 1,y 1), 则y 12

=2px 1,

圆心坐标为2y1,圆心到y 轴的距离为42x1+p

, 圆的半径为2|FA|=2132p =42x1+p

所以,以线段FA 为直径的圆与y 轴相切. (2)解法一:设P (0,y 0),A (x 1,y 1),B (x 2,y 2), 由→FA =λ1→AP ,→BF =λ2→FA

,得 ,y1p

=λ1(-x 1,y 0-y 1), -x2,-y2p =λ2,y1p ,

所以x 1-2p

=-λ1x 1,y 1=λ1(y 0-y 1), 2p -x 2=λ22p

,y 2=-λ2y 1, 由y 2=-λ2y 1,得y 22=λ22y 12

. 又y 12=2px 1,y 22

=2px 2, 所以x 2=λ22

x 1.

代入2p -x 2=λ22p ,得2p -λ22x 1=λ22p ,2p

(1+λ2)=x 1λ2(1+λ2), 整理得x 1=2λ2p

代入x 1-2p =-λ1x 1,得2λ2p -2p =-2λ2λ1p

, 所以λ21=1-λ2λ1,

因为λ2λ1∈21,所以λ2的取值范围是,24.

解法二:设A (x 1,y 1),B (x 2,y 2),AB :x =my +2p

, 将x =my +2p

代入y 2=2px ,得y 2-2pmy -p 2=0, 所以y 1y 2=-p 2(*). 由→FA =λ1→AP ,→BF =λ2→FA

,得 ,y1p

=λ1(-x 1,y 0-y 1), p p

2p -x 2=λ22p

,y 2=-λ2y 1,

将y 2=-λ2y 1代入(*)式,得y 12=λ2p2

, 所以2px 1=λ2p2,x 1=2λ2p

.

代入x 1-2p =-λ1x 1,得λ21=1-λ2λ1

, 因为λ2λ1∈21,所以λ2的取值范围是,24.

B

1.C [解析] 点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)的距离与到直线y +2=0即y =-2的距离相等,轨迹为抛物线,其中p =4,故所求的抛物线方程为x 2=8y .

2.D [解析] 根据分析把抛物线方程化为x 2=-2-a 1y ,则焦参数p =21

-a ,故抛物线的准线方程是y =2p =2-a ,则2-a =1,解得a =-23

.

3.B [解析] 焦点坐标是(1,0),A (1,2),B (1,-2),|AB |=4,故△OAB 的面积S =21

|AB ||OF |=21

3431=2.

4.B [解析] 设点Q 的坐标为0,由|PQ |≥|a |,得y 02+02≥a 2

,整理,得y 02(y 02+16-8a )≥0,∵y 02≥0,∴y 02

+16-8a ≥0,即a ≤2+0恒成立.而2+0的最小值为2,所以a ≤2.

5.D [解析] A (x 0,y 0),则B (x 0,-y 0),由于焦点F 2p

,0是抛物线的垂心,所以OA ⊥BF .由此得x0y032p =-1,把y 02=2px 0代入得x 0=25p ,故直线AB 的方程是x =25

p .

6.C [解析] 由抛物线定义,22p =2p +2p

,即2|FP 2|=|FP 1|+|FP 3|.

7.A [解析] 依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F ,01

.依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF |,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和d =|PF |+|PA |≥|AF |=2+221=217

.

8.B [解析] ∵抛物线C :y 2=8x 的焦点为F (2,0),准线方程为x =-2,∴K (-2,0), 设A (x 0,y 0),过A 点向准线作垂线AB ,则B (-2,y 0),∵|AK |=|AF |,又AF =AB =x 0

-(-2)=x 0+2,

∴由BK 2=AK 2-AB 2得y 02

=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,∴A (2,±4),∴△AFK 的面积为21|KF |·|y 0|=213434=8.

9.y 2=4x [解析] 设抛物线方程为y 2=kx ,与y =x 联立方程组,消去y ,得:x 2-kx =0,x 1+x 2=k =232=4,故y 2=4x .

