当前位置:文档之家› 矩形波导

矩形波导

矩形波导
矩形波导

仿真分析

矩形波导(无探针激励)

1.建立三维模型

坐标轴 外截面(单位mm)

内截面(单位mm)

X 轴(a)

25.4 22.86 Y 轴(b)

12.7 10.16

Z 轴 50

2.设置材料:copper

3.设置激励:在Z=0和Z=50mm 的矩形面上设置波端口

一、设置频率:fmin 9GHz fmax 11GHz 中心频率10GHz

仿真结果与分析

理论计算: 工作波长:m m m GHz

s m

f c 3003.01010100.39

8==??==

λ mm mm a cTE 3072.4586.222210

>=?==λ

mm mm a cTE 3086.2220

<==λ

mm mm b cTE 3032.2016.102201

<=?==λ

因此,可以判断在工作频率为10GHz 时,只能传输10TE 模。

10TE 模的相位常数m rad a 05.1582122

=??

?

??-=λλ

π

β 波导波长mm m a g 75.3903975.02122

==??

?

??-=

=

λλ

β

π

λ 10TE 模的相速s

m a p 82

10975.321?=??? ??-==

λυ

β

ωυ

10TE 模的波阻抗Ω=??

? ??-=

58.49921120210a Z TE λπ

图1.1电场矢量分布图

图1.2电场幅度沿Y方向分布图

图1.3磁场矢量分布图

图1.4磁场幅度沿X方向分布图

图1.5磁场幅度沿Z方向分布图

S参数图1.6波导仿真

11

S参数图1.7波导仿真

12

图1.8回波损耗

分析:

(1)由图1.1和图1.3可知,电场和磁场沿Z 轴每隔半个波长反向。电场只有Y 分量,磁场只有X 、Z 分量,且磁场线闭合。

(2)由图1.2、图1.4和图1.5可知,电场幅值Y 分量在宽壁中间最大,磁场幅值X 分量在宽壁中间最大,而磁场幅值Z 分量在宽壁两边最大。

(3)由图 1.1可知,在50mm 的波导中存在大约 1.25个波长,即

mm g 4025

.150'==λ,在误差允许的范围内,'g g λλ=。

(4)由图1.5和图1.6可知,在9-11GHz 内,随着频率的增大,11S 减小。整体

来看12S 随频率平缓增加,但是在个别频率呈减小趋势。

(5)由回波损耗图1.7可知,回波损耗在9-11GHz 时随着频率的增加回波损耗降低,所以可以适当增加频率来降低反射波功率。

二、设置频率为:fmin 14GHz fmax 16GHz 中心频率15GHz

仿真结果与分析

理论计算

工作波长:m m m GHz

s

m

f c 2002.01015100.39

8==??==λ mm mm a cTE 2072.4586.222210

>=?==λ

mm mm a cTE 2086.2220

>==λ

mm mm b cTE 2032.2016.102201

>=?==λ

mm mm b a ab cTM 2057.1802

.2552

.46422

211

<==

+=

λ 因此,工作频率为15GHz 时可传播10TE 、20TE 、01TE 模。

这里只分析主模的传播特性

10TE 模的相位常数m rad a 51.2822122

=??

?

??-=λλ

π

β 波导波长mm m a g 24.2202224.02122

==??

?

??-=

=

λλ

β

π

λ

10TE 模的相速s

m a p 82

1034.321?=??? ??-==

λυ

β

ωυ

10TE 模的波阻抗Ω=??

? ??-=

23.41921120210a Z TE λπ

10TE 模仿真图

图2.1电场矢量分布图

图2.2电场幅度沿Y

方向分布图

图2.3磁场矢量分布图

图2.4磁场幅度沿X方向分布图

图2.5磁场幅度沿Z方向分布图

TE模仿真图

20

图2.6电场矢量分布图

图2.7电场幅度沿Y方向分布图

图2.8磁场矢量分布图

图2.9磁场幅度沿X方向分布图

图2.10磁场幅度沿Z方向分布图

TE模仿真图

01

图2.11电场矢量分布图

图2.12电场幅度沿X方向分布图

图2.13磁场矢量分布图

图2.14磁场幅度沿Y方向分布图

图2.15磁场幅度沿Z方向分布图

TE模回波损耗

图2.13

10

TE模回波损耗图2.14

20

图2.15

01TE 模回波损耗

分析:

(1)从仿真结果看,可以很清楚的看到各模式的电场和磁场分布的不同。从图中可以看到10TE 、20TE 模的电场只有Y 分量,磁场只有X 和Z 分量,而01TE 模电场只有X 分量,而磁场只有Y 和Z 分量。

(2)由图2.2、图2.4和图2.5知,10TE 模的电场Y 分量、磁场X 分量在宽壁中央取得最大值,磁场Z 分量 在宽壁两边取得最大值;由图7、图9和图10可知,

