当前位置:文档之家› SCARA机器人视觉操作说明

SCARA机器人视觉操作说明

SCARA机器人视觉操作说明
SCARA机器人视觉操作说明

瓦力智能科技SCARA机器人

视觉系统操作手册

☉请确保使用操作手册到达产品的最终使用者手中

瓦力智能科技

V a l i I n t e l l i g e n t T e c h n o l o g y

C o r p o r a t i o n

操作前,请注意安全。

确认人员与周边设备都在工作范围外。内容若有错误,请以原厂操作说明书为准!

步骤:

1.设定视觉坐标及世界坐标的点位,要求点位十分精确,否则影响机器人运行的结果

2.设定要抓取物件的模板

3.视觉精度测试与校正

4.编写程序

5.运行程序

步骤详细操作说明:

1.设定视觉坐标及世界坐标的点位

第一步:设定测试模板。

开启本软件,打开‘参数’->‘视觉’->‘模板设定’界面。单击‘开始采集’,选择‘制作模板’中的‘定位模式’为圆形(以抓取目标为准)。框选测

试目标,然后单击鼠标右键。单击‘设定模板’,稍等一段时间后,再选择‘模板形状’为矩形。框选整个视频屏幕,单击鼠标右键。如下图1,2所示

图一:

图二:

第二步:获取视觉坐标的三点和世界坐标的三点然后标记保存。

测试模板设定好后,选择‘识别定位’中的‘测试’,让摄像头自动扫描目标。扫描到目标后,单击‘停止测试’然后单击‘视觉工具’。选取‘选取测量点’为‘测量点1’。单击‘读入图像坐标’,选择‘视觉参数’。用刚才的操作步骤,获取剩下的2个测量点的坐标值。然后,将机械手移动到刚才视觉的扫描的一号点位上去,再打开‘参数’->‘视觉’->‘视觉标定’,选取‘选取测量点’为‘测量点1’。单击‘读入世界坐标’。在用这种方式,获取剩下的2个视觉的扫描点。当3个视觉坐标和3个世界坐标都获取成功后,修改世界坐标的Z参数为120(以实际操作数为准,本数据只做参考)。然后单击‘标定’,‘保存数据’。如下图3所示

图三:

第三步:关闭该软件,再重新开启软件

2.设定要抓取物件的模版

打开‘参数’-> ‘视觉’-> ‘模板设定’界面。选择‘图像采集’-> ‘开始采集’,选择‘制作模板’-> ‘模板形状’为矩形,‘定位模式’为模板定位。框选测试目标,然后单击鼠标右键。单击‘设定模板’,稍等一段时间后,在选择‘模板形状’为矩形。框选整个视频屏幕,单击鼠标右键。单击‘保存模板’。如下图4,5,6所示

人工智能与计算机视觉

过去几年,全球的互联网公司包括谷歌、微软、Facebook以及中国的百度、阿里巴巴都在加强人工智能领域的投资,设立自己的人工智能研究院。vivo是第一家设立专攻人工智能方向研究院的中国手机公司。此举是vivo内部已经确立的一份3-5年的中长期发展的战略规划,未来对人工智能的发展研究是必然趋势,vivo公司创始人兼CEO沈炜曾表示“人工智能和5G的结合将会是5G时代手机发展的趋势”。 今年我们看到vivo在产品上不少创新,比如AI拍照、商用屏下指纹技术等等,这些都是基于生物特征(biometrics)的鉴别技术,除此之外还有对人脸、虹膜、指纹、声音等特征上的识别,这些大多涉及到视觉信息,正是体现了计算机视觉的应用性,那什么是计算机视觉呢? 计算机视觉技术的概念 正像其它学科一样,一个大量人员研究了多年的学科,却很难给出一个严格的定义,模式识别如此,目前火热的人工智能如此,计算机视觉亦如此。与计算机视觉密切相关的概念有视觉感知(visual perception),视觉认知(visual cognition),图像和视频理解( image and video understanding)。这些概念有一些共性之处,也有本质不同。 从广义上说,计算机视觉就是“赋予机器自然视觉能力”的学科。自然视觉能力,就是指生物视觉系统体现的视觉能力。一则生物自然视觉无法严格定义,在加上这种广义视觉定义又“包罗万象”,同时也不太符合40多年来计算机视觉的研究状况,所以这种“广义计算机视觉定义”,虽无可挑剔,但也缺乏实质性内容,不过是一种“循环式游戏定义”而已。 实际上,计算机视觉本质上就是研究视觉感知问题。视觉感知,根据维科百基(Wikipedia)的定义, 是指对“环境表达和理解中,对视觉信息的组织、识别和解释的过程”。根据这种定