10.2 [解析] 过B 作BE 垂直于准线l 于E ,∵→AM =→MB ,∴M 为AB 中点,∴|BM |=21

|AB |.又斜率为,∠BAE =30°,∴|BE |=21|AB |,∴|BM |=|BE |,

∴M 为抛物线的焦点,∴p =2.

11.38

[解析] 设A (x A ,y A ),B (x B ,y B ),则|AF |=x A +1,|BF |=x B +1,∴x A +1=3(x B +1).① 由几何关系,x A -1=3(1-x B ).②

联立①②,得x A =3,x B =31,∴所求距离d =2xA +xB +1=38.

12.[解答] (1)依题意知,

点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线. ∵|PQ |是点Q 到直线l 的距离.

点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |.

故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线, 其方程为:y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0, 圆的半径r =|MA |=02, 则|TS |=2=2-2x0+12

因为点M 在曲线C 上,所以x 0=0, 所以|TS |=2+12

=2,是定值.

13.[解答] (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足-x =1(x >0). 化简得y 2=4x (x >0).

(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2). 设l 的方程为x =ty +m ,由y2=4x ,x =ty +m ,

得y 2-4ty -4m =0,Δ=16(t 2+m )>0, 于是y1y2=-4m.y1+y2=4t ,①

又→FA =(x 1-1,y 1),→FB

=(x 2-1,y 2),

→FA ·→FB <0?(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.② 又x =4y2

,于是不等式②等价于1·2+y 1y 2-2+1<0, ?16(y1y22+y 1y 2-41

[(y 1+y 2)2-2y 1y 2]+1<0.③

由①式,不等式③等价于m 2-6m +1<4t 2.④

对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0,即

由此可知,存在正数m ,对于过点M (m,0),且与曲线C 有两个交点A ,B 的任一直线,都有→FA ·→FB <0,且m 的取值范围是(3-2,3+2). 【作业】

一、 选择题: 本大题共12小题,每小题5分,共60分

1.顶点在原点,焦点是F (0,5)的抛物线方程是( )

A .y 2=20x

B .x 2=20y

C .y 2=201x

D .x 2

=201y 2.抛物线y =-x 2

的焦点坐标为( )

A.41

B.41

C.,01

D.,01

3.抛物线y =ax 2

的准线方程是y =2,则实数a 的值为( )

A.81 B .-81

C .8

D .-8

4.(2010年高考陕西卷)已知抛物线y 2

=2px (p >0)的准线与圆x 2

+y 2

-6x -7=0相切,则p 的值为( )

A.21

B .1

C .2

D .4

5.(2010年高考湖南卷)设抛物线y 2

=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )

A .4

B .6

C .8

D .12

6.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )

A .y 2=-16x

B .y 2

=-32x

C .y 2=16x

D .y 2

=16x 或y =0(x <0)

7.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )

A .y 2=8x

B .y 2=-8x

C .y 2=8x 或y 2=-8x

D .x 2=8y 或x 2

=-8y

8.已知抛物线y 2

=2px (p >0)的焦点F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )

A .|FP 1|+|FP 2|=|FP 3|

B .|FP 1|2+|FP 2|2=|FP 3|2

C .|FP 1|+|FP 3|=2|FP 2|

D .|FP 1|2|FP 3|=|FP 2|2

9.抛物线y 2

=12x 截直线y =2x +1所得弦长等于( )

A.

B .2 C.215

D .15

10.以抛物线y 2

=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为( )

A .相交

B .相离

C .相切

D .不确定

11.过抛物线的焦点且垂直于其对称轴的弦是AB ,抛物线的准线交x 轴于点M ,则∠AMB 是( )

A .锐角

B .直角

C .钝角

D .锐角或钝角

12.(2010年高考山东卷)已知抛物线y 2

=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )

A .x =1

B .x =-1

C .x =2

D .x =-2

14.抛物线y2=4x上的点P到焦点F的距离是5,则P点的坐标是________.

15.抛物线y2=4x与直线2x+y-4=0交于两点A与B,F是抛物线的焦点,则|FA|+|FB|=________.

16.边长为1的等边三角形AOB,O为原点,AB⊥x轴,则以O为顶点,且过A、B的抛物线方程是________.

三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分12分)若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.

