当前位置:文档之家› Linux下的段错误调试方法

Linux下的段错误调试方法

Linux下的段错误调试方法
Linux下的段错误调试方法

简而言之,产生段错误就是访问了错误的内存段,一般是你没有权限,或者根本就不存在对应的物理内存,尤其常见的是访问0地址.

一般来说,段错误就是指访问的内存超出了系统所给这个程序的内存空间,通常这个值是由gdtr来保存的,他是一个48位的寄存器,其中的32位是保存由它指向的gdt表,后13位保存相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在cpu中的运行级别,指向的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的起始地址以及与此相应的段限和页面交换还有程序运行级别还有内存粒度等等的信息。一旦一个程序发生了越界访问,cpu就会产生相应的异常保护,于是segmentation fault就出现了.

在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的

1)访问系统数据区,尤其是往系统保护的内存地址写数据

最常见就是给一个指针以0地址

2)内存越界(数组越界,变量类型不一致等)访问到不属于你的内存区域

解决方法

我们在用C/C++语言写程序的时侯,内存管理的绝大部分工作都是需要我们来做的。实际上,内存管理是一个比较繁琐的工作,无论你多高明,经验多丰富,难免会在此处犯些小错误,而通常这些错误又是那么的浅显而易于消除。但是手工“除虫”(debug),往往是效率低下且让人厌烦的,本文将就"段错误"这个内存访问越界的错误谈谈如何快速定位这些"段错误"的语句。

下面将就以下的一个存在段错误的程序介绍几种调试方法:

11dummy_function(void)

22{

33unsigned char*ptr=0x00;

44*ptr=0x00;

55}

66

77int main(void)

88{

99dummy_function();

1010

1111return0;

1212}

作为一个熟练的C/C++程序员,以上代码的bug应该是很清楚的,因为它尝试操作地址为0的内存区域,而这个内存区域通常是不可访问的禁区,当然就会出错了。我们尝试编译运行它:

13luke@gentux test$./a.out

14段错误

果然不出所料,它出错并退出了。

1.利用gdb逐步查找段错误:

这种方法也是被大众所熟知并广泛采用的方法,首先我们需要一个带有调试信息的可执行程序,所以我们加上“-g-rdynamic"的参数进行编译,然后用gdb调试运行这个新编译的程序,具体步骤如下:

15luke@gentux test$gcc-g-rdynamic d.c

16luke@gentux test$gdb./a.out

17GNU gdb6.5

18Copyright(C)2006Free Software Foundation,Inc.

19GDB is free software,covered by the GNU General Public License,and you are 20welcome to change it and/or distribute copies of it under certain conditions.

21Type"show copying"to see the conditions.

22There is absolutely no warranty for GDB.Type"show warranty"for details.

23This GDB was configured as"i686-pc-linux-gnu"https://www.doczj.com/doc/7816867844.html,ing host libthread_db library "/lib/libthread_db.so.1".

24

25(gdb)r

26Starting program:/home/xiaosuo/test/a.out

27

28Program received signal SIGSEGV,Segmentation fault.

290x08048524in dummy_function()at d.c:4

304*ptr=0x00;

31(gdb)

哦?!好像不用一步步调试我们就找到了出错位置d.c文件的第4行,其实就是如此的简单。

从这里我们还发现进程是由于收到了SIGSEGV信号而结束的。通过进一步的查阅文档(man 7signal),我们知道SIGSEGV默认handler的动作是打印”段错误"的出错信息,并产生Core 文件,由此我们又产生了方法二。

2.分析Core文件:

Core文件是什么呢?

32The default action of certain signals is to cause a process to terminate and produce a core dump file,a disk file containing an image of the process's memory at the time of termination.A list of the signals which cause a process to dump core can be found in signal(7).

以上资料摘自man page(man5core)。不过奇怪了,我的系统上并没有找到core文件。后来,忆起为了渐少系统上的拉圾文件的数量(本人有些洁癖,这也是我喜欢Gentoo的原因之一),禁止了core文件的生成,查看了以下果真如此,将系统的core文件的大小限制在512K 大小,再试:

33luke@gentux test$ulimit-c

340

35luke@gentux test$ulimit-c1000

36luke@gentux test$ulimit-c

371000

38luke@gentux test$./a.out

39段错误(core dumped)

40luke@gentux test$ls

41 a.out core d.c f.c g.c pango.c test_iconv.c test_regex.c

core文件终于产生了,用gdb调试一下看看吧:

42luke@gentux test$gdb./a.out core

43GNU gdb6.5

44Copyright(C)2006Free Software Foundation,Inc.

45GDB is free software,covered by the GNU General Public License,and you are 46welcome to change it and/or distribute copies of it under certain conditions.

47Type"show copying"to see the conditions.

