当前位置:文档之家› 高中数学必修二讲义 专题3.2 直线的方程

高中数学必修二讲义 专题3.2 直线的方程

高中数学必修二讲义 专题3.2 直线的方程
高中数学必修二讲义 专题3.2 直线的方程

一、直线的点斜式方程 1.直线的点斜式方程的定义

已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为 . 这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称 .

当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是

00y y -=,或0y y =.

当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.

深度剖析

(1)当直线的斜率存在时,才能用直线的点斜式方程.

(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.

2.直线的点斜式方程的推导

如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得

y y

k

x x

-

=

-

(1),即

00

()

y y k x x

-=-(2).

注意方程(1)

与方程(2)的差异:点

P的坐标不满足方程(1),但满足方程(2),因此,点

P不在方程(1)表

示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l的方程.

上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为

坐标的点都在直线l上,所以这个方程就是过点

P,斜率为k的直线l的方程.

二、直线的斜截式方程

1.直线的斜截式方程的定义

我们把直线l与y轴交点(0,)b的纵坐标b叫做直线l在y轴上的.

如果直线l的斜率为k,且在y轴上的截距为b,则方程为(0)

y b k x

-=-,即叫做直线的,简称.

当b=0时,y kx

=表示过原点的直线;当k=0且b≠0时,y b

=表示与x轴平行的直线;当k=0且b=0时,0

y=表示与x轴重合的直线.

深度剖析

(1)纵截距不是距离,它是直线与y轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y轴平行时.

(2)由于有些直线没有斜率,即有些直线在y轴上没有截距,所以并非所有直线都可以用斜截式表示.

2.直线的斜截式方程的推导

已知直线l在y轴上的截距为b,斜率为k,求直线l的方程.这个问题相当于给出了直线上一点(0,)b及

直线的斜率k,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)

y b k x

-=-,

即y kx b =+. 三、直线的两点式方程 1.直线的两点式方程的定义

已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为

.这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导

已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的.

当12x x ≠时,所求直线的斜率21

21

y y k x x -=

-.

任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得21

1121

()y y y y x x x x --=

--,

当12y y ≠时,可写为11

2121

y y x x y y x x --=--.

四、直线的截距式方程

1.直线的截距式方程的定义

已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为 ___________.

我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是 ___________.

这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导

已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.

将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=

--,即1x y

a b

+=. 五、中点坐标公式

若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则__________

__________

x y =??=?.

此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程

当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程.

由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程

在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系. 七、直线的一般式方程 1.直线的一般式方程

在平面直角坐标系中,任何一个关于x ,y 的二元一次方程都表示一条直线.我们把关于x ,y 的二元一次方程 (其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 2.直线的一般式与斜截式、截距式的互化 直线的一般式、斜截式、截距式如下表:

一般式

斜截式

截距式

0(,Ax By C A B ++=不同时为0) (0)A C y x B B B

=--≠ 1(,,x y

A B C C C

A B

+=--都不为0)

直线的一般式方程可以表示坐标平面内任意一条直线.因此在一定条件下,直线的一般式方程可以进行如

下转化:

(1)当0B ≠时,0Ax By C ++=可化为A C

y x B B

=--,它表示在y 轴上的截距为

,斜率为 的直线.

(2)当,,A B C 均不为零时,0Ax By C ++=可化为

1x y

C C A B

+=--,它表示在x 轴上的截距为 ,在y 轴上的截距为 的直线.

注意:解题时,若无特殊说明,应把求得的直线方程化为一般式. 八、直线系方程 1.平行直线系方程

把平面内具有相同方向的直线的全体称为平行直线系.一般地,与直线0Ax By C ++=平行的直线系方程都可表示为 (其中m 为参数且m ≠C ),然后依据题设中另一个条件来确定m 的值. 2.垂直直线系方程

一般地,与直线0Ax By C ++=垂直的直线系方程都可表示为 (其中m 为参数),然后依据题设中的另一个条件来确定m 的值。 九、一般式方程中两直线平行与垂直的条件

若两条直线的方程是用一般式给出的,设直线12,l l 的方程分别为1110A x B y C ++=,2220A x B y C ++=, 则可以在条件允许时将两方程化为斜截式方程,从而得出两直线平行与垂直的结论如下: (1)若12l l ∥,当斜率存在时,

111222A B C A B C =≠;当斜率不存在时,120B B ==且1212

C C

A A ≠. 即1212210l l A

B A B ?-=∥,且12210B

C B C -≠或12210A C A C -≠. (2)若12l l ⊥,当斜率存在时,12

12

=1A A B B ?-;当斜率不存在时,120,0A B ==或210,0A B ==. 即1212120l l A A B B ?+=⊥.

K 知识参考答案:

一、00()y y k x x -=- 点斜式方程 点斜式

二、截距 y kx b =+ 斜截式方程 斜截式

七、1.0Ax By C ++= 2.(1)C B -

A B - (2)C A - C

B

- 八、1.0Ax By m ++=

2.0Bx Ay m -+=

K —重点

直线的点斜式、斜截式、两点式、截距式、一般式方程,根据直线方程判定两直线

的平行与垂直,

K —难点 直线系问题、直线方程的综合应用

K —易错

忽略直线重合的情形或直线方程成立的条件致错、忽略直线方程的局限性致错,忽

略直线斜率不存在的情况或两直线重合的情形致错

1.直线的点斜式方程

用点斜式求直线的方程,确定直线的斜率和其上一个点的坐标后即可求解. 【例1】已知点(3,3)A 和直线l :35

42

y x =

-.求: (1)过点A 且与直线l 平行的直线方程; (2)过点A 且与直线l 垂直的直线方程. 【解析】因为直线l :3542y x =

-,所以该直线的斜率3

4

k =. (1)过点(3,3)A 且与直线l 平行的直线方程为3

3(3)4

y x -=

-. (2)过点(3,3)A 且与直线l 垂直的直线方程为4

3(3)3

y x -=-

-.