计算机视觉与数字摄影测量的结合展望

计算机视觉与数字摄影测量的结合展望摘要:摄影测量在进入数字摄影测量时代就已经与计算机视觉技术紧密的联系在了一起,计算机视觉技术的快速发展给近景摄影测量带来了巨大的变革。本文分别简要介绍了摄影测量和计算机视觉技术,重点阐述了两者的异同点,最后做出总结。 关键字:计算机视觉;数字摄影测量;差异;影响匹配 1前言 摄影测量的发展经过了三个阶段,现已进入数字摄影测量阶段。数字摄影测量以数字影像为基础,通过计算机分析和量测来获取被摄物体的三维空间信息,正在成为国际公认的地球空间数据获取的重要手段[1]。数字摄影测量利用一台计算机,加上专业的摄影测量软件,就代替了过去传统的、所有的摄影测量的仪器。其中包括纠正仪、正射投影仪、立体坐标仪、转点仪、各种类型的模拟测量仪以及解析测量仪。数字摄影测量的发展,计算机不仅可以代替人工进行大量的计算,而且已经完全可能代替人眼来识别同名点,从而为摄影测量开辟了真正的自动化道路[2]。 计算机视觉是一个相对年轻而又发展迅速的领域。80年代以来,计算机视觉的研究已经历了从实验室走向实际应用的发展阶段,而计算机工业水平的飞速提高以及人工智能、并行处理和神经元网络等学科的发展,更促进了计算机视觉系统的实用化和涉足许多复杂视觉过程的研究[3]。其目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力将不仅使机器能感知三维环境中物体的几何信息,包括它的形状、位置、姿态、运动等,而且能对它们进行描述、存储、识别与理解[4]。数字摄影测量具有类似的目标,也面临着相同的基本问题。数字摄影测量学涉及多个学科,如图像处理、模式识别以及计算机图形学等。由于它与计算机视觉的联系十分紧密,有些专家将其看成是计算机视觉的分支。 2数字摄影测量与计算机视觉的差异 2.1出发点不同导致基本参数物理意义不同 计算机视觉是研究怎样用计算机模拟人的眼睛,实现机器人的视觉,它是以眼睛(摄影机)中心与光轴构成的坐标系为准,它定义的平移量是空间坐标系相对于摄影机坐标系的平移量。而摄影测量是测绘地形图的重要生产手段,它以空间(地面)统一坐标系为基准,如在一个地区进行航空摄影测量,所有摄影机的空间位置与影像的坐标都相对于该空间坐标系。因此,在摄影测量中的“外定向”是确定影像在空间相对于物体的位置与方位;而计算机视觉通常从另一个方向描述这个问题:搜索物体相对于影像的位置与方位。 2.2出发点不同导致基本公式的不同 由于物体与影像基本关系之间的差异,从而引起计算机视觉与摄影测量之间的基本公式的差异。计算机视觉与摄影测量都是研究物体与影像关系的,因此,描述三维物体与二维影像坐标之间的关系公式是它们的基本公式。计算机视觉最基本的公式用齐次坐标的投影方程表达为[5,6]:

《机器视觉及其应用》习题

第一章机器视觉系统构成与关键技术 1、机器视觉系统一般由哪几部分组成?机器视觉系统应用的核心目标是什么?主要的分 成几部分实现? 用机器来延伸或代替人眼对事物做测量、定位和判断的装置。组成:光源、场景、摄像机、图像卡、计算机。用机器来延伸或代替人眼对事物做测量、定位和判断。三部分:图像的获取、图像的处理和分析、输出或显示。 2、图像是什么?有那些方法可以得到图像? 图像是人对视觉感知的物质再现。光学设备获取或人为创作。 3、采样和量化是什么含义? 数字化坐标值称为取样,数字化幅度值称为量化。采样指空间上或时域上连续的图像(模拟图像)变换成离散采样点(像素)集合的操作;量化指把采样后所得的各像素的灰度值从模拟量到离散量的转换。采样和量化实现了图像的数字化。 4、图像的灰度变换是什么含义?请阐述图像反色算法原理? 灰度变换指根据某种目标条件按照一定变换关系逐点改变原图像中每一个像素灰度值,从而改善画质,使图像的显示效果更加清晰的方法。对于彩色图像的R、G、B各彩色分量取反。 第二章数字图像处理技术基础 1、对人类而言,颜色是什么?一幅彩色图像使用RGB色彩空间是如何定义的?24位真彩 色,有多少种颜色? 对人类而言,在人类的可见光范围内,人眼对不同波长或频率的光的主观感知称为颜色。 一幅图像的每个像素点由24位编码的RGB 值表示:使用三个8位无符号整数(0 到255)表示红色、绿色和蓝色的强度。256*256*256=16,777,216种颜色。 2、红、绿、蓝三种颜色为互补色,光照在物体上,物体只反射与本身颜色相同的色光而吸 收互补色的光。一束白光照到绿色物体上,人类看到绿色是因为? 该物体吸收了其他颜色的可见光,而主要反射绿光,所以看到绿色。 3、成像系统的动态范围是什么含义? 动态范围最早是信号系统的概念,一个信号系统的动态范围被定义成最大不失真电平和噪声电平的差。而在实际用途中,多用对数和比值来表示一个信号系统的动态范围,比如在音频工程中,一个放大器的动态范围可以表示为: D = lg(Power_max / Power_min)×20; 对于一个底片扫描仪,动态范围是扫描仪能记录原稿的灰度调范围。即原稿最暗点的密度(Dmax)和最亮处密度值(Dmin)的差值。 我们已经知道对于一个胶片的密度公式为D = lg(Io/I)。那么假设有一张胶片,扫描仪向其投射了1000单位的光,最后在共有96%的光通过胶片的明亮(银盐较薄)部分,而在胶片的较厚的部分只通过了大约4%的光。那么前者的密度为: Dmin=lg(1000/960)= 0.02; 后者的密度为: Dmax=lg(1000/40)= 1.40 那么我们说动态范围为:D=Dmax-Dmin=1.40-0.02=1.38。