48There is absolutely no warranty for GDB.Type"show warranty"for details.

49This GDB was configured as"i686-pc-linux-gnu"https://www.doczj.com/doc/7816867844.html,ing host libthread_db library "/lib/libthread_db.so.1".

50

51

52warning:Can't read pathname for load map:输入/输出错误.

53Reading symbols from/lib/libc.so.6...done.

54Loaded symbols for/lib/libc.so.6

55Reading symbols from/lib/ld-linux.so.2...done.

56Loaded symbols for/lib/ld-linux.so.2

57Core was generated by`./a.out'.

58Program terminated with signal11,Segmentation fault.

59#00x08048524in dummy_function()at d.c:4

604*ptr=0x00;

哇,好历害,还是一步就定位到了错误所在地,佩服一下Linux/Unix系统的此类设计。

接着考虑下去,以前用windows系统下的ie的时侯,有时打开某些网页,会出现“运行时错误”,这个时侯如果恰好你的机器上又装有windows的编译器的话,他会弹出来一个对话框,问你是否进行调试,如果你选择是,编译器将被打开,并进入调试状态,开始调试。Linux下如何做到这些呢?我的大脑飞速地旋转着,有了,让它在SIGSEGV的handler中调用gdb,于是第三个方法又诞生了:

3.段错误时启动调试:

61#include

62#include

63#include

64#include

65

66void dump(int signo)

67{

68char buf[1024];

69char cmd[1024];

70FILE*fh;

71

72snprintf(buf,sizeof(buf),"/proc/%d/cmdline",getpid()); 73if(!(fh=fopen(buf,"r")))

74exit(0);

75if(!fgets(buf,sizeof(buf),fh))

76exit(0);

77fclose(fh);

78if(buf[strlen(buf)-1]=='\n')

79buf[strlen(buf)-1]='\0';

80snprintf(cmd,sizeof(cmd),"gdb%s%d",buf,getpid()); 81system(cmd);

82

83exit(0);

84}

85

86void

87dummy_function(void)

88{

89unsigned char*ptr=0x00;

90*ptr=0x00;

91}

92

93int

94main(void)

95{

96signal(SIGSEGV,&dump);

97dummy_function();

98

99return0;

100}

编译运行效果如下:

101luke@gentux test$gcc-g-rdynamic f.c

102luke@gentux test$./a.out

103GNU gdb6.5

104Copyright(C)2006Free Software Foundation,Inc.

105GDB is free software,covered by the GNU General Public License,and you are 106welcome to change it and/or distribute copies of it under certain conditions.

107Type"show copying"to see the conditions.

108There is absolutely no warranty for GDB.Type"show warranty"for details.

109This GDB was configured as"i686-pc-linux-gnu"https://www.doczj.com/doc/7816867844.html,ing host libthread_db library "/lib/libthread_db.so.1".

110

111Attaching to program:/home/xiaosuo/test/a.out,process9563

112Reading symbols from/lib/libc.so.6...done.

113Loaded symbols for/lib/libc.so.6

114Reading symbols from/lib/ld-linux.so.2...done.

115Loaded symbols for/lib/ld-linux.so.2

1160xffffe410in__kernel_vsyscall()

117(gdb)bt

118#00xffffe410in__kernel_vsyscall()

119#10xb7ee4b53in waitpid()from/lib/libc.so.6

120#20xb7e925c9in strtold_l()from/lib/libc.so.6

121#30x08048830in dump(signo=11)at f.c:22

122#4

123#50x0804884c in dummy_function()at f.c:31

124#60x08048886in main()at f.c:38

怎么样?是不是依旧很酷?

以上方法都是在系统上有gdb的前提下进行的,如果没有呢?其实glibc为我们提供了此类能够dump栈内容的函数簇,详见/usr/include/execinfo.h(这些函数都没有提供man page,难怪我们找不到),另外你也可以通过gnu的手册进行学习。

4.利用backtrace和objdump进行分析:

重写的代码如下:

125#include

126#include

127#include

128#include

129

130/*A dummy function to make the backtrace more interesting.*/

131void

132dummy_function(void)

133{

134unsigned char*ptr=0x00;

135*ptr=0x00;

136}

137

138void dump(int signo)

139{

140void*array[10];

141size_t size;

142char**strings;

143size_t i;

144

145size=backtrace(array,10);

146strings=backtrace_symbols(array,size);

147

148printf("Obtained%zd stack frames.\n",size);

149

150for(i=0;i

151printf("%s\n",strings[i]);

152

153free(strings);

154

155exit(0);

156}

157

158int

159main(void)

160{

161signal(SIGSEGV,&dump);

162dummy_function();

163

164return0;

165}

编译运行结果如下:

166luke@gentux test$gcc-g-rdynamic g.c

167luke@gentux test$./a.out

168Obtained5stack frames.