18(本题满分12分).抛物线的焦点F在x轴上,直线y=-3与抛物线相交于点A,|AF|=5,求抛物线的标准方程.

19.(本题满分12分)已知抛物线的顶点在坐标原点,焦点在x轴上,其准线l与圆(x -2)2+y2=25相切,求抛物线的方程.

20.(本题满分12分)过点Q(4,1)的抛物线y2=8x的弦AB恰被点Q平分,求AB所在直线方程.

21.(本题满分12分)已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.

(1)求证:OA⊥OB;

(2)当△OAB的面积等于时,求k的值.

22.(2009江苏卷)(本题满分14分)

在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。

(1)求抛物线C的标准方程;

(2)求过点F,且与直线OA垂直的直线的方程;

(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点

间的距离为,求关于的表达式。

参考答案

1.解析:选B.由2p =5得p =10,且焦点在y 轴正半轴上,故x 2

=20y . 2.解析:选B.x 2

=-y ,∴2p =1,p =21,∴焦点坐标为41

.

3.解析:选B.由y =ax 2,得x 2

=a 1y ,4a 1=-2,a =-81. 4.解析:选C.由抛物线的标准方程得准线方程为x =-2p

.

由x 2

+y 2

-6x -7=0得(x -3)2

+y 2

=16.

∵准线与圆相切,∴3+2p

=4,∴p =2.

5解析:选B.如图所示,抛物线的焦点为F (2,0),准线方程为x =-2,由抛物线的定义知:|PF |=|PE |=4+2=6.

6.解析:选C.∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨

迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2

=16x . 7.解析:选C.通径2p =8且焦点在x 轴上,故选C. 8.解析:选C.由抛物线定义知|FP 1|=x 1+2p

|FP 2|=x 2+2p ,|FP 3|=x 3+2p

∴|FP 1|+|FP 3|=2|FP 2|,故选C.

9.解析:选A.令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2)

由y2=12x y =2x +1得4x 2

-8x +1=0, ∴x 1+x 2=2,x 1x 2=41

, ∴|AB |= ==.

10. 解析:选C.|PF |=x P +2p ,∴2|PF|=2xP +4p

,即为PF 的中点到y 轴的距离.故该圆与y 轴相切.

11. 解析:选B.由题意可得|AB |=2p .

又焦点到准线距离|FM |=p ,F 为AB 中点,

1

12.解析:选B.∵y 2

=2px (p >0)的焦点坐标为,0p ,

∴过焦点且斜率为1的直线方程为y =x -2p ,即x =y +2p ,将其代入y 2=2px 得y 2

=2py +p 2,即y 2-2py -p 2

=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴2y1+y2=p =2,∴抛物线的方程为y 2

=4x ,其准线方程为x =-1. 二. 填空题(共4题,每题4分) 13解析:由y =ax2x -y -1=0,得ax 2

-x +1=0,

由Δ=1-4a =0,得a =41. 答案:41

14.

解析:设P (x 0,y 0),则|PF |=x 0+1=5,∴x 0=4,

∴y 02

=16,∴y 0=±4.

答案:(4,±4) 15.

解析:设A (x 1,y 1),B (x 2,y 2), 则|FA |+|FB |=x 1+x 2+2.

又2x +y -4=0y2=4x ?x 2

-5x +4=0, ∴x 1+x 2=5,x 1+x 2+2=7. 答案:7 16.

解析:焦点在x 轴正半轴上时,设方程为y 2

=2px (p >0)代入点(23,21)得p =123, 焦点在x 轴负半轴上时,设方程为y 2

=-2px (p >0), ∴p =-123

.

综上,所求方程为y 2

=±63x . 答案:y 2

=±63x

三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.)

17.(本题满分12分)若抛物线y 2

=-2px (p >0)上有一点M ,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M 点的坐标.

解:由抛物线定义知焦点为F (-2p ,0),准线为x =2p

, 由题意设M 到准线的距离为|MN |, 则|MN |=|MF |=10, 即2p

-(-9)=10,

∴p =2.