机器人视觉传感技术及应用doc汇总

机器人视觉传感技术及应用 摘要:机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2. 机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i 层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。 2.3CCD图像传感器 电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。 CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。 图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构

机器人视觉系统有哪些关键的技术

机器人视觉系统有哪些关键的技术 机器人视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。人类接收的信息70%以上来自视觉,人类视觉为人类提供了关于周围环境最详细可靠的信息。 人类视觉所具有的强大功能和完美的信息处理方式引起了智能研究者的极大兴趣,人们希望以生物视觉为蓝本研究一个人工视觉系统用于机器人中,期望机器人拥有类似人类感受环境的能力。机器人要对外部世界的信息进行感知,就要依靠各种传感器。就像人类一样,在机器人的众多感知传感器中,视觉系统提供了大部分机器人所需的外部相界信息。因此视觉系统在机器人技术中具有重要的作用。 依据视觉传感器的数量和特性,目前主流的移动机器人视觉系统有单目视觉、双目立体视觉、多目视觉和全景视觉等。 单目视觉,单目视觉系统只使用一个视觉传感器。单目视觉系统在成像过程中由于从三维客观世界投影到N维图像上,从而损失了深度信息,这是此类视觉系统的主要缺点( 尽管如此,单目视觉系统由于结构简单、算法成熟且计算量较小,在自主移动机器人中已得到广泛应用,如用于目标跟踪、基于单目特征的室内定位导航等。同时,单目视觉是其他类型视觉系统的基础,如双目立体视觉、多目视觉等都是在单目视觉系统的基础上,通过附加其他手段和措施而实现的。 双目立体视觉。双目视觉系统由两个摄像机组成,利用三角测量原理获得场景的深度信息,并且可以重建周围景物的三维形状和位置,类似人眼的体视功能,原理简单。双目视觉系统需要精确地知道两个摄像机之间的空间位置关系,而且场景环境的3D信息需要两个摄像机从不同角度,同时拍摄同一场景的两幅图像,并进行复杂的匹配,才能准确得到立体视觉系统能够比较准确地恢复视觉场景的三维信息,在移动机器人定位导航、避障和地图构建等方面得到了广泛的应用用。然而,立体视觉系统的难点是对应点匹配的问题,该问题在很大程度上制约着立体视觉在机器人领域的应用前景。

计算机视觉技术

目录 1立体视觉 (1) 1.1计算机视觉技术 (1) 2立体视觉技术 (3) 2.1双目立体视觉技术 (3) 致谢 (8) 附录: (9)

立体视觉 我的毕业论文排版样文 1立体视觉 1.1计算机视觉技术 计算机视觉既是工程领域也是科学领域中的一个富有挑战性的重要研究领域。计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它的研究之中,其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学、神经生理学和认知科学等[18]。 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断和军事等领域中各种智能自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。“计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图像信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起[19]。”作为一门学科,计算机视觉开始于60 年代初,但在计算机视觉的基本研究中的许多重要进展是在80 年代取得的。现在计算机视觉已成为一门不同于人工智能、图象处理、模式识别等相关领域的成熟学科[20]。 不少学科的研究目标与计算机视觉相近。这些学科包括图像处理、图像识别、景物分析、图像理解等。由于历史发展或领域本身的特点这些学科互有差别,但又有某种程度的相互重叠。为了清晰起见,把这些与计算机视觉有关的学科从研究目标和方法角度加以归纳[21]。 (1)图像处理 图像处理技术把输入图像转换成具有所希望特性的另一幅图像。例如,可通过处理使输出图像有较高的信噪比,或通过增强处理突出图像的细节,以便于操作员的检验。在计算机视觉研究中经常利用图像处理技术进行预处理和特征抽取。 (2)图像识别 图像识别技术根据从图像抽取的统计特性或结构信息,把图像分成预定的类别。在计算机视觉中图像识别技术经常用于对图像中的某些部分(例如分割区域)的识别和分类。 第 1 页(共9页)