169./a.out(dump+0x19)[0x80486c2]

170[0xffffe420]

171./a.out(main+0x35)[0x804876f]

172/lib/libc.so.6(__libc_start_main+0xe6)[0xb7e02866]

173./a.out[0x8048601]

这次你可能有些失望,似乎没能给出足够的信息来标示错误,不急,先看看能分析出来什么吧,用objdump反汇编程序,找到地址0x804876f对应的代码位置:

174luke@gentux test$objdump-d a.out

175

1768048765:e802fe ff ff call804856c

177804876a:e825ff ff ff call8048694

178804876f:b800000000mov$0x0,%eax

1798048774:c9leave

我们还是找到了在哪个函数(dummy_function)中出错的,信息已然不是很完整,不过有总比没有好的啊!

后记:

本文给出了分析"段错误"的几种方法,不要认为这是与孔乙己先生的"回"字四种写法一样的哦,因为每种方法都有其自身的适用范围和适用环境,请酌情使用,或遵医嘱。

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.doczj.com/doc/7816867844.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

linux C用户态调试追踪函数调用堆栈以及定位段错误

linux C用户态调试追踪函数调用堆栈以及定位段错误 一般察看函数运行时堆栈的方法是使用GDB(bt命令)之类的外部调试器,但是,有些时候为了分析程序的BUG,(主要针对长时间运行程序的分析),在程序出错时打印出函数的调用堆栈是非常有用的。 在glibc头文件"execinfo.h"中声明了三个函数用于获取当前线程的函数调用堆栈。 int backtrace(void **buffer,int size) 该函数用于获取当前线程的调用堆栈,获取的信息将会被存放在buffer中,它是一个指针列表。参数size 用来指定buffer中可以保存多少个void* 元素。函数返回值是实际获取的指针个数,最大不超过size大小 在buffer中的指针实际是从堆栈中获取的返回地址,每一个堆栈框架有一个返回地址 注意:某些编译器的优化选项对获取正确的调用堆栈有干扰,另外内联函数没有堆栈框架;删除框架指针也会导致无法正确解析堆栈内容 char ** backtrace_symbols (void *const *buffer, int size) backtrace_symbols将从backtrace函数获取的信息转化为一个字符串数组. 参数buffer应该是从backtrace函数获取的指针数组,size是该数组中的元素个数(backtrace的返回值) 函数返回值是一个指向字符串数组的指针,它的大小同buffer相同.每个字符串包含了一个相对于buffer中对应元素的可打印信息.它包括函数名,函数的偏移地址,和实际的返回地址 现在,只有使用ELF二进制格式的程序才能获取函数名称和偏移地址.在其他系统,只有16进制的返回地址能被获取.另外,你可能需要传递相应的符号给链接器,以能支持函数名功能(比如,在使用GNU ld链接器的系统中,你需要传递(-rdynamic),-rdynamic可用来通知链接器将所有符号添加到动态符号表中,如果你的链接器支持-rdynamic的话,建议将其加上!) 该函数的返回值是通过malloc函数申请的空间,因此调用者必须使用free函数来释放指针. 注意:如果不能为字符串获取足够的空间函数的返回值将会为NULL void backtrace_symbols_fd (void *const *buffer, int size, int fd)

Linux操作系统基础教程

Linux操作系统基础教程 清华大学信息学院计算机系 目录 前言 (2) 第一讲 Linux基础 (2) 一.什么是Linux? (2) 二.安装Linux的好处? (3) 三.如何得到Linux? (3) 四.如何得到Linux的最新消息? (3) 五.Linux操作系统上有什么应用? (4) 六.在那里可以找到讨论区? (5) 七.安装过程 (5) 第二讲 Linux基础进阶 (5) 一.Linux的文件系统结构 (6) 二. 文件类型 (7) 三.Linux基本操作命令 (8) 四.基本的系统管理命令 (14) 五.关於 Process 处理的指令 (16) 六. 关於字串处理的指令 (17) 七. 网路上查询状况的指令 (17) 八. 网路指令 (18) 九. 关於通讯用的指令 (21) 十. 编译器( Compiler ) (22) 十一. 有关列印的指令 (22) 第三讲 Linux下的网络服务,配置问题和常用工具 (24) 一.Linux下的网络服务 (24) 二.几种重要的配置文件 (26) 三.Linux下常用的工具软件 (28) 尾语 (31)