20TE 模的电场Y 分量和磁场X 分量分别在宽壁的两边取得最大值,磁场的Z 分量在宽壁的中央和两边分别可取得最大值;图2.12、图2.14和图2.15可知,01TE 模的电场X 分量和磁场的Y 分量在窄壁的中央取得最大值,磁场的Z 分量在窄壁的两边取得最大值。

(3)从图2.1、图2.5、图2.9中可以看到电场和磁场矢量相邻驻波方向相反。 (4)从图2.2、图2.6、图2.10中由颜色代表的电场幅值大小可以看到10TE 模的幅值小于20TE 模的幅值小于01TE 模的幅值。

(5)由各个导行模的回波损耗图可得,在工作频率附近,主模的反射功率最小,

01TE 模的反射功率最大。且在14-16GHz 范围内10TE 模、20TE 模的回波损耗随着频率的提高先是减小,出现极小点,然后稳步上升。而01TE 模的回波损耗在14.8GHz 时最大,在其左右两边在1-1.005之间波动变化。

(6)从导行模的幅值变化和回波损耗图可以知道,不同的导行模损耗不同,这是因为不同的导行模有不同的电流分布。

(7)对比主模在工作频率为10GHz 和15GHz 的回波损耗图,可以发现衰减与频率有关。

矩形波导(加探针激励)

1.建立三维模型

矩形波导外截面(单位mm) 内截面(单位mm)

X轴(a) 25.4 22.86

Y轴(b) 12.7 10.16

Z轴100

同轴线激励

同轴线外导体内导体

外半径(mm) 2 0.5

内半径(mm) 1.8 0

另外,将矩形波导和外导体重叠部分减去。具体查看模型。

2.设置材料:矩形波导和内外导体均设为copper。

3.设置激励:在同轴线的外部的底面(内外导体之间的环形面)上加上波端口。一.探针位于中间位置深入长度为2.43mm

仿真结果

图1.1电场矢量分布图

图1.2电场矢量沿Y方向的分布图

图1.3磁场矢量分布图

图1.4磁场矢量沿X方向的分布图

图1.5磁场矢量沿Z方向的分布图

图1.6 S参数

二.探针位于中间位置深入长度为7.43mm 仿真结果

图2.1电场矢量分布图

图2.2电场矢量沿Y方向的分布图

图2.3磁场矢量分布图

图2.4磁场矢量沿X方向的分布图

图2.5磁场矢量沿Z方向的分布图

图2.6 S参数

三.探针位于Z方向中间位置,X=5mm深入长度为2.43mm 仿真结果

图3.1电场矢量分布图

图3.2电场矢量沿Y方向的分布图

图3.3磁场矢量分布图

图3.4磁场矢量沿X方向的分布图

图3.5磁场矢量沿Z方向的分布图

图3.6 S参数

四.探针位于X方向中间位置,Z=20mm深入长度为2.43mm 仿真结果

图4.1电场仿真分析图

图4.2电场矢量沿Y方向的分布图

图4.3磁场矢量分布图

图4.4磁场矢量沿X方向的分布图

图4.5磁场矢量沿Z方向的分布图

图4.6 S参数

分析:

(1)从仿真结果来看,在同轴探针里面传播的是TEM波,在矩形波导里面电场只存在Y分量,磁场只存在X和Z分量,因此是TE波。在传播方向,相邻驻波的矢量方向相反。四种情况都只有一种模式的波,说明加入探针后,激起的高次模随着探针的原理迅速的衰减,不会在波导内传播。

(2)第一种和第二种情况,自同轴探针传播的波向两端传播,在Z方向上是行波,在X方向是驻波。从图1.2和图2.2可知,电场在Y方向的分量形成的波关于探针对称。由图1.3和图2.3可知,磁场线闭合。磁场的X分量在宽壁只存在一个驻波,而在Z分量,在宽壁的两端也存在驻波;

(3)从仿真图上的幅值可知,以电场为例,第一种情况的幅值要小于第二种情况,从图1.6和图2.6可以看到第一种情况的S参数值要大于第二种情况,说明第二种情况的反射要比第一种情况小。即条件都一样时,探针深入长度长可以减小波的反射。

(4)第三种情况,同样自同轴探针传播的波向两端传播,在Z方向上是行波,在X方向是驻波。从图3..2可知,电场在Y方向的分量形成的波关于探针对称。由图3.1可知,电场在宽壁上形成两个驻波。从仿真图上的幅值可知,以电场为例,第一种情况的幅值要小于第三种情况,由图1.6和图3.6可得,在相同的条件下,探针位置处于在宽壁方向偏心可以减小波的反射。