【例2】已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.

【解析】由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0. 由AB ∥x 轴,且△ABC 在第一象限,知边AC 所在直线的斜率k AC =tan 60°=,边BC 所在直线的斜率

k BC =tan(180°-45°)=-1,

所以,边AC 所在直线的方程为y -1=(x -1),边BC 所在直线的方程为y -1=-(x -5).

2.直线的斜截式方程

根据斜率和截距的几何意义判断k ,b 的正负时,

(1)0k >直线呈上升趋势;0k <直线呈下降趋势;0k =直线呈水平状态.

(2)0b >直线与y 轴的交点在x 轴上方;0b <直线与y 轴的交点在x 轴下方;0b =直线过原点. 【例3】已知直线l 与直线y =-2x+3的斜率相同,且在y 轴上的截距为5,求直线l 的斜截式方程,并画出图形.

【名师点评】直线的斜截式方程是点斜式方程的特殊情形.

【例4】已知直线l 的斜率为1

6,且和两坐标轴围成的三角形的面积为3,求直线l 的方程. 【解析】设直线l 的方程为1

6

y x b =+.

则x =0时,y =b ;y =0时,x =-6b . 由已知可得

1

632

b b ?-=,即b 2=1, 所以b =±

1.

从而所求直线l 的方程为116y x =-或1

16

y x =+. 3.直线的两点式方程

已知直线上两点的坐标求解直线方程,可直接将两点的坐标代入直线的两点式方程,化简即得.代入点的坐标时注意横纵坐标的对应关系.若点的坐标中含有参数,需注意当直线平行于坐标轴或与坐标轴重合时,不能用两点式求解.

【例5】已知三角形的三个顶点Α(-4,0),B (0,-3),C (-2,1),求: (1)BC 边所在的直线的方程; (2)BC 边上中线所在的直线的方程.

4.直线的截距式方程

(1)由已知条件确定横、纵截距.

(2)若两截距为零,则直线过原点,直接写出方程即可;若两截距不为零,则代入公式1x y

a b

+=中,可得所求的直线方程.

(3)如果题目中出现直线在两坐标轴上的截距相等、截距互为相反数或在一坐标轴上的截距是另一坐标轴上的截距的多少倍等条件时,采用截距式求直线方程时一定要注意考虑“零截距”的情况. 【例6】已知直线过点,且在两坐标轴上的截距之和为12,求直线的方程.

【解析】设直线的方程为

1x y

a b

+=,则,①

又直线过点,∴

34

1a b

-+=,② 由①②得93a b =??=?或4

16

a b =-??

=?. ∴直线的方程为

193x y +=或1416

x y +=-,即或.

5.直线的一般式方程

(1)直线的一般式方程Ax By ++0C =中要求A ,B 不同时为0.

(2)由直线的点斜式、斜截式、两点式、截距式方程去分母、移项就可以转化为直线的一般式方程;反过来,也可以由直线的一般式方程化为斜截式、截距式方程,注意斜截式、截距式方程的使用条件. 【例7】若直线:5530l ax y a --+=不经过第二象限,则实数的取值范围是_________. 【答案】

【解析】将直线的方程整理得y -

35=(x -15),所以直线过定点A (13

,55

),直线OA 的斜率=3

051

05

--=3,要使不经过第二象限,需斜率≥=3,所以

.

【例8】设直线的方程为,根据下列条件分别确定的值:

(1)在轴上的截距是;

(2)的斜率是

6.中点坐标公式的应用

(1)利用中点坐标公式可求以任意已知两点为端点的线段的中点坐标.(2)从中点坐标公式可以看出线段12P P 中点的横坐标只与12,P P 的横坐标有关,中点的纵坐标只与12,P P 的纵坐标有关. 【例9】已知7

(3,),(1,2),(3,1)2

M A B ,则过点M 和线段AB 的中点的直线方程为 A .425x y +=

B .425x y -=

C .25x y +=

D .25x y -=

【答案】B

7.直线过定点问题

本题考查了直线过定点的问题,实际上就是考查直线方程的点斜式,同时要利用数形结合的思想解题. 若直线存在斜率,则可以把直线方程化为点斜式00()y y k x x -=-的形式,无论直线的斜率k 取何值时,直线都过定点00(,)x y .

【例10】已知直线:21l y kx k =++. (1)求证:直线l 过一个定点;

(2)当33x -<<时,直线上的点都在x 轴上方,求实数k 的取值范围.

【解析】(1)由21y kx k =++,得1(2)y k x -=+.由直线方程的点斜式可知,直线过定点(2,1)-. (2)设函数()21f x kx k =++,显然其图象是一条直线(如图),

若使33x -<<时,直线上的点都在x 轴上方,需满足(3)0(3)0f f -≥??≥?,即3210

3210

k k k k -++≥??++≥?,

解得1

15

k -

≤≤. 所以实数k 的取值范围是1

15

k -≤≤. 8.直线的平移规律

直线y kx b =+上下(或沿y 轴)平移(0)m m >个单位长度,得y kx b m =+±(上加下减);直线y kx b

=+

左右(或沿x 轴)平移(0)m m >个单位长度,得()y k x m b =±+(左加右减).