前言 Linux是在1991年发展起来的与UNIX兼容的操作系统,可以免费使用,它的源代码可以自由传播且可任人修改、充实、发展,开发者的初衷是要共同创造一个完美、理想并可以免费使用的操作系统。 我们并不能使同学们通过这次系列讲座成为一个UNIX类操作系统的高手,这次系列讲座的目的就是在同学们中间普及Linux基础知识,为今后我们更加接近的了解Linux做一个好的开端。 第一讲 Linux基础 在这一讲中,我们主要是了解一下Linux的概况,以及对Linux有一个初步的感性认识。 一.什么是Linux? Linux是一个以Intel系列CPU(CYRIX,AMD的CPU也可以)为硬件平台,完全免费的UNIX兼容系统,完全适用于个人的PC。它本身就是一个完整的32位的多用户多任务操作系统,因此不需要先安装DOS或其他的操作系统(MS Windows, OS2, MINIX..)就可以进行直接的安装。Linux的最早起源是在1991年10月5日由一位芬兰的大学生Linux Torvalds (Torvalds@kruuna.helsinki.fi)写了Linux核心程序的0.02版开始的,但其后的发展却几乎都是由互联网上的Linux社团(Linux Community)互通交流而完成的。Linux不属于任何一家公司或个人,任何人都可以免费取得甚至修改它的源代码(source code)。Linux上的大部分软件都是由GNU倡导发展起来的,所以软件通常都会在附着GNU Public License(GPL)的情况下被自由传播。GPL是一种可以使你免费获得自由软件的许可证,因此Linux使用者的使用活动基本不受限制(只要你不将它用于商业目的),而不必像使用微软产品是那样,

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

linux错误码大全

linux错误码大全 查看错误代码errno是调试程序的一个重要方法。当linuc C api函数发生异常时,一般会将errno变量(需include errno.h)赋一个整数值,不同的值表示不同的含义,可以通过查看该值推测出错的原因。在实际编程中用这一招解决了不少原本看来莫名其妙的问题。比较麻烦的是每次都要去linux源代码里面查找错误代码的含义,现在把它贴出来,以后需要查时就来这里看了。 1-34号错误号是在内核源码的include/asm-generic/errno-base.h定义 35-132则是在include/asm-generic/errno.h中定义 剩下还有一些更大的错误号是留给内核级别的,如系统调用等,用户程序一般是看不见的这些号的,Ubuntu9.10中 /usr/src/linux-headers-2.6.31-21-generic/include/linux/errno.h #ifndef _ASM_GENERIC_ERRNO_BASE_H #define _ASM_GENERIC_ERRNO_BASE_H #define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #define ESRCH 3 /* No such process */ #define EINTR 4 /* Interrupted system call */ #define EIO 5 /* I/O error */ #define ENXIO 6 /* No such device or address */ #define E2BIG 7 /* Argument list too long */ #define ENOEXEC 8 /* Exec format error */ #define EBADF 9 /* Bad file number */ #define ECHILD 10 /* No child processes */ #define EAGAIN 11 /* Try again */ #define ENOMEM 12 /* Out of memory */ #define EACCES 13 /* Permission denied */ #define EFAULT 14 /* Bad address */ #define ENOTBLK 15 /* Block device required */ #define EBUSY 16 /* Device or resource busy */ #define EEXIST 17 /* File exists */ #define EXDEV 18 /* Cross-device link */ #define ENODEV 19 /* No such device */

《Linux系统应用与开发教程》所有课后习题和答案

《Linux系统应用与开发教程》所有课后习题和答案 第1章Linux概述 (1) 第2章shell及常用命令 (4) 第3章vi编辑器的使用 (7) 第4章X Window系统的使用 (9) 第5章Linux系统的常用软件 (11) 第6章硬件管理 (11) 第7章网络基本配置 (12) 第8章常用网络服务的配置和使用 (15) 第9章系统管理与监控 (19) 第10章Linux系统的安全管理 (21) 第11章shell程序设计 (24) 第12章gcc的使用与开发 (26) 第13章gtk+图形界面程序设计 (27) 第14章Qt图形界面程序设计 (28) 第15章集成开发环境KDevelop的使用 (31) 第1章 Linux概述 1.什么是Linux? Linux是一套免费使用和自由传播的类UNIX操作系统,源代码开放,能运行于各类硬件平台,包括Intel x86系列和RISC处理器。这个系统是由世界各地成千上万的程序员设计和实现的。其目的是建立不受任何商品化软件的版权制约的、全世界都能自由使用的UNIX兼容产品。 2.Linux有哪些特性? (1)开放性 (2)多用户 (3)多任务 (4)良好的用户界面 (5)设备独立性 (6)丰富的网络功能