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

从机器人的发展浅析视觉技术对未来科技的重要性(一)

从机器人的发展浅析视觉技术对未来科技的重要性(一) 2008年12月,日本安川电机公司研制的型号为SDA10的“摩托曼(Motoman)”煎饼机器人,在大阪的下一代机器人盛会上表演了在扁平烤盘里熟练地翻转和烹饪一种日本式煎饼的拿手好戏,吸引了众多参会者的注意。 Motoman煎饼机器人 而近日在荷兰召开的“高技术系统2015年事务与大会”上,欧洲一项历时4年的研究计划“RoboHow”项目也展示了他们的最新研究成果——一个叫做PR2的“煎饼机器人”,他能够接受命令设法做出煎饼和比萨。 PR2煎饼机器人 怎么回事,难道机器人技术在这七年的时间里没有任何的进步?为什么最前沿的产品仍然停留在制作煎饼这样低级的任务上呢? 那么跟随维视图像,我们来对比一下这两款机器人的功能和特点吧。

首先看摩托曼(Motoman),它有着如人类一般的灵活性,胳膊可以一起或单独活动,可以准确的使用勺子铲子以及烧烤工具来制作菜肴,食物做熟之后可以放到盘子里。而且,它还能正确的使用调味品,甚至能组装精准度要求相当高的相机!同时,他也能做其它更为传统的工作,比如组装和包装重达20公斤的复杂东西。我们可以通过采用更高载重、更多关节、更快运行速度的硬件设备,来实现足够的操作范围和执行速度,让其实现更繁重、更复杂的工作。但本质上来说,这样的一款机器人是完全按照预先设定的指令来执行动作的,它只能按照给定的路径和坐标依次实现分解后的阶段性目标,从而逐步完成一整个大型的动作。也就是说,它不具备自主计算和处理数据的能力,只是一个力气大、灵活又听话的大块头机器而已。 而PR2呢,他更像是一个机器人技术研发平台,除了能自动执行复杂和指定的操作,我们还可以训练它理解语言和更多指令,可以扩展到让机器人能利用网络信息、经验学习,甚至观看人类行为就能学会新技能。一旦机器人掌握了与任务相关的一套特殊指令,它的知识就被加入到一个叫做“开放易用”(Open Ease)的在线数据库中,让其他机器人也能访问并理解。 现在就很清楚了,PR2比起摩托曼,简直如同拥有超级处理器大脑(同时兼具云共享数据库)的人类比起单细胞浮游生物一样,智能化程度有了巨大的提升。所以科学家们并没有偷懒,这七年的时间,他们为人类进步所做出的努力,是非常值得我们骄傲的,让我们对参加该项目的来自欧洲至少9所大学的研究人员致敬。 那么问题来了,是什么关键技术实现了这两者之间的突破呢? 未完待续,请看下一章:从机器人的发展浅析视觉技术对未来科技的重要性(二)。

人机交互中的计算机视觉技术.

人机交互中的计算机视觉技术 基于视觉的接口概念 计算机视觉是一门试图通过图像处理或视频处理而使计算机具备“ 看” 的能力的计算学科。通过理解图像形成的几何和辐射线测定, 接受器(相机的属性和物理世界的属性, 就有可能 (至少在某些情况下从图像中推断出关于事物的有用信息, 例如一块织物的颜色、一圈染了色的痕迹的宽度、火星上一个移动机器人面前的障碍物的大小、监防系统中一张人脸的身份、海底植物的类型或者是 MRI 扫描图中的肿瘤位置。计算机视觉研究的就是如何能健壮、有效地完成这类的任务。最初计算机视觉被看作是人工智能的一个子方向, 现在已成为一个活跃的研究领域并长达 40年了。 基于视觉的接口任务 至今,计算机视觉技术应用到人机交互中已取得了显著的成功,并在其它领域中也显示其前景。人脸检测和人脸识别获得了最多的关注, 也取得了最多的进展。第一批用于人脸识别的计算机程序出现在 60年代末和 70年代初,但直到 90年代初,计算机运算才足够快,以支持这些实时任务。人脸识别的问题产生了许多基于特征位置、人脸形状、人脸纹理以及它们间组合的计算模型, 包括主成分分析、线性判别式分析、 Gabor 小波网络和 .Active Appearance Model(AAM . 许多公司,例如Identix,Viisage Technology和 Cognitec System,正在为出入、安全和监防等应用开发和出售人脸识别技术。这些系统已经被部署到公共场所, 例如机场、城市广场以及私人的出入受限的环境。要想对人脸识别研究有一个全面的认识,见。 基于视觉的接口技术进展 尽管在一些个别应用中取得了成功,但纵使在几十年的研究之后,计算机视觉还没有在商业上被广泛使用。几种趋势似乎表明了这种情形即将会发生改变。硬件界的摩尔定律的发展, 相机技术的进步, 数码视频安装的快速增长以及软件工具的可获取性(例如 intel 的 OpenCV libraray使视觉系统能够变得小巧、灵