(5)第四种情况,自探针处波分别向Z方向和-Z方向传播,在Z方向上是行波,在X方向是驻波。从图4.1中可以看出形成的驻波相邻位置方向相反。和第一种情况相比较,以电场为例,差别不太明显。从S参数图来比较第四种的S参数第一种要小于第四种情况,但是差别不大,所以在误差允许的范围内,两种情况的同轴线阻抗匹配情况大致相同。

小结

通过本次作业,我更深刻的了解了波导内的波的传输特性以及波导加探针激励对波导内的场分布的影响。当然,在仿真过程中遇到了很多问题。第一:对软件的不熟悉导致走了很多弯路;第二,在做探针激励的仿真时存在了很多疑惑,包括波导内传播的波的不规则的原因等;第三,对于探针对波导的场分布的影响还是不太懂,以上是根据我自己的理解和查阅书所得出的结论,还有许多要完善的地方。

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要] 人类进入21世纪的信息时代,电子与信息科学技术在飞速发 展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。.矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作, 所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导 TM 波 TE 波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银, 它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们将波导的良导电体壁近似为理想导电壁。由前面的讨论我们知道,矩形波导中不能传输TEM 波,只能传输TE 波和TM 波。设矩形波导宽为a,高为b,(a>b )沿Z 轴放置,如图(1)所示。下面分别求解矩形波导中传输的TE 波和TM 波。 1TM 波 对于TM 波,z z E H ,0=可以表示为; z jk z z e y x E z y x E -=),(),,(0 (1) 式中),(0y x E 满足齐次亥姆霍兹方程,故有 0),(),(02 02 =+?y x E k y x E c (2) 采用分离变量法解此方程,在直角坐标系中,令 ) ()(),(0y Y x X y x E = (3)

0)()(2 ''=+x X k x X x 将(3)式代入(2)式中,并在等式两边同除以)()(y Y x X 得: 0) ()()()(2 ''''=++c k y Y y Y x X x X (4) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的常数,要使上式对任何X 、Y 都成立,第一和第二项也应分别是常数,记为: 2 ''2 '') ()()()(y x k y Y y Y k x X x X -=-= 这样就得到两个常微分议程和3个常数所满足的方程: (5) 0)()(2 ''=+y Y k y Y y (6) 222y x c k k k += (7) 常微分方程(5)和(6)的通解为 )sin()cos()(21x k C x k C x Y x x += (8) )sin()cos()(43y k C y k C y Y y y += (9) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到z E 的通解为 [][] z jk y y x x z z e y k C y k C x k C x k C z y x E -++=)sin()cos()sin()cos(),,(4321 由矩形波导理想导电壁的边界条件0=E ,确定上式中的几个常数,在4个理想导电壁上,z E 是切向分量,因此有: (1) 在0=X 的波导壁上,由0),,0(==z y x E z 得01=C ; (2) 在0=Y 的波导壁上,由0),0,(==z y x E z 得03=C ; (3) 在a X =的波导壁上,要使0),,(==z y a x E z 有0)sin(=a k x ,从而必须有 πm a k x =,其中 3,2.,1=m 为整数,由此得 a m k x π = (10) (4)在b X =的波导壁上,要使0),,(==z b y x E z 有,0)sin(=b k y 从而必定有πn b k y =,其中 3,2.,1=n 也为整数,由此得

第八章矩形波导复习资料0604要点

第八章 矩形波导 1. 波导中的传播条件:f>fc 或λ<λc 2. 矩形波导能传输TM 波和TE 波,不能传输TEM 波。 3. 矩形波导中:TEmn 模:m 和n 皆可取0,但又不能同时为0 TMmn 模。显然,m,n 皆不可能为0,故最低阶模为TM11 其中:m 表示电磁场沿波导宽边a 分布的半波数的个数,n 表示电磁场沿波导窄边b 分布的半波数的个数。 当m 和n 取非零值时,TMmn 模和TEmn 模具有相同的截止参数,这种现象称为模式简并,相应的模式称为简并模式。例如,TM21模和TE21模是简并模式。 4. 波长 ①工作波长λ:定义:微波振荡源所产生的电磁波的波长。 v f λ= = 若填充空气,则8310/v c m s ===? 若填充r ε 的介质,则v = ②波导波长λg :在波导内,合成波沿的等相位面在一个周期内所走过的路程定义为波导波长λg 。 2g π λβ = = ③截止波长λc :电磁波处于能传输与不能传输的临介状态,此时对应的波长称为截止波长,对应的频率叫截止频率,fc.(或定义为:导行波不能在波导中传输时所对应的最低频率称为截止频率,该频率确定的波长称为截止波长。) g λλ >

c c v f λ= = c c v f λ= 5.传播速度 若填充空气,则8310/v c m s ===? ,若填充r ε 的介质,则v = ①相速度vp :定义 p v ω β = = 或 p g v f λ= p v v > ②群速度vg :群速度(能速)就是电磁波所携带的能量沿波导纵轴方向(z 轴)的传播速度。 g v = 2p g v v v = g v v < 6.色散现象:传播速度与频率有关的现象 时延失真:波导传输频带内各不同频率的信号传输时间不等,造成信号失真,这种失真称为时延失真。 7. 波阻抗:波导中某种波型的阻抗简称为波阻抗。定义为波导横截面上该波型的电场强度与磁场强度的比值。 TM 波的:x TM y E Z H ==TE 波 : TE Z =