【例11】已知直线1:23l y x =-,将直线1l 向上平移2个单位长度,再向左平移4个单位长度得到直线

2l ,则直线2l 的方程为 .

【答案】27y x =+

【解析】根据直线的平移规律,可得直线2l 的方程为2(4)32y x =+-+,即27y x =+. 9.点斜式和斜截式的实际应用

由直线的斜截式方程与一次函数的表达式的关系,利用一次函数的图象和性质求出直线方程,可以解决实际问题.

【例12】一根弹簧挂6 kg 的物体时长11 cm,挂9 kg 的物体时长14 cm.已知弹簧长度l (cm)和所挂物体的质量ω(kg)的关系可用直线方程来表示,用点斜式表示这个方程,并根据这个方程,求弹簧长度为13 cm 时所挂物体的质量.

10.由直线的位置关系求参数

对于由直线的位置关系求参数的问题,有下列结论:设直线12,l l 的方程分别为

11A x B y ++10C =(1A ,1B 不同时为0),2220A x B y C ++=(2A ,2B 不同时为0),则1212210l l A B A B ?-=∥,且1221B C B C -0≠或12210A C A C -≠;1212l l A A ?+⊥120B B =.

【例13】求m ,n 的值,使直线l 1:y =(m ?1)x ?n +7满足: (1)平行于x 轴;

(2)平行于直线l 2:7x ?y +15=0; (3)垂直于直线l 2:7x ?y +15=0.

【解析】(1)当直线 l 1平行于x 轴时,直线l 1的斜率为0,即m ?1=0,m =1.又直线l 1不与x 轴重合,所以70n -+≠,即7n ≠.综上,当m =1且n ≠7时,直线 l 1平行于x 轴.

(2)将7x ?y +15=0化为斜截式得,y =7x +15,∴直线l 2的斜率k 2=7,截距b =15,

当l 1∥l 2时,应有直线l 1的斜率k 1=7且截距b 1≠15,即m ?1=7且?n +7≠15,∴m =8,且n ≠?8. (3)由题意及(2)可得(m ?1)·7=?1,n ∈R ,即6

,7

m n =∈R 时,l 1⊥l 2. 11.由直线的位置关系求方程

一般地,直线0Ax By C ++=中的系数A ,B 确定直线的斜率.因此,利用平行直线系或垂直直线系直接设出直线方程,用待定系数法即可求解.

【例14】已知直线1l 的方程为3x +4y ?12=0,求直线2l 的方程,2l 满足: (1)过点(?1,3),且与1l 平行; (2)过点(?1,3),且与1l 垂直.

方法二:由2l 与1l 平行,可设2l 的方程为3x +4y +m =0(m ≠?12).将点(?1,3)代入上式得m =?9. ∴所求直线方程为3490x y +-=. (2)方法一:由题设1l 的方程可化为:3

34

y x =-+, ∴1l 的斜率为34-

,由2l 与1l 垂直,得2l 的斜率为43

, 又2l 过(?1,3),由点斜式可得方程为4

3(1)3

y x -=

+,即4x ?3y +13=0. 方法二:由2l 与1l 垂直,可设2l 的方程为4x ?3y +n =0.将(?1,3)代入上式得n =13. ∴所求直线方程为4x ?3y +13=0. 【例15】已知直线平行于直线,并且与两坐标轴围成的三角形的面积为

,求直线的

方程.

12.忽略了直线重合的情形致错

【例16】已知直线12:60,:(2)320l x my l m x y m ++=-++=,当12l l ∥时,求m 的值. 【错解】∵2l 的斜率22

3

m k -=-,12l l ∥,∴1l 的斜率1k 也一定存在, 由1l 的方程得11k m =-

,由12k k =,得213m m

--=-, 解得3m =或1m =-. ∴m 的值为3或1-.

【错因分析】忽略了直线重合的情况,从而导致错误. 【正解】由题意2l 的方程可化为22

33

m y x m -=--, 则其斜率223m k -=-

,在y 轴上的截距22

3

b m =-. ∵12l l ∥,∴1l 的斜率一定存在,即0m ≠. ∴1l 的方程为16y x m m =-

-,斜率11k m =-,在y 轴上的截距16

b m

=-. 由12l l ∥,得26321=3m m

m m ?-≠-???-?--??

,解得1m =-.

∴m 的值为1-.

【误区警示】当两直线的斜率存在时,两直线平行的等价条件是斜率相等且纵截距不相等,做题时容易忽略纵截距不相等,从而导致错解. 13.忽略直线方程的局限性致错

【例17】求经过点(2,3)P ,并且在两坐标轴上截距相等的直线l 的方程.

【错解】设直线方程为

1x y a a +=,将2,3x y ==代入,得23

1a a

+=,解得5a =. 故所求的直线方程为50x y +-=.

【错因分析】截距相等包含两层含义,一是截距不为0时的相等,二是截距为0时的相等,而后者常常被忽略,导致漏解.

【正解】(1)当截距为0时,直线l 过点(0,0),(2,3), ∵直线l 的斜率为303

202

k -==-, ∴直线l 的方程为3

2

y x =

,即320x y -=. (2)当截距不为0时,可设直线l 的方程为1x y

a a

+=, ∵直线l 过点(2,3)P ,∴

23

1a a

+=,∴5a =, ∴直线l 的方程为50x y +-=.