(7)可靠的系统安全 (8)良好的可移植性 3.Linux与Windows操作系统的主要区别是什么? (1)从发展的背景看,Linux是从一个比较成熟的操作系统发展而来的,而其他操作系统,如Windows等,都是自成体系,无对应的相依托的操作系统 (2)从使用费用上看,Linux是一种开放、免费的操作系统,Windows是封闭的系统,需要有偿使用。 (3)Linux上丰富的应用软件也是自由的,而在Windows下,几乎所有的软件都有独立的版权,需要购买使用,即使某些软件可以免费使用,也一般不提供其源代码,更不用说由用户修改扩充其功能了。 (4)Windows对硬件配置要求高,而Linux在低端PC系统上仍然可以流畅运行4.Linux与Unix的共同点与不同点是什么? 共同点:由于Linux是从Unix发展来到,它遵循Unix开放标准,基本支持同样的软件、程序设计环境和网络特性,可以说Linux是UNIX的PC版本,Linux在PC机上提供了相当于UNIX工作站的性能。 与商用Unix的不同点有:1)Linux是免费软件,用户可以从网上下载,而商用的UNIX除了软件本身的价格外,用户还需支付文档、售后服务费用;2)Linux拥有GNU软件支持,Linux能够运行GNU计划的大量免费软件,这些软件包括应用程序开发、文字处理、游戏等方面的内容;3)Linux的开发是开放的,任何志愿者都可以对开发过程做出贡献;而商用UNIX则是由专门的软件公司进行开发的。 与自由Unix的不同点: 1)在组织方式上,FreeBSD由它的核心团队(core team)的领导,他们负责原始程序的开发与维护。有core team的优点是原始程序会有一致性,会有组织的被更新,但是整个系统的活力操纵在core team手中,缺乏活力。Linux没有核心团队,在Linus的主导下来自世界各地的爱好者都可以发布自己的patch,缺点是源代码杂乱无章且可能会相互冲突。 2)在发展方向上,FreeBSD的核心团队将主要精力投入在UNIX自身的风格和特点上。Lin ux通常会首先加入商品化系统上的各种东西,比如新的硬件驱动、samba等。因此,从易用和可用上讲,Linux更容易上手和使用。 3)在系统核心功能上二者区别不大,但在Linux系统上,几乎可是找到任何需要的功能 4)在系统的性能上,据专家分析,FreeBSD在网络性能、软件移植性和系统规范化上略胜一畴,而在硬件支持、磁盘IO操作等方面Linux略强一些。 5.什么是GNU软件,什么是GPL和LGPL? GUN项目主要由自由软件基金资助的一个项目,目标是开发一个自由的、UNIX类型的操作系统,称为GNU系统。GNU是―GNU’s Not UNIX‖的首字母的递归缩写,目前使用Linux内

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

c语言段错误小结

C段错误总结 C语言2009-02-17 11:49:51 阅读21 评论0 字号:大中小订阅 最近一段时间在linux下用C做一些学习和开发,但是由于经验不足,问题多多。而段错误就是让我非常头痛的一个问题。不过,目前写几百行的代码,也很少出现段错误,或者是即使出现了,也很容易找出来,并且处理掉。 那什么是段错误?段错误为什么是个麻烦事?以及怎么发现程序中的段错误以及如何避免发生段错误呢? 一方面为了给自己的学习做个总结,另一方面由于至今没有找到一个比较全面介绍这个虽然是“FREQUENTLY ASKED QUESTIONS”的问题,所以我来做个抛砖引玉吧。下面就从上面的几个问题出发来探讨一下“Segmentation faults"吧。 目录 1。什么是段错误? 2。为什么段错误这么“麻烦”? 3。编程中通常碰到段错误的地方有哪些? 4。如何发现程序中的段错误并处理掉? 正文 1。什么是段错误? 下面是来自https://www.doczj.com/doc/7816867844.html,的定义: A segmentation fault(often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors. Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy.

Linux操作系统实验教程

Linux操作系统实验教程 第1章Linux系统概述 一、Linux系统结构 从操作系统的角度来分析Linux,它的体系结构总体上属于层次结构如下图所示: 从内到外包括三层:最内层是系统核心,中间是Shell、编译编辑实用程序、库函数等,最外层是用户程序,包括许多应用软件。 从操作系统的功能角度来看,它的核心有五大部分组成:进程管理、存储管理、文件管理、设备管理、网络管理。各子系统实现其主要功能,同时相互之间是合作、依赖的关系。进程会管理是操作系统最核心的内容,它控制了整个系统的进程调度和进程之间的通信,是整个系统合理高效运行的关键; 存储管理为其他子系统提供内存管理支持,同时其他子系统又为内存管理提供了实现支持,例如要通过文件管理和设备管理实现虚拟存储器和内外存的统一管理。 二、配置一个双引导系统 如果计算机中已经安装了其他操作系统,并想创建一个引导系统以便兼用Red Hat Linux和另外的操作系统,需要使用双引导。机器启动时,可以选择其中之一,但不能同时使用两者。每个操作系统都从自己的硬盘驱动器或硬盘分区中引导,并使用自己的硬盘驱动器或硬盘分区。 如果计算机上还没有安装任何操作系统,可以使用专门的分区及格式化软件给Windows创建指定大小的分区,Windows的文件系统为FAT,再为Linux系统创建所需要大小的分区(4G或更大),另外再给Linux留100MB 左右的交换分区,Linux的文件系统为ext2。然后就可以安装系统了。应首先安装Windows,然后再安装Red Hat Linux。如果只进行了分区而没有格式化各分区,在安装时可以使用Windows自带的格式化程序和Linux自带的格式化程序进行各自分区的格式化。 当Windows已经被安装,而且已为Linux准备了足够的磁盘空间,就可以安装Linux了。Red Hat Linux安装程序通常会检测到Windows并自动配置引导程序来引导Windows或Red Hat Linux。