关于计算机视觉的若干思考

浅谈计算机视觉 当看到幻灯片上播放的两张看上去相同的图片,一张毫无秘密,一张却隐藏着机密的时候,我觉得很是神奇,原来还会有这种加密方式。不同于摩斯密码,我觉得这种加密方式正是计算机时代的一个代表。 机器视觉,计算机视觉,图像处理,图像分析,这些名词好像都出现在了 老师的课堂上,通过查阅资料得知,这些名词在技术和应用领域上他们都有着相当大部分的重叠,这些学科的基础理论大致是相同的,甚至让人怀疑他们是同一学科被冠以不同的名称。 但是,又好像存在着一些细小的不同。例如,机器视觉主要是指工业领域 的视觉研究,例如自主机器人的视觉,用于检测和测量的视觉。这表明在这一领域通过软件硬件,图像感知与控制理论往往与图像处理得到紧密结合来实现高效的机器人控制或各种实时操作。计算机视觉的研究对象主要是映射到单幅或多幅图像上的三维场景,例如三维场景的重建。计算机视觉的研究很大程度上针对图像的内容。图像处理与图像分析的研究对象主要是二维图像,实现图像的转化,尤其针对像素级的操作,例如提高图像对比度,边缘提取,去噪声和几何变换如图像旋转。这一特征表明无论是图像处理还是图像分析其研究内容都和图像的具体内容无关。这里,我就计算机视觉进行初步的了解与分析。 计算机视觉,顾名思义,即为利用计算机对图像进行处理的过程。不管进 行何种场景的应用,都必须进行识别,运动,场景重现,图像恢复等基本问题的算法处理。其系统主要包括:图像获取,预处理,特征提取,检测分割,高级处理等基本组成。

下面就图像加密过程进行初步分析:首先,进行图像的获取,拿到一张图片利用一个或多个图像感知器提取数字图像,根据感知器的类型会得到不同类型的数字图像;接着,进行预处理,在对图像实施具体的计算机视觉方法来提取某种特定的信息前,一种或一些预处理往往被采用来使图像满足后继方法的要求。例如:二次取样保证图像坐标的正确;平滑去噪滤除感知器引入的设备噪声等;然后,进行特征提取,提取出这幅图像的特征要素;进行检测分割,分割出所要进行隐藏图像的部分,以便于进行后续操作;再进行高级处理,及隐藏信息。 通过查阅资料得知,其中一种隐藏信息的方式为将数字图像转化为二值图像,即只有黑和白的像素,不存在灰色过度的图像,进行处理。利用二值图像的算法主要有图像分块嵌入法,流程修改嵌入法,基于图像特征嵌入法等。但是,利用二值图像嵌入信息,也有不足:在黑白图像中,若把一片全是“0”像素中间突然嵌入一个“1”像素,相当于在一片黑图片当中突然点了一个白点,这会很容易引起人眼的察觉,故而不是很好的信息嵌入策略。 通过了解,我发现有关这一方面的研究还有更深的发展空间,而且在信息化的今天,利用计算机视觉进行图像的处理以及信息的嵌入可以更好的为我们的工作生活提供便利。 且计算机视觉是一个交叉学科,需要多种学科的共同发展,符合当今时代特征。所以,在我看来,计算机视觉是一个未来前景广阔,信息集成度高,市场认可度高的研究方向。

FANUC机器人机器人视觉成像应用(2D)

发那科机器人视觉成像应用(2D) 目录 第一部分:视觉设定 (2) 第二部分:视觉偏差角度的读取与应用 (8) 应用范围:摄像头不安装在机器人上。

第一部分:视觉设定 发那科机器人视觉成像(2D-单点成像),为简化操作流程,方便调试,请遵循以下步骤:1、建立一个新程序,假设程序名为A1。程序第一行和第二行内容为: UFRAME_NUM=2 UTOOL_NUM=2 以上两行程序,是为了指定该程序使用的USER坐标系和TOOL坐标系。此坐标系的序号不应被用作视觉示教时的坐标系。 2、网线连接电脑和机器人控制柜,打开视频设定网页(图一)。 3、放置工件到抓取工位上,通过电脑看,工件尽量在摄像头成像区域中心,且工件应该全 部落在成像区域内。 4、调整机器人位置,使其能准确的抓取到工件。在程序A1中记录此位置,假设此位置的 代号为P1。抬高机械手位置,当其抓取工件运行到此位置时自由运动不能和其他工件干涉,假设此点为P2。得到的P1和P2点,就是以后视觉程序中要用到的抓件的趋近点和抓取点。 5、安装定位针,示教坐标TOOL坐标系(不要使用在程序A1中使用的坐标系号,假设实际 使用的是TOOL3坐标系);TOOL坐标系做完之后一定不要拆掉手抓上的定位针,把示教视觉用的点阵板放到工件上,通过电脑观察,示教板应该尽量在摄像头成像区域中心。 示教USER坐标系(不要使用在程序A1中使用的坐标系号,假设实际使用的是USER3坐标系)。此时可以拆掉手抓上的定位针USER坐标系做好之后一定不要移动示教用的点阵板。 6、按照如下图片内容依次设定视觉。 图一:设定照相机(只需要更改),也就是曝光