综上,直线l 的方程为320x y -=或50x y +-=.

【误区警示】不同形式的方程均有其适用条件,在解题时应注意截距式方程的应用前提是截距均不为0且不垂直于坐标轴.

14.忽略直线斜率不存在的情况

【例18】已知直线1l :(2?a )x +ay ?3=0, 2l :(2a +3)x ?(a ?2)y +2=0互相垂直,求实数a 的值. 【错解】将1l 的方程化为23a y x a a -=

+,得斜率12a k a -=;将2l 的方程化为232

22

a y x a a +=+--,得斜率2232a k a +=

-.∵1l ⊥2l ,∴121k k ?=-,即232

12a a a a

+-?=--,解得a =?1. 【错因分析】将直线的一般式方程化成斜截式,再运用直线的斜率判断直线垂直,没有考虑直线的斜率不存在的情况,所以答案不完整.

【正解】因为1l ⊥2l ,则必有(2?a )(2a +3)?a (a ?2)=0,即220a a --=,所以a =2或a =?1.

【误区警示】1l ⊥2l 并不等价于121k k ?=-,一般地,设直线12,l l 的方程分别为11A x B y ++10C =,

2220A x B y C ++=,则1212210l l A B A B ?-=∥,且12210B C B C -≠或12210A C A C -≠;12l l ?⊥ 12120A A B B +=.这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考虑不周而造成

失误的可能性.

1.直线的方程00()y y k x x --= A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线 2.直线

1x y

a b

+=过一、二、三象限,则 A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0

3.直线1

y ax a

=-

的图象可能是

4.与直线21y x =+垂直,且在y 轴上的截距为4的直线的斜截式方程是 A .1

42

y x =

+ B .y =2x +4 C .y =?2x +4

D .1

42

y x =-

+ 5.在y 轴上的截距是-3,且经过A (2,-1),B (6,1)中点的直线方程为 A .143

x y

+= B .143x y -= C .

134

x y

+= D .

136

x y -=

6.若直线420mx y +-=与直线250x y n -+=垂直,垂足为()1,p ,则n 的值为 A .12- B .2- C .0

D .10

7.已知直线l 的倾斜角为60°,在y 轴上的截距为?4,则直线l 的点斜式方程为________________;截距式方程为________________;斜截式方程为________________;一般式方程为________________. 8.直线32()y ax a a =-+∈R 必过定点 .

9.已知直线:20l ax y a +--=在轴和轴上的截距相等,则的值是________________. 10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),则△ABC 中平行于BC 边的中位线所在直线的两点式方程

是 .

11.以()1,3A ,()5,1B -为端点的线段的垂直平分线的一般式方程是________________. 12.根据下列条件分别写出直线的方程,并化为一般式方程:

(1)直线斜率是3,且经过点;

(2)直线过点

,且垂直于轴;

(3)直线斜率为4,在轴上的截距为

(4)直线在轴上的截距为3,且平行于轴; (5)直线经过

两点; (6)直线在,轴上的截距分别是,

13.已知

的顶点是

,.直线平行于,且分别交边、于、,

的面积是

面积的

1

4

. (1)求点、的坐标; (2)求直线的方程.

14.(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值.

(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?

15.两直线

1x y m n -=与1x y

n m

-=的图象可能是图中的

A B C D

16.若直线l 1:y =k (x-4)与直线l 2关于点(2,1)对称,则直线l 2过定点

A .(0,4)

B .(0,2)

C .(-2,4)

D .(4,-2)

17.已知过点()m A ,2-和点()4,m B 的直线为1l ,2:210l x y +-=,3:10l x ny ++=.若1

2l l ,32l l ⊥,

则实数n m +的值为 A .10- B .2- C .0

D .8

18.若三点()()()2,2,,,0)0,0(A B a C b ab ≠共线,则

11

a b

+= . 19.已知直线l 过定点A (?2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.

20.设直线l 的方程为(1)20()a x y a a +++-=∈R .

(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)若直线l 不经过第二象限,求实数a 的取值范围.

1 2 3 4 5 6 15 16 17 D

C

B

D

B

A

B

B

A

1.【答案】D

【解析】直线的点斜式方程不能表示斜率不存在的直线,即不能表示与x 轴垂直的直线.故选D. 2.【答案】C

【解析】直线过一、二、三象限,所以它在x 轴上的截距为负,在y 轴上的截距为正,所以a <0,b >0. 3.【答案】B

【解析】由

1

y ax a

=-可知,斜率和在y 轴上的截距必须异号,故B 正确. 4.【答案】D

5.【答案】 B

【解析】易知A (2,-1),B (6,1)的中点坐标为(4,0),即直线在x 轴上的截距为4,则所求直线的方程为

143

x y

-=. 6.【答案】A

【解析】由两直线垂直得2200,10m m -==,将()1,p 代入420mx y +-=,得

104p +-20,2p ==-,将()1,2-代入250x y n -+=,得2100,12n n ++==-.