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

中文版Linux 桌面操作系统初级教程

《中文版Linux 桌面操作系统初级教程》郭守华宋雪娇编著 Linux操作系统支持多种安装方式。本章将讨论从硬盘安装对红旗Linux、共创Linux等各种版本的Linux都适用的通用方法。从硬盘安装Linux操作系统,首先要准备安装包,Linux操作系统的安 装包通常是一个或多个ISO镜像文件(一般通过网络下载就可以得到);其次,要通过某种手段启动镜像 文件中的系统安装程序;接下来,按照安装程序的提示信息进行安装就可以了。安装过程中,需要指 定Linux操作系统的安装位置,这主要涉及硬盘分区的一些知识。 综合来看,学习Linux操作系统的安装,关键要学会两点:第一、如何Linux操作系统准备硬盘 空间?第二、如何启动ISO镜像文件中的安装程序。 硬盘分区 通常,在使用硬盘时,都要进行分区。如果把未分区的硬盘比做一张大白纸,那么分区后的硬 盘就相当于这张大白纸被画上了几个大方框。一块硬盘被分成多个分区之后,各分区之间是相对独立 的,每个分区都可以有自己的文件格式,例如FAT16、FAT32、NTFS等等。 Linux操作系统需要的硬盘分区 要安装一个操作系统,一般来讲都要为它准备专门的分区。专门,意味着不能与其他操作系统 合用一个分区,也意味着不要与用户自己的数据文件合用一个分区,前者是因为不同的操作系统可能 需要不同格式的磁盘分区,后者则更多地出于用户数据安全和系统维护方便的考虑。从最低配置角度 讲,Linux 操作系统需要一个EXT2或EXT3格式的硬盘分区作为根分区,大小在2~5G就可以。另外还 需要一个SWAP 格式的交换分区,大小与内存有关:如果内存在256M以下,交换分区的大小应该是内存 的两倍;如果内存在256M以上,交换分区的大小等于内存大小即可。 Windows硬盘分区管理工具 管理硬盘分区的工具有很多,在网上也可以找到详细的使用指导。为了方便读者,本书整理收 录了Windows 环境下运行的PQMagic4.0 的使用方法,其它版本的PQMagic的使用方法也基本相同。

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

Linux 操作系统 Ubuntu 图 安装 教程 hzd

。 。 Linux 操作系统 Ubuntu 9.10 图解安装教程 QQ :183284035 2011-11-1 Ubuntu 是一个神奇的 Linux 操作系统,四年多前我们第一次试用了 Ubuntu ,之后便被深深的吸引, 特别是从 8.04Lts 开始,Ubuntu 便成了沙浪网众人的主要工作环境。特别是沙浪网美女小梅,在午睡梦呓 中竟然喃喃自语说出“非 Ubuntu 不嫁”这样的豪言壮语,令人震撼! Ubuntu 是一个流行的 Linux 操作系统,基于 Debian 发行版和 GNOME 桌面环境,和其他 Linux 发 行版相比,Ubuntu 非常易用,和 Windows 相容性很好,非常适合 Windows 用户的迁移,预装了大量 常用软件,中文版的功能也较全,支持拼音输入法,预装了 Firefox 、Open Office 、多媒体播放、图像处理等 大多数常用软件,一般会自动安装网卡、音效卡等设备的驱动,对于不打游戏不用网银的用户来说,基本 上能用的功能都有了,在 Windows 操作系统下不用分区即可安装使用,就如同安装一个应用软件那么容 易,整个 Ubuntu 操作系统在 Windows 下就如同一个大文件一样,很容易卸载掉。 Ubuntu 经过近五年的发展,从 Ubuntu 4.10 到当前的 Ubuntu 9.10,进步之大是有目共睹的事实。 当然,Ubuntu 的进步是建立在所有自由软件进步的基础之上的。 下面,通过一些简单的介绍,让我们来了解一下 Ubuntu : 官方解答 什么是 Ubuntu? Ubuntu 是一个由全球化的专业开发团队建造的操作系统。它包含了所有您需要的应用程序:浏览器、 Office 套件、多媒体程序、即时消息等。 Ubuntu 是一个 Windows 和 Office 的开源替代品。 1. 关于 Ubuntu 一词 Ubuntu 是一个南非的民族观念,着眼于人们之间的忠诚和联系。该词来自于祖鲁语和科萨语。Ubuntu (发音"oo-BOON-too"--“乌班图”)被视为非洲人的传统理念,也是建立新南非共和国的基本原则 之一,与非洲复兴的理想密切相关。Ubuntu 精神的大意是“人道待人”(对他人仁慈)另一种翻译可 以是:“天下共享的信念,连接起每个人” “具有 ubuntu 精神的人心胸开阔,乐于助人,见贤思 齐而不忌妒贤能,因为他/她拥有适度的自信,而这源自如下认识:自己乃是属于一个更大的整体, 当他人受到伤害或死去时,当他人受到折磨或压迫时,这个整体就会消失。”--大主教 Desmond Tutu 。 作为一个基于 GNU/Linux 的平台,Ubuntu 操作系统将 ubuntu 精神带到了软件世界。