浅谈机器人视觉技术

浅谈机器人视觉技术 摘要 机器人视觉是使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。机器人视觉广义上称为机器视觉,其基本原理与计算机视觉类似。计算机视觉研究视觉感知的通用理论,研究视觉过程的分层信息表示和视觉处理各功能模块的计算方法。而机器视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。本文介绍了机器人的发展以及视觉计算理论和视觉的关键技术。 关键词:机器人、视觉、计算、关键技术 一、机器人发展概述 科学技术的发展,诞生了机器人。社会的进步也提出要求,希望创造出一种能够代替人进行各种工作的机器,甚至从事人类不能及的事情。自从1959年诞生第一台机器人以来,机器人技术取得了很大的进步和发展,至今已成为一门集机械、电子、计算机、控制、传感器、信号处理等多学科门类为一体的综合性尖端科学。当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不 断提高,并逐步向智能化方向发展。前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。机器人应用领域的拓宽和性能水平的提高,二者相辅相成、相互促进。 智能机器人是具有感知、思维和行动功能的机器,是机构学、自动控制、计算机、人工智能、微电子学、光学、通讯技术、传感技术、仿生学等多种学科和技术的综合成果阎。智能机器人可获取、处理和识别多种信息,自主地完成较为复杂的操作任务,比一般的工业机器人具有更大的灵活性、机动性和更广泛的应用领域。要使机器人拥有智能,对环境变化做出反应,首先,必须使机器人具有感知

FANUC机器人机器人视觉成像应用D

F A N U C机器人机器人视 觉成像应用D This manuscript was revised by the office on December 10, 2020.

发那科机器人视觉成像应用(2D) 目录 应用范围:摄像头不安装在机器人上。 第一部分:视觉设定 发那科机器人视觉成像(2D-单点成像),为简化操作流程,方便调试,请遵循以下步骤: 1、建立一个新程序,假设程序名为A1。程序第一行和第二行内容为: UFRAME_NUM=2 UTOOL_NUM=2 以上两行程序,是为了指定该程序使用的USER坐标系和TOOL坐标系。此坐标系的序号不应被用作视觉示教时的坐标系。 2、网线连接电脑和机器人控制柜,打开视频设定网页(图一)。 3、放置工件到抓取工位上,通过电脑看,工件尽量在摄像头成像区域中心,且工件应该 全部落在成像区域内。 4、调整机器人位置,使其能准确的抓取到工件。在程序A1中记录此位置,假设此位置的 代号为P1。抬高机械手位置,当其抓取工件运行到此位置时自由运动不能和其他工件干涉,假设此点为P2。得到的P1和P2点,就是以后视觉程序中要用到的抓件的趋近点和抓取点。 5、安装定位针,示教坐标TOOL坐标系(不要使用在程序A1中使用的坐标系号,假设实 际使用的是TOOL3坐标系);TOOL坐标系做完之后一定不要拆掉手抓上的定位针,把示教视觉用的点阵板放到工件上,通过电脑观察,示教板应该尽量在摄像头成像区域中心。示教USER坐标系(不要使用在程序A1中使用的坐标系号,假设实际使用的是USER3坐标系)。此时可以拆掉手抓上的定位针USER坐标系做好之后一定不要移动示教用的点阵板。 6、按照如下图片内容依次设定视觉。 图一:设定照相机(只需要更改),也就是曝 光时间,保证:当光标划过工件特征区域的最亮点时, 中g=200左右。其他不要更改。 图二:标定示教点阵板。此时,只需要更改如下内容: 图三:标定示教点阵板需要做的设定 图四: 标定示教点阵板时,观察数据误差范围 设定完以上内容后,方可以移走示教用的点阵板。之前任何时候移动此示教板,都会造成错误!! 图五(与图六为同一个页面,一个图上截屏不完整。此页只需要更改曝光时间。)图六(与图5是同一个页面)除了设定曝光时间外,什么都不要动。 图七:此图完成后,才可以做图6的set .ref.pos 在完成以上操作后,按照如下步骤示教机器人