7.【答案】43(0)y x +=-;

14

43

3

x y

+

=-;34y x =-;340x y --= 【解析】由直线l 的倾斜角为60°,可得直线l 的斜率为3,由直线l 在y 轴上的截距为?4,可知直线l 过点(0,4)-,所以可得直线l 的点斜式方程为:43(0)y x +=-.由直线l 的点斜式方程可得直线l 的

斜截式方程为:34y x =-,一般式方程为:340x y --=.令0y =,得43

3

x =

,即直线l 在x 轴上的截距为

433,从而可得直线l 的截距式方程为:14

433

x y

+=-. 8.【答案】(3,2)

【解析】将直线方程变形为y ?2=a (x ?3),由直线方程的点斜式可知,直线过定点(3,2). 9.【答案】-2或1 【解析】依题意,显然

,当

时,得

,当

时,得2a x a +=

,则22a

a a

++=,即,得

-2或1.

10

.【答案】

1

2271

1222

x y +

+=++ 【解析】平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点的坐标分别为(

72,1),(-1

2

,-2),所以所求直线的方程为

1

2271

1222

x y +

+=++. 11.【答案】340x y ++=

12.【解析】(1)由点斜式得方程为

,整理得

(2),即.

(3),即.

(4)

,即

(5)由两点式得方程为()()

151521x y ---=----,整理得

(6)由截距式得方程为131

x y +=--,整理得.

13.【解析】(1)因为

,且的面积是

面积的

14

, 所以、分别是

的中点,

由中点坐标公式可得点的坐标为502,?? ???,点的坐标为722,?? ???

(2)由两点式方程,可知直线的方程为

5

02752022

y x -

-=--,即.

高中数学试卷必修二基础100题

高中数学试卷必修二基础50题 一、单选题(共15题;共30分) 1.如图所示,观察四个几何体,其中判断正确的是() A. ①是棱台 B. ②是圆台 C. ③不是棱锥 D. ④是棱柱 2.直线y=2x+1关于y轴对称的直线方程为() A. y=-2x+1 B. y=2x-1 C. y=-2x-1 D. y=-x-1 3.已知直线的倾斜角为,则直线的斜率为( ) A. B. C. D. 4.若点到直线的距离为1,则的值为() A. B. C. 或 D. 或 5.若两个球的表面积之比为1:4,则这两个球的体积之比为() A. 1:2, B. 1:4, C. 1:8, D. 1:16。 6.已知直线,则直线l的倾斜角为() A. B. C. D. 7.如果两条直线a与b没有公共点,那么a与b() A. 共面 B. 平行 C. 异面 D. 平行或异面 8.有一个几何体的三视图如图所示,这个几何体应是一个() A. 棱台 B. 棱锥 C. 棱柱 D. 都不对 9.设是两个不同的平面,是一条直线,以下命题正确的是()

A. 若,则 B. 若,则 C. 若,则 D. 若,则 10.已知倾斜角为θ的直线,与直线x﹣3y+1=0垂直,则tanθ=() A. B. 3 C. ﹣3 D. 11.已知一个圆锥的底面半径是3,母线长是5,则该圆锥的体积是() A. B. C. D. 12.椭圆x2+4y2=36的弦被(4,2)平分,则此弦所在直线方程为() A. x﹣2y=0 B. x+2y﹣8=0 C. 2x+3y﹣14=0 D. x+2y﹣4=0 13.在空间中,有三条不重合的直线a,b,c,两个不重合的平面,,下列判断正确的是() A. 若∥,∥,则∥ B. 若,,则∥ C. 若,∥,则 D. 若,,∥,则∥ 14.在△ABC中,∠BAC=90°,PA⊥平面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是() A. 5 B. 8 C. 10 D. 6 15.若两直线,的斜率分别是,,倾角分别是,,且满足,则() A. B. C. D. 二、填空题(共20题;共24分) 16.曲线在点处的切线方程为________.

新编【人教A版】高中数学:必修2课本例题习题改编(含答案)

A A ' B B ' C C ' 2 3 新编人教版精品教学资料 2015版人教A 版必修2课本例题习题改编 湖北省安陆市第一高级中学 伍海军 597917478@https://www.doczj.com/doc/1d18337337.html, 1.原题(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称. 改编 如图是一个几何体的三视图(单位:cm ) (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积; (Ⅲ)设异面直线AA '与BC '所成的角为θ,求cos θ. 解:(Ⅰ)这个几何体的直观图如图23-2所示. (Ⅱ)这个几何体是直三棱柱. 由于底面ABC ?的高为1,所以2 2 112AB =+=. 故所求全面积22ABC BB C C ABB A S S S S ''''?=++ 1 221322328622 =???+?+??=+2(cm ). 这个几何体的体积121332 ABC V S BB ?'=?=???=3 (cm ) (Ⅲ)因为//AA BB '',所以AA '与BC '所成的角是B BC ''∠. 俯视图 A 正视图 侧视图 A ' B B 'A B C A B C A ' B ' C ' 1 2 3 11 3 正视图 侧视图 俯视图