Linux服务器常用命令(简化版)

Linux服务器常用命令(简化版) 信息来源:网络整理:HY 日期:2011-5-27 Intel Fortran编译 Linux shell管道命令(pipe)使用及与shell重定向 Linux命令替换 Linux 任务控制(bg jobs fg nohup &) Linux进程查看 Linux账户管理 Linux系统与硬盘信息查询 Linux VIM语法高亮与程序段错误 Linux十大常用命令

Intel Fortran编译 完整编译顺序 $ ifort -c Hello.f90 -o Hello.o编译源文件(.f90)生成目标文件(.o) $ ifort Hello.o -o Hello链接目标文件生成可执行程序Hello $./Hello 执行可执行程序 默认(常用编译方法) $ ifort Hello.f90编译&链接 $./a.out 执行a.out(默认可执行程序名) 后台运行 $ ./a.out & 后台运行,退出shell会使程序停止,输出信息会显示在屏幕,不建议这样使用$nohup ./a.out & 输出到屏幕的信息输出到nohup.out文件 $nohup ./a.out > screen.txt & 输出到屏幕的信息输出到screen.txt文件(推荐) Linux shell管道命令(pipe)使用及与shell重定向 Ref:https://www.doczj.com/doc/7816867844.html,/chengmo/archive/2010/10/21/1856577.html 重定向 详细解释参考:https://www.doczj.com/doc/7816867844.html,/view/2173319.htm 在Linux命令行模式中,如果命令所需的输入不是来自键盘,而是来自指定的文件,这就是输入重定向。同理,命令的输出也可以不显示在屏幕上,而是写入到指定文件中,这就是输出重定向。 重定向分为: 重定向分为 输出重定向、输入重定向和错误重定向。 < 实现输入重定向。 >或>> 实现输出重定向,用户可以使用输出重定向把一个命令的输出重定向到一个文件 1)ls –l /etc>dir 将ls命令生成的/etc目录下的一个清单存到当前目录 中的dir文件,而不在屏幕输出。 2)ls –l /usr>>dir 将ls命令生成的/usr目录的一个清单以追加的方式存 到当前目录中的dir文件中。 重定向连接两个或多个文件? 使用cat命令并重定向输出到一个文件可以连接两个或多个文件。 重定向追加到一个文件:可以使用双重定向输出符号“>>”,保留文件以前的内容。 这种情况下,命令输出追加到另一个文件中。 重定向重定向标准输出到一个设备? 除了重定向一个命令的输出到一个文件,也可以把它重定向到一个设备,因为UNIX系统将设备当做文件。 $echo “Hello! I am petter!” > /dev/tty01 重定向标准输入? 使用“<”重定向输入。例如:用户已经创建好了一个文件letter。如果希望通过电子邮件发送给用户petter。可以使用下面方式:$mail petter < letter 重定向标准错误重定向? 没有专门的符号用于重定向stderr。我们可以同样使用“< ”或“>”符号,但需在它前面补一个数字2。 PS:重定向的优先级大于管道的优先级!^_^ 管道右边的命令只能对管道左边的命令的标准输出(输出到屏幕)起作用,不对错误输出(也输出到屏幕)起作用。 一个命令的执行首先决定0,1,2设备的定向,然后才执行命令,可以将定向理解为命令执行

Linux段错误(精)