故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2

=-4x ,解得y =±6,

高中数学试卷必修二基础100题

高中数学试卷必修二基础50题 一、单选题(共15题;共30分) 1.如图所示,观察四个几何体,其中判断正确的是() A. ①是棱台 B. ②是圆台 C. ③不是棱锥 D. ④是棱柱 2.直线y=2x+1关于y轴对称的直线方程为() A. y=-2x+1 B. y=2x-1 C. y=-2x-1 D. y=-x-1 3.已知直线的倾斜角为,则直线的斜率为( ) A. B. C. D. 4.若点到直线的距离为1,则的值为() A. B. C. 或 D. 或 5.若两个球的表面积之比为1:4,则这两个球的体积之比为() A. 1:2, B. 1:4, C. 1:8, D. 1:16。 6.已知直线,则直线l的倾斜角为() A. B. C. D. 7.如果两条直线a与b没有公共点,那么a与b() A. 共面 B. 平行 C. 异面 D. 平行或异面 8.有一个几何体的三视图如图所示,这个几何体应是一个() A. 棱台 B. 棱锥 C. 棱柱 D. 都不对 9.设是两个不同的平面,是一条直线,以下命题正确的是()

A. 若,则 B. 若,则 C. 若,则 D. 若,则 10.已知倾斜角为θ的直线,与直线x﹣3y+1=0垂直,则tanθ=() A. B. 3 C. ﹣3 D. 11.已知一个圆锥的底面半径是3,母线长是5,则该圆锥的体积是() A. B. C. D. 12.椭圆x2+4y2=36的弦被(4,2)平分,则此弦所在直线方程为() A. x﹣2y=0 B. x+2y﹣8=0 C. 2x+3y﹣14=0 D. x+2y﹣4=0 13.在空间中,有三条不重合的直线a,b,c,两个不重合的平面,,下列判断正确的是() A. 若∥,∥,则∥ B. 若,,则∥ C. 若,∥,则 D. 若,,∥,则∥ 14.在△ABC中,∠BAC=90°,PA⊥平面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是() A. 5 B. 8 C. 10 D. 6 15.若两直线,的斜率分别是,,倾角分别是,,且满足,则() A. B. C. D. 二、填空题(共20题;共24分) 16.曲线在点处的切线方程为________.

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学必修2知识点总结归纳 整理

高中数学必修二 ·空间几何体 1.1空间几何体的结构 棱柱 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如 五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 棱台 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等 表示:用各顶点字母,如四棱台ABCD —A'B'C'D' 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。 圆台 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。 球体 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 1.中心投影与平行投影 中心投影:把光由一点向外散射形成的投影叫做中心投影。 平行投影:在一束平行光照射下形成的投影叫做平行投影。 2.三视图 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 画三视图的原则:长对齐、高对齐、宽相等 3.直观图:斜二测画法 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

高中数学必修2《概率》知识点讲义

第三章 概率 一.随机事件的概率 1、基本概念: ????????不可能事件确定事件事件必然事件 随机事件 (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)事件:确定事件和随机事件统称为事件,一般用大写字母A ,B ,C ……表示。 2、概率与频数、频率: 在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= A n n 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值 A n n ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。 二.概率的基本性质 1、各种事件的关系: (1)并(和)事件 (2)交(积)事件 (3)互斥事件 (4)对立事件 2、概率的基本性质: (1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)P(E)=1(E 为必然事件); (3)P(F)=0(F 为必然事件); (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B); (5)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

高中数学双曲线抛物线知识点总结

高中数学双曲线抛物线知 识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨 迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a => (1)c e e a => 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲 线22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 5 4 ; (2) 焦距为26,且经过点M (0,12); _x _y _x _y

(3) 与双曲线22 1916 x y - =有公共渐进线,且经过点() 3,23A -。 解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==5 4 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x - =。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴222144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和 (0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥ 4 5 c 。求双曲线的离心率e 的取值范围。

新课标高中数学必修二基础练习卷(答案)