2 P P 正视图 侧视图 O O O ' O ' 2 2 22 2 2 2 俯视图 P O O ' 在Rt BB C ''?中,22223213BC BB B C ''''=+=+=,故33 cos 1313 13BB BC θ'= =='. 2.原题(必修2第28页例3)如图,已知几何 体的三视图,用斜二测画法画出它的直观图. 改编1 如图,已知几何体的三视图(单位:cm ). (Ⅰ)画出它的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积和体积. 解:(Ⅰ)这个几何体的直观图如图所示. (Ⅱ)这个几何体是一个简单组合体,它的下部是 一个圆柱(底面半径为1cm ,高为2cm ),它的上部 是一个圆锥(底面半径为1cm ,母线长为2cm ,高为 3cm ). 所以所求表面积2 1212127S ππππ=?+??+??=2 (cm ), 所求体积221 3 1213233 V ππππ=??+???=+ 3(cm ). 3.原题(必修2第30页习题1.3B 组第三题)分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系。 改编 已知直角三角形ABC ,其三边分为c b a ,,,(c b a >>).分别以三角形的a 边,b 边,c 边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为321,,S S S 和 321,,V V V ,则它们的关系为 ( ) A .321S S S >>, 321V V V >> B .321S S S <<, 321V V V << C .321S S S >>, 321V V V == D .321S S S <<, 321V V V == 解:a a bc V c b a bc S 211)(31),)(( ππ=+=,22223 1 ,bc V c ac S πππ=+= , c b V b ab S 23233 1 ,πππ=+=, 选B. 4.原题(必修2第32页图像)改编 如图几何体是圆柱挖去一个同底等高的圆锥所得,现用一个竖直的平面截这个几何体,所得截面可能是:

高中数学必修2知识点总结归纳 整理

高中数学必修二 ·空间几何体 1.1空间几何体的结构 棱柱 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如 五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 棱台 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等 表示:用各顶点字母,如四棱台ABCD —A'B'C'D' 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。 圆台 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。 球体 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 1.中心投影与平行投影 中心投影:把光由一点向外散射形成的投影叫做中心投影。 平行投影:在一束平行光照射下形成的投影叫做平行投影。 2.三视图 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 画三视图的原则:长对齐、高对齐、宽相等 3.直观图:斜二测画法 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

高中数学必修2《概率》知识点讲义

第三章 概率 一.随机事件的概率 1、基本概念: ????????不可能事件确定事件事件必然事件 随机事件 (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)事件:确定事件和随机事件统称为事件,一般用大写字母A ,B ,C ……表示。 2、概率与频数、频率: 在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= A n n 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值 A n n ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。 二.概率的基本性质 1、各种事件的关系: (1)并(和)事件 (2)交(积)事件 (3)互斥事件 (4)对立事件 2、概率的基本性质: (1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)P(E)=1(E 为必然事件); (3)P(F)=0(F 为必然事件); (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B); (5)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

新课标高中数学必修二基础练习卷(答案)

高一数学必修二基础练习卷 班别 ____ 姓名________ 座号_____ 一、选择题 1 .用符号表示点A在直线I上,I在平面G外”正确的是() A. A I,丨二匚 B. A l,l「 C. A 丨,丨二: D. A I ,l「 2、正棱柱L长方体?=() A. ■正棱柱} B.长方体1 C. ■正方体} D.不确定 3、已知平面a内有无数条直线都与平面B平行,那么() A . all 3 B. a与B相交 C . a与3重合 D . al 3或a与3相交 4、在空间四边形ABCD各边AB BC、CD、DA上分别取E、F、G、H四点,如果与EF、GH能相 交于点P,那么 A、点P不在直线AC上 B、点P必在直线BD上 C、点P必在平面ABC内 D、点P必在平面ABC外 5、已知正方体的ABC^A1B1C1D1棱长为1,则三棱锥C -BC i D的体积是() 1 1 A. 1 B. C.— 3 2 6、有一个几何体的三视图及其尺寸如下(单位 A.24 n 捅12 n cn3 B.15 n c n i 12 n cn3 C.24 n cn, 36 n cn3 D.以上都不正确 1 D.— 6 cm),则该几何体的表面积和体积为:( 7. 利用斜二测画法,一个平面图形的直观图是边长为 () A .3 B 2 C 2.2 8. 半径为R的半圆卷成一个圆锥,则它的体积为( 1的正方形,如图所示.则这个平面图形的面积为 A .仝二R3 24 B. 乜二R3 8 C .乜二R3 24

9.用与球心距离为1的平面去截面面积为 二,则球的体积为() 2 2 18 .圆x y -2y -1 = 0的半径为 () A.1 B.2 C. 3 D. 2 19、直线 3x+4y-13=0 与圆(x -2)2,( y - 3)2 =1 的位置关系是:( ) A.相离; B.相交; C.相切; D.无法判定. 20 .圆:x 2 y 2 -2x -2y ? 1 =0上的点到直线x - y =2的距离最大值是( f — A 、2 B 、12 C 、1 - D 、12.2 232-: A. B. 3 10. 已知m, n 是两条不同直线,:■ A .若m IN- ,n II 〉,则m II n C .若mil :■ ,m | ,则:-I : 11. 已知点 A(1,2)、B (-2, 3)、C (4, 1 A . - B . 1 2 12. 直线x -3y T =0的倾斜角是( A. 300 B. 600 C. 1200 - C. D. 3 ,'-,是三个不同平面,下列命题中正确的是 B .若口丄?,B 丄?,则a II P D .若m 丨r , n 丨-,则m I n y )在同一条直线上,贝U y 的值为( 3 C. - D . -1 2 ). D. 1500 13. 直线I 经过两点A1,2、B 3,4,那么直线I 的斜率是 A. -1 B. -3 C. 1 D. 3 14. 过点P (T,3)且垂直于直线x 「2y ,3 = 0的直线方程为( ) A . 2x y-1=0 B . 2x y-5=0 C. x 2y-5=0 D . x-2y 7=0 k A . (0,0) B . (0,1) C . (3,1) D . (2,1) 16 .两直线3x ? y -3 =0与6x my ^0平行,则它们之间的距离为( A . 4 B . ■— 13 17 .下列方程中表示圆的是( A . x 2 + y 2 + 3x + 4y + 7=0 C . 2x ?+ 2y 2— 3x — 4y — C . D . — 26 20 ) B . x 2+ 2y 2— 2x + 5y + 9=0 D . x 2— y 2— 4x — 2y +