1 执行socket文件时,出现段错误 (core dumped 产生段错误就是访问了错误的内存段,一般是你没有权限,或者根本就不存在对应的物理内存,尤其常见的是访问0地址. 解决方法: 利用gdb逐步查找段错误: 首先我们需要一个带有调试信息的可执行程序,所以我们加上“-g -rdynamic"的参数进行编译,然后用gdb调试运行这个新编译的程序,具体步骤如下: 1、 gcc -g -rdynamic d.c 2、 gdb ./a.out 3、 r 这样就找到了出错位置。然后在相应位置修改。 2 linux 段错误如何调试 linux下的c程序常常会因为内存访问错误等原因造成segment fault(段错误)此时如果系统core dump功能是打开的,那么将会有内存映像转储到硬盘上来,之后可以用gdb对core文件进行分析,还原系统发生段错误时刻的堆栈情况。这对于我们发现程序bug很有帮助。

使用ulimit -a可以查看系统core文件的大小限制;使用ulimit -c [kbytes]可以设置系统允许生成的core文件大小。 ulimit -c 0 不产生core文件 ulimit -c 100 设置core文件最大为100k ulimit -c unlimited 不限制core文件大小 步骤: 1、当发生段错误时,我们查看ulimit -a (core file size (blocks, -c 0)并没有文件, 2、设置:ulimit -c unlimited 不限制core文件大小 3.、运行程序,发生段错误时会自动记录在core中 4、test]$ ls -al core.* 在那个文件下(-rw------- 1 leconte leconte 139264 01-06 22:3 1 core.2065) 5、使用gdb 运行程序和段错误记录的文件。(est]$ gdb ./test core.2065) 6、会提哪行有错。 很多系统默认的core文件大小都是0,我们可以通过在Shell的启动脚本/etc/bashrc或者~/.bashrc等地方来加入ulimit -c 命令来指定core文件大小,从而确保core文件能够生成。 除此之外,还可以在/proc/sys/kernel/core_pattern里设置core文件的文件名模板,详情请看core的官方man手册。

浅析Linux下core文件

浅析Linux下core文件 当我们的程序崩溃时,内核有可能把该程序当前内存映射到core文件里,方便程序员找到程序出现问题的地方。最常出现的,几乎所有C程序员都出现过的错误就是“段错误”了。也是最难查出问题原因的一个错误。下面我们就针对“段错误”来分析core文件的产生、以及我们如何利用core文件找到出现崩溃的地方。 何谓core文件 当一个程序崩溃时,在进程当前工作目录的core文件中复制了该进程的存储图像。core文件仅仅是一个内存映象(同时加上调试信息),主要是用来调试的。 当程序接收到以下UNIX信号会产生core文件: 名字说明ANSI C POSIX.1SVR4 4.3+BSD 缺省动作 SIGABRT异常终止(abort) . . . .终止w/core SIGBUS硬件故障 . . .终止w/core SIGEMT硬件故障 . .终止w/core SIGFPE算术异常 . . . .终止w/core SIGILL非法硬件指令 . . . .终止w/core SIGIOT硬件故障 . .终止w/core SIGQUIT终端退出符 . . .终止w/core SIGSEGV无效存储访问 . . . .终止w/core SIGSYS无效系统调用 . .终止w/core SIGTRAP硬件故障 . .终止w/core SIGXCPU超过CPU限制 (setrlimit) . .终止w/core

SIGXFSZ超过文件长度限 . .终止w/core 制(setrlimit) 在系统默认动作列,“终止w/core”表示在进程当前工作目录的core文件中复制了该进程的存储图像(该文件名为core,由此可以看出这种功能很久之前就是UNIX功能的一部分)。大多数UNIX调试程序都使用core 文件以检查进程在终止时的状态。 core文件的产生不是POSIX.1所属部分,而是很多UNIX版本的实现特征。UNIX第6版没有检查条件(a)和(b),并且其源代码中包含如下说明:“如果你正在找寻保护信号,那么当设置-用户-ID命令执行时,将可能产生大量的这种信号”。4.3 + BSD产生名为core.prog的文件,其中prog是被执行的程序名的前1 6个字符。它对core文件给予了某种标识,所以是一种改进特征。 表中“硬件故障”对应于实现定义的硬件故障。这些名字中有很多取自UNIX早先在DP-11上的实现。请查看你所使用的系统的手册,以确切地确定这些信号对应于哪些错误类型。 下面比较详细地说明这些信号。 ? SIGABRT 调用abort函数时产生此信号。进程异常终止。 ? SIGBUS 指示一个实现定义的硬件故障。 ? SIGEMT 指示一个实现定义的硬件故障。 EMT这一名字来自PDP-11的emulator trap 指令。 ? SIGFPE 此信号表示一个算术运算异常,例如除以0,浮点溢出等。 ? SIGILL 此信号指示进程已执行一条非法硬件指令。 4.3BSD由abort函数产生此信号。SIGABRT现在被用于此。

相关主题
文本预览
相关文档 最新文档