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

浅谈计算机视觉与数字摄影测量

浅谈计算机视觉与数字摄影测量 发表时间:2018-06-19T16:47:42.070Z 来源:《基层建设》2018年第12期作者:熊健1 汪军2 施航3 [导读] 摘要:计算机视觉是数字摄影测量的重要组成部分,研究其相关课题有着重要意义。 1江苏省地质勘查技术院江苏南京 210000;2安徽省第四测绘院安徽合肥 230000 3华东冶金地质勘查局八一一地质队安徽滁州 239000 摘要:计算机视觉是数字摄影测量的重要组成部分,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了计算机视觉与数字摄影测量的处理流程,并结合相关实践经验,分别从多个角度与方面就计算机视觉技术在影像处理系统中的实际应用展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:计算机;视觉;数字摄影;测量 1前言 计算机视觉与数字摄影测量是一项实践性较强的综合性工作,其具体实施方法的特殊性不言而喻。该项课题的研究,将会更好地提升对计算机视觉的分析与掌控力度,从而通过合理化的措施与途径,进一步优化该项工作的最终整体效果。 2计算机视觉技术核心问题 视觉问题复杂性的本质在于相对声音等物理信号的描述,视觉信号充满了非常丰富的信息,描述起来也更加困难。比如,很多图像中蕴含了大量简单(如颜色、形状、纹理、几何特征等)及复杂(如场景、字符、物体分布、人物而部特征、人体姿势等)信息并具有较大的动态范围和主观性,如何攻克图像信息提取过程中的各种难题一直是当今计算機图像学研究的热点问题。而且,在科学家们还未完全破译生物视觉系统的奥秘的前提下,大多数CV问题只能采用“逆向推导机制”—依据己知或假设的关联将视觉系统的输入(数字图像)和输出(语义描述)对应起来,通过图片猜测真实世界物体具有的形状,照明度以及颜色分布。因此,基于概率论和数理统计的数学模型是最适合解决这类逆推问题的工具,这也是目前CV领域普遍采用各种统计模型和机器学习算法的本质原因。由于各种学习机制和统计模型需要基于先验知识并建立在对待测图像内容的约束、简化及假设的基础上,和生物视觉几亿年的发展进化相比,其建立的数学模型也只能片而而且粗糙地描绘出视觉系统输入与输出之间的关系。因此,对某组特定图像检测时表现十分优秀的系统,往往对另一组语义相同的图片素手无策;很多看似稳定的机器学习机制,在增加样本种类和数量后,检测率反而会下降;很多设计复杂的检测算法在实际应用中的表现反而不如一些简单且基本的数学描述困。 3计算机视觉与数字摄影测量的处理流程 3.1立体视觉 立体视觉是计算机视觉中的一个重要分支,一直是计算机视觉研究的重点和热点之一,在20多年的发展过程中,逐渐形成了自己的方法和理论。立体视觉的基本原理是从两个(或多个)视点观察同一景物,以获取在不同视角下的感知图像,通过三角测量原理计算像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。一个完整的立体视觉系统通常可分为图像获取、摄像机定标、特征提取、影像匹配、深度确定及内插等6个大部分。其中影像匹配是立体视觉中最重要也是最困难的问题,也是计算机视觉和数字摄影测量的核心问题。 3.2影像匹配 立体视觉的最终目的是为了恢复景物可视表面的完整信息。当空间三维场景被投影为二维图像时,同一景物在不同视点下的图像会有很大不同,而且场景中的诸多因素,如光照条件,景物几何形状和物理特性、噪声干扰和畸变以及摄像机特性等,都被综合成单一的图像中的灰度值。因此,要准确地对包含了如此之多不利因素的图像进行无歧义的匹配,显然是十分困难的。 在摄影测量中最基本的过程之一就是在两幅或者更多幅的重叠影像中识别并定位同名点,以产生立体影像。在模拟摄影测量和解析摄影测量中,同名点的识别是通过人工操作方式完成的;而在数字摄影测量中则利用计算机代替人工解决同名点识别的问题,即采用影像匹配的方法。 3.3多目立体视觉 根据单张相片只能确定地面某个点的方向,不能确定地面点的三维空间位置,而有了立体像对则可构成与地面相似的立体模型,解求地面点的空间位置。双目立体视觉由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,就像人有了两只眼睛,才能看三维立体景观一样,然后通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。现在的数字摄影测量中的立体像对技术通常是在一条基线上进行的,但是由于采用计算机匹配替代人眼测定影像同名像对时存在大量的误匹配,使自动匹配的结果很不可靠。其存在的问题主要是,对存在特殊结构的景物,如平坦、缺乏纹理细节、周期性的重复特征等易产生假匹配;在摄像机基线距离增大时,遮挡严重,能重建的空间点减少。为了解决这些问题,降低双目匹配的难度,自1986年以来出现了三目立体视觉系统,即采用3个摄像机同时摄取空间景物,通过利用第三目图像提供的信息来消除匹配的歧义性。采用“多目立体视觉技术”可以利用摄影测量的空中三角测量原理,对多度重叠点进行“多方向的前方交会”,既能较有效地解决随机的误匹配问题,同时又能增加交会角,提高高程测量的精度。这项技术的应用,将很大程度地解决自动匹配结果的不可靠性,提高数字摄影测量系统的准确性。 4计算机视觉技术在影像处理系统中的实际应用 4.1计算机视觉技术关于图像的预处理的應用 影像测量系统在采集图像的时候,很容易受到周围环境的影响,例如:电磁波的干扰,光的折射,温度的影响等,这将很容易导致测量系统采集到事物图像在播发过程中都会夹杂着刺耳的噪声,对测量物品的边缘描述过于模糊,使得零件的精准度的测量受到了影响。因此需要把计算机视觉技术和影响测量系统的应用结合在一起,在测量产品,处理图像过程中,需要进行原始图像的修改和清晰度的矫正并且选择性的过滤影响产品测量的噪声。由于在测量过程中结合了计算机视觉技术,所以在图像的预处理的时候,不需要对图画质量的降低,可以运用计算机视觉技术对于图像进行修改,重要的部位采用灰色直方图修改技术特别标出,其他部位选择性消除。虽然计算机技术跟影像测量系统的结合很好的处理了这些的问题,但是也要避免在测量过程中受到噪音的干扰,从而使得图像变质。因此,在测量的时候可以先对周围环境进行预处理,采用计算机视觉技术中的边缘保持滤波算法降低周围环境的噪声影响,从而保证了测量图像的精确性。 4.2计算机视觉技术关于图像边缘处理的应用