高一数学必修二基础练习卷 班别 ____ 姓名________ 座号_____ 一、选择题 1 .用符号表示点A在直线I上,I在平面G外”正确的是() A. A I,丨二匚 B. A l,l「 C. A 丨,丨二: D. A I ,l「 2、正棱柱L长方体?=() A. ■正棱柱} B.长方体1 C. ■正方体} D.不确定 3、已知平面a内有无数条直线都与平面B平行,那么() A . all 3 B. a与B相交 C . a与3重合 D . al 3或a与3相交 4、在空间四边形ABCD各边AB BC、CD、DA上分别取E、F、G、H四点,如果与EF、GH能相 交于点P,那么 A、点P不在直线AC上 B、点P必在直线BD上 C、点P必在平面ABC内 D、点P必在平面ABC外 5、已知正方体的ABC^A1B1C1D1棱长为1,则三棱锥C -BC i D的体积是() 1 1 A. 1 B. C.— 3 2 6、有一个几何体的三视图及其尺寸如下(单位 A.24 n 捅12 n cn3 B.15 n c n i 12 n cn3 C.24 n cn, 36 n cn3 D.以上都不正确 1 D.— 6 cm),则该几何体的表面积和体积为:( 7. 利用斜二测画法,一个平面图形的直观图是边长为 () A .3 B 2 C 2.2 8. 半径为R的半圆卷成一个圆锥,则它的体积为( 1的正方形,如图所示.则这个平面图形的面积为 A .仝二R3 24 B. 乜二R3 8 C .乜二R3 24

9.用与球心距离为1的平面去截面面积为 二,则球的体积为() 2 2 18 .圆x y -2y -1 = 0的半径为 () A.1 B.2 C. 3 D. 2 19、直线 3x+4y-13=0 与圆(x -2)2,( y - 3)2 =1 的位置关系是:( ) A.相离; B.相交; C.相切; D.无法判定. 20 .圆:x 2 y 2 -2x -2y ? 1 =0上的点到直线x - y =2的距离最大值是( f — A 、2 B 、12 C 、1 - D 、12.2 232-: A. B. 3 10. 已知m, n 是两条不同直线,:■ A .若m IN- ,n II 〉,则m II n C .若mil :■ ,m | ,则:-I : 11. 已知点 A(1,2)、B (-2, 3)、C (4, 1 A . - B . 1 2 12. 直线x -3y T =0的倾斜角是( A. 300 B. 600 C. 1200 - C. D. 3 ,'-,是三个不同平面,下列命题中正确的是 B .若口丄?,B 丄?,则a II P D .若m 丨r , n 丨-,则m I n y )在同一条直线上,贝U y 的值为( 3 C. - D . -1 2 ). D. 1500 13. 直线I 经过两点A1,2、B 3,4,那么直线I 的斜率是 A. -1 B. -3 C. 1 D. 3 14. 过点P (T,3)且垂直于直线x 「2y ,3 = 0的直线方程为( ) A . 2x y-1=0 B . 2x y-5=0 C. x 2y-5=0 D . x-2y 7=0 k A . (0,0) B . (0,1) C . (3,1) D . (2,1) 16 .两直线3x ? y -3 =0与6x my ^0平行,则它们之间的距离为( A . 4 B . ■— 13 17 .下列方程中表示圆的是( A . x 2 + y 2 + 3x + 4y + 7=0 C . 2x ?+ 2y 2— 3x — 4y — C . D . — 26 20 ) B . x 2+ 2y 2— 2x + 5y + 9=0 D . x 2— y 2— 4x — 2y +