人教版必修二高中数学笔记讲义

第1讲 第1章 §1.1.1 柱、锥、台、球的结构特征 ¤学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述生活中简单物体的结构.逐步培养观察能力和抽 1.下列说法错误的是( ) A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 分析:多面体至少应有四个顶点组成(否则至多3个顶点,而3个顶点只围成一个平面图形),而四个顶点当然必须围成四个面,所以A 正确;棱柱侧面为平行四边形,其侧棱和侧面的个数与底面多边形的边数相等,所以B 正确;长方体、正方体都是棱柱,所以C 正确;三棱柱的侧面是平行四边形,不是三角形,所以D 错误. 答案:D 2.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为___________ cm. 分析:n 棱柱有2n 个顶点,由于此棱柱有10个顶点,那么此棱柱为五棱柱,又因棱柱的侧棱都相等,五条侧棱长的和为60 cm ,可知每条侧棱长为12 cm. 答案:12 3.在本节我们学过的常见几何体中,如果用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是___________. 分析:棱锥、棱柱、棱台、圆锥等几何体的截面都可以是三角形,因此本题答案是开放的,作答时要考虑周全. 答案:棱锥、棱柱、棱台、圆锥 第2讲 §1.1.2 简单组合体的结构特征 ¤学习目标:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ¤知识要点:观察周围的物体,大量的几何体是由柱、锥、台等组合而成的,这些几何体称为组合体. ¤例题精讲:【例1】在四棱锥的四个侧面中,直角三角形最多可有( ). A. 1个 B. 2个 C. 3个 D. 4个 解:在长方体''''ABCD A B C D -中,取四棱锥'A ABCD -,它的四个侧面都是直角三角形. 选D. 【例2】已知球的外切圆台上、下底面的半径分别为,r R ,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得 梯形腰长为R +r = 第3讲 §1.2.2 空间几何体的三视图 ¤学习目标:能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图 所表示的立体模型,会使用材料(如:纸板)制作模型. ¤知识要点: 1. “视图”是将物体按正投影法向投影面投射时所得到的投影图. 光线自物体的前面向后投影所得的投影图成为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的图形称为“俯视图”. 用这三种视图即可刻划空间物体的几何结构,称为“三视图”.

高中数学必修二知识点、考点及典型例题

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:3 3 4 R V π= ,球的表面积公式:2 4 R S π= 4、柱体h s V ?=,锥体h s V ?=3 1,锥体截面积比: 2 2 212 1h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。

4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线 线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线 平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面 平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平 行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称 线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直, 则面面垂直)。 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 (简称面面垂直,则线面垂直)。 第三章 直线与方程 知识点: 1、倾斜角与斜率:1 212tan x x y y k --==α 2、直线方程: ⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式:1211 21 y y y y x x x x --=--

高中数学必修二讲义 专题3.2 直线的方程

一、直线的点斜式方程 1.直线的点斜式方程的定义 已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为 . 这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称 . 当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是 00y y -=,或0y y =. 当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =. 深度剖析 (1)当直线的斜率存在时,才能用直线的点斜式方程. (2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线. 2.直线的点斜式方程的推导 如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得

y y k x x - = - (1),即 00 () y y k x x -=-(2). 注意方程(1) 与方程(2)的差异:点 P的坐标不满足方程(1),但满足方程(2),因此,点 P不在方程(1)表 示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l的方程. 上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为 坐标的点都在直线l上,所以这个方程就是过点 P,斜率为k的直线l的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义 我们把直线l与y轴交点(0,)b的纵坐标b叫做直线l在y轴上的. 如果直线l的斜率为k,且在y轴上的截距为b,则方程为(0) y b k x -=-,即叫做直线的,简称. 当b=0时,y kx =表示过原点的直线;当k=0且b≠0时,y b =表示与x轴平行的直线;当k=0且b=0时,0 y=表示与x轴重合的直线. 深度剖析 (1)纵截距不是距离,它是直线与y轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y轴平行时. (2)由于有些直线没有斜率,即有些直线在y轴上没有截距,所以并非所有直线都可以用斜截式表示. 2.直线的斜截式方程的推导 已知直线l在y轴上的截距为b,斜率为k,求直线l的方程.这个问题相当于给出了直线上一点(0,)b及 直线的斜率k,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0) y b k x -=-,

人教版高中数学必修2全部教案(最全最新)

人教版高中数学必修2 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能:(1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法: (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观: (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪。 四、教学过程 (一)创设情景,揭示课题 1、由六根火柴最多可搭成几个三角形?(空间:4个) 2在我们周围中有不少有特色的建筑物,你能举出一些例子 吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。 问题:请根据某种标准对以上空间物体进行分类。 (二)、研探新知 空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台; 旋转体(轴):圆柱、圆锥、圆台、球。 1、棱柱的结构特征: (1)观察棱柱的几何物体以及投影出棱柱的图片, 思考:它们各自的特点是什么?共同特点是什么? (学生讨论) (2)棱柱的主要结构特征(棱柱的概念): ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。 (3)棱柱的表示法及分类:

高中数学必修2知识点总结

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α 时,0≥k ; 当() 180,90∈α时,0

高中数学必修二立体几何讲义

高中数学 必修2知识点 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底3 1 3台体的体积 h S S S S V ?++=)3 1 下下上上( 4球体的体积 334R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 222r rl S ππ+= D C B A α L A · α

高中数学必修2基本概念

基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所 成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条

(完整版)高中数学必修2《统计》知识点讲义

第二章统计 一、三种抽样方法 1、统计的的基本思想是:用样本的某个量去估计总体的某个量 总体:在统计中,所有考察对象的全体。 个体:总体中的每一个考察对象。 样本:从总体中抽取的一部分个体叫做这个总体的一个样本。 样本容量:样本中个体的数目。 2、抽样方法:要求:总体中每个个体被抽取的机会相等 (1)简单随机抽样:抽签法和随机数表法 简单随机抽样的特点是:不放回、等可能. 抽签法步骤 (1)先将总体中的所有个体(共有N个)编号(号码可从1到N) (2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作 (3)将这些号签放在同一个箱子里,进行均匀搅拌(4)抽签时,每次从中抽出一个号签,连续抽取n次(5)抽出样本 随机数表法步骤 (1)将总体中的个体编号(编号时位数要统一);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本 (2)系统抽样 系统抽样特点:容量大、等距、等可能. 步骤: 1.编号,随机剔除多余个体,重新编号 2.分组 (段数等于样本容量),确定间隔长度 k=N/n 3.抽取第一个个体编号为i 4.依预定的规则抽取余下的个体编号为i+k, i+2k, … (3)分层抽样 分层抽样特点:总体差异明显、按所占比例抽取、等可能. 步骤:1.将总体按一定标准分层; 2.计算各层的个体数与总体的个体数的比; 3.按比例确定各层应抽取的样本数目 4.在每一层进行抽样 (可用简单随机抽样或系统抽样)

二、用样本估计总体 1、用样本的频率分布估计总体的分布 ①作样本频率分布直方图的步骤: (1)求极差; (2)决定组距与组数; (组数=极差/组距) (3)将数据分组; (4)列频率分布表(分组,频数,频率); (5)画频率分布直方图。 根据频率分布表做频率分布直方图应注意两点: 频率 ⑴纵轴的意义: 组距 ⑵横轴的意义:样本内容(每个矩形下面是组距). 例1、为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm) 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181 列出样本的频率分布表,画出频率分布直方图. 解:在这个样本中,最大值为181,最小值为157,它们的差是24,可以取组距为4,分成7组,根据题意列出样本的频率分布表如下: 频率分布直方图(略)

高中数学必修2知识框架

高一数学知识框架第一章集合与函数概念

第二章基本初等函数(I)

必修二立体几何 第一章空间几何体知识结构如下 画三视图的原则:长对齐、高对齐、宽相等 直观图:斜二测画法 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面 (3)画侧棱(4)成图

第二章 点、直线、平面之间的位置关系 知识结构如下 第三章 直线与方程 从代数表示到几何直观(通过方程研究几何性质和度量) 直线的倾斜角概念:当直线l 与x 轴相交时, 取 x 轴作为基准 , x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角 .特别地,当直线l 与x 轴平行或重合时, 规定α= 0° 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等, 也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的 大写字母来表示,如平面AC 、平面ABCD 等。 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 公理1作用:判断直线是否在平面内 公理2:过不在一条直线上的三点,有且只有一 个平面。符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一 条过该点的公共直线。符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a 、b 、c 是三条直线 强调:公理4实质上是说平行具有传递 性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 直线与平面有三种位置关系: 1)直线在平面内:有无数个公共点 2)直线与平面相交: 有且只有一个公共点 3)直线在平面平行: 没有公共点 平面平行:一个平面内的两条交直线与另一个平面平行,则这两个平面平行 平面互相垂直:一个平面过另一个平面的垂线,则这两个平面垂直 斜率公式: 点到线距离: 平行线距离:

人教版高中数学必修二精品讲义

空间几何体的结构 _______________________________________________________________________________ _______________________________________________________________________________ 掌握棱柱、棱锥、棱台等多面体结构特征. 掌握圆柱、圆锥、圆台、球等旋转体的结构特征. 概括简单组合体的结构特征. 1.几何体 只考虑一个物体占有空间部分的________和________,而不考虑其他因素,则这个空间部分叫做一个________. 2.构成空间几何体的基本元素 (1)构成空间几何体的基本元素: ________、________、________是构成空间几何体的基本元素. (2)平面及其表示方法: ①平面的概念: 平面是处处平直的面,它是向四面八方无限延展的. ②平面的表示方法: 图形表示:在立体几何中,通常画平行四边形表示一个平面并把它想象成无限延展的符号表示:平面一般用希腊字母________,________,________…来命名,还可以用表示它的平行四边形________顶点的字母来命名. 深刻理解平面的概念,搞清平面与平面图形的区别与联系是解决相关问题的关键.平面与平面图形的区别与联系为:平面是没有厚度、绝对平展且无边界的,也就是说平面是无限延展的,无厚薄,无大小的一种理想的图形.平面可以用三角形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形是平面,只能说平面可以用平面图形来表示. (3)用运动的观点理解空间基本图形之间的关系:

高中必修二数学知识点全面总结

第1章 空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++=)31 下下上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 空间点、直线、平面之间的位置关系 222r rl S ππ+=

平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形, 锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 — 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

相关主题
文本预览
相关文档 最新文档