机器人视觉系统(Robot Vision)简介

机器人视觉系统(Robot Vision)简介 【字体:大中小】时间:2014-08-28 11:00:06 点击次数:23次 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

浅谈视觉传感器

浅谈视觉传感技术 王恋 (重庆理工大学,贵州省安顺市561009) 摘要:随着科学技术的发展,传感器的研究和应用变得越来越重要,它成为获取信息的重要技术手段,针对不同的应用传感器技术也分为:光电传感技术、光纤传感技术、视觉传感技术、生表面波传感技术、生物传感技术、化学传感技术、前沿传感技术这七大类传感技术,本文将着重介绍视觉传感技术。视觉传感技术因其硬件成本的显著降低,性能的极大提升以及具备了大规模推广的条件得到了绝大多数研究者和工业生产者的青睐,这为视觉传感技术的发展前景奠定了基础,但同时也存在测量精度问题,视觉传感器对环境的高要求也是视觉传感器需要解决的问题,只有提高了测量精度问题和适应环境变化的问题才能使得视觉传感器更具有竞争力和自身优势。 关键词:信息;传感技术;视觉传感技术;测量精度;适应环境 On visual sensing technology Wang Lian (Chongqing University of technology,Anshun City,Guizhou Province,561009,China) Abstract:With the development of science and technology,research and application of the sensor becomes more and more important,it has become an important technical means to obtain information,according to the application of different sensor technologies are also divided into:photoelectric sensor technology,optical fiber sensing technology,visual sensing technology, surface wave sensor technology,biological sensor technology,chemical sensing technology,the sensor technology frontier seven kinds of sensing technology,this paper will focus on the visual sensing technology.Because the visual sensing technology significantly reduce the hardware cost,greatly enhance the performance and have a large-scale promotion of the conditions have been most researchers and industrial producers favor,which laid the foundation for future vision sensing technology,but there are also problems of measurement accuracy,the problem of the high requirement of visual sensor is also a visual environment the sensor needs to be solved,only to improve the measurement accuracy and to adapt the change of environment problems in order to make the visual sensor has more advantages and competitiveness Key words:Information;sensing technology;vision sensing technology;measurement accuracy;adaptation to the environment 0引言 视觉源于生物界获取外部环境信息的一种方式,是自然界生物获取信息的最有效手段,是生物智能的核心组成之一。人类80%的信息都是依靠视觉获取的,基于这一启发研究人员开始为机械安装“眼睛”使得机器跟人类一样通过“看”获取外界信息,由此诞生了一门新兴学科——计算机视觉,人们通过对生物视觉系统的研究从而模仿制作机器视觉系统,尽管与人类视觉系统相差很大,但是这对传感器技术而言是突破性的进步。视觉传感器技术的实质就是图像处理技术,通过截取物体表面的信号绘制成图像从而呈现在研究人员的面前。视觉传感技术的出现解决了其他传感器因场地大小限制或检测设备庞大而无法操作的问题,由此广受工业制造界的欢迎。本文通过对比视觉传感技术的优缺点以及发展趋势来展示视觉传感技术的兴起和应用。 1视觉传感技术概述 视觉传感技术是传感技术七大类中的一个,视觉传感器是指[1]:通过对摄像机拍摄到的图像进行图像处理,来计算对象物的特征量(面积、重心、长度、位置等),并输出数据和判断结果的传感器。视觉传感器具有从一整幅图像捕获光线的数以千计的像素。图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。在捕获图像之后,视觉传感器将其与内存中存储的基准图像进行比较,以做出分析。它是基于生物视觉和计算机视觉所提出的。视觉传感器是50年代后期出现的,发展十分迅速,是机器人中最重要的传感器之一。机器人视

相关主题
文本预览
相关文档 最新文档