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

人教版必修二高中数学笔记讲义

第1讲 第1章 §1.1.1 柱、锥、台、球的结构特征 ¤学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述生活中简单物体的结构.逐步培养观察能力和抽 1.下列说法错误的是( ) A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 分析:多面体至少应有四个顶点组成(否则至多3个顶点,而3个顶点只围成一个平面图形),而四个顶点当然必须围成四个面,所以A 正确;棱柱侧面为平行四边形,其侧棱和侧面的个数与底面多边形的边数相等,所以B 正确;长方体、正方体都是棱柱,所以C 正确;三棱柱的侧面是平行四边形,不是三角形,所以D 错误. 答案:D 2.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为___________ cm. 分析:n 棱柱有2n 个顶点,由于此棱柱有10个顶点,那么此棱柱为五棱柱,又因棱柱的侧棱都相等,五条侧棱长的和为60 cm ,可知每条侧棱长为12 cm. 答案:12 3.在本节我们学过的常见几何体中,如果用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是___________. 分析:棱锥、棱柱、棱台、圆锥等几何体的截面都可以是三角形,因此本题答案是开放的,作答时要考虑周全. 答案:棱锥、棱柱、棱台、圆锥 第2讲 §1.1.2 简单组合体的结构特征 ¤学习目标:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ¤知识要点:观察周围的物体,大量的几何体是由柱、锥、台等组合而成的,这些几何体称为组合体. ¤例题精讲:【例1】在四棱锥的四个侧面中,直角三角形最多可有( ). A. 1个 B. 2个 C. 3个 D. 4个 解:在长方体''''ABCD A B C D -中,取四棱锥'A ABCD -,它的四个侧面都是直角三角形. 选D. 【例2】已知球的外切圆台上、下底面的半径分别为,r R ,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得 梯形腰长为R +r = 第3讲 §1.2.2 空间几何体的三视图 ¤学习目标:能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图 所表示的立体模型,会使用材料(如:纸板)制作模型. ¤知识要点: 1. “视图”是将物体按正投影法向投影面投射时所得到的投影图. 光线自物体的前面向后投影所得的投影图成为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的图形称为“俯视图”. 用这三种视图即可刻划空间物体的几何结构,称为“三视图”.

高中数学复习-抛物线知识点归纳总结

高中数学复习-抛物线 抛 物 线 ) 0(22>=p px y )0(22>-=p px y ) 0(22>=p py x )0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 (2 p ,0) (2 p - ,0) (0, 2 p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 1. 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,有两不同交点; Δ=0, 直线l 与抛物线相切,有一个切点; Δ<0,直线l 与抛物线相离,无公共点。 x y O l F x y O l F l F x y O x y O l F

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2 12 212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1 或 212 2122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点坐标 ),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点 为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)

高中数学必修二知识点、考点及典型例题

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:3 3 4 R V π= ,球的表面积公式:2 4 R S π= 4、柱体h s V ?=,锥体h s V ?=3 1,锥体截面积比: 2 2 212 1h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。

4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线 线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线 平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面 平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平 行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称 线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直, 则面面垂直)。 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 (简称面面垂直,则线面垂直)。 第三章 直线与方程 知识点: 1、倾斜角与斜率:1 212tan x x y y k --==α 2、直线方程: ⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式:1211 21 y y y y x x x x --=--

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

高中数学必修二讲义 专题3.2 直线的方程

一、直线的点斜式方程 1.直线的点斜式方程的定义 已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为 . 这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称 . 当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是 00y y -=,或0y y =. 当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =. 深度剖析 (1)当直线的斜率存在时,才能用直线的点斜式方程. (2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线. 2.直线的点斜式方程的推导 如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得

y y k x x - = - (1),即 00 () y y k x x -=-(2). 注意方程(1) 与方程(2)的差异:点 P的坐标不满足方程(1),但满足方程(2),因此,点 P不在方程(1)表 示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l的方程. 上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为 坐标的点都在直线l上,所以这个方程就是过点 P,斜率为k的直线l的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义 我们把直线l与y轴交点(0,)b的纵坐标b叫做直线l在y轴上的. 如果直线l的斜率为k,且在y轴上的截距为b,则方程为(0) y b k x -=-,即叫做直线的,简称. 当b=0时,y kx =表示过原点的直线;当k=0且b≠0时,y b =表示与x轴平行的直线;当k=0且b=0时,0 y=表示与x轴重合的直线. 深度剖析 (1)纵截距不是距离,它是直线与y轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y轴平行时. (2)由于有些直线没有斜率,即有些直线在y轴上没有截距,所以并非所有直线都可以用斜截式表示. 2.直线的斜截式方程的推导 已知直线l在y轴上的截距为b,斜率为k,求直线l的方程.这个问题相当于给出了直线上一点(0,)b及 直线的斜率k,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0) y b k x -=-,

高中抛物线知识点归纳总结与练习题及答案

一. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 二. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出

b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2 122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y = =+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存 在,且不等于零)

相关主题
文本预览
相关文档 最新文档