矩形波导模式和场结构分析毕业设计论文

毕业设计(论文)题目:矩形波导模式和场结构分析

目录 第一章绪论 (1) 1.1 选题背景及意义 (3) 1.2 国内外研究概况及发展趋势 (3) 1.3 本课题研究目标及主要内容 (4) 1.4 本章小结 (6) 第二章矩形波导的基本原理 (7) 2.1 导波的一般分析 (7) 2.1.1规则矩形波导内的电磁波 (7) 2.1.2波导传输的一般特性 (8) 2.2 矩形波导的分析 (8) 2.2.1矩形波导电磁场解 (8) 2.2.2矩形波导中的波型及截止波长 (11) 2.3 本章小结 (12) 第三章矩形波导的设计 (13) 3.1 创建矩形波导模型 (13) 3.2 求解设置 (20) 3.3 设计检查和运行仿真 (22) 3.3.1设计检查 (22) 3.3.2运行仿真分析 (23) 3.4 本章小结 (24) 第四章HFSS仿真结果及其分析 (25) 4.1 HFSS软件仿真原理 .............................. 错误!未定义书签。 4.2 HFSS仿真实现 (26) 4.3 仿真结果分析 (32) 4.4 本章小结....................................... 错误!未定义书签。第五章小结与展望 .. (33) 5.1 工作总结 (33) 5.2 工作展望 (33) 参考文献 (33) 致谢 (35) 附录 A 常用贝塞尔函数公式错误!未定义书签。

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了截止波长的概念。瑞利得到了矩形波导中主模的场方程组,这是雷达中最常用的模式,

实验二矩形波导TE10的仿真设计与电磁场分析解读

实验二、矩形波导TE 10的仿真设计与电磁场分析 一、实验目的: 1、 熟悉HFSS 软件的使用; 2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、 导波原理。 2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。 3、 HFSS 软件基本使用方法。 三、实验原理与参考电路 导波原理 3.1.1. 规则金属管内电磁波 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的; ② 波导管内无自由电荷和传导电流的存在; ③ 波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 22222 2222222222220T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式1220E k E ?+=22222222T c E E E x y k k β????=+?????=-?其中式3 222c x y k k k =+

矩形波导中场结构模拟实验

实验 矩形波导中场结构模拟实验 一、实验目的要求: 1.通过实验编程及图像动态演示,形象具体的了解电磁波在波导中传播特性。 2.通过编写Matlab 程序,加深矩形波导中电磁波公式推导以及单模电磁波在矩形波导中的传播理解。 二、实验内容: 电磁场本身比较复杂和抽象,是涉及空间和时间的多维矢量场,需要具有较强的空间想象能力来理解它。 1.实验原理: 矩形波导是截面形状为矩形的金属波导管,如图一所示。 波导内壁面位置坐标设为:x=0和x=a ;y=0和y=b 。波导中填充介电常数为ε、磁导率为μ、电导率为σ的媒质,通常波导内填充理想介质(σ=0)。由于波导内没有自由电荷和传导电流,所以传播的电磁波是正弦电磁波。理想导电壁矩形波导中不可能传输TEM 模,只能传输TE 模或TM 模。对于矩形波导中TE MN 模的电场强度E 、磁场强度H 场分量表达式为: (02cos sin j t z x c j n m n E H x y e k b a b )ωβωμπππ???????=???????????? (1) (02sin cos j t z y c j m m n E H x y e k a a b )ωβωμπππ???????=???????????? (2) (3) 0z E =

(02sin cos j t z x c j m m n H H x y e k a a b )ωββ πππ???????=???????????? (4) (02cos sin j t z y c j n m n H H x y e k b a b )ωββπππ???????=???????????? (5) (0cos cos j t z z m n H H x y e a b )ωβππ?????=???????? (6) 其中:ω为微波角频率;m 和n 值可以取0或正整数,代表不同的TE 波场结构模式,称为TE 模,波导中可有无穷多个TE 模式;k c 为临界波束,k c 2=(m π/2)2+(n π/b )2;β为相 位常数,β= 。 波导中的一个重要参数为截止频率f c ,有 c f = (7) 当工作频率低于截止频率f c 时,电磁场衰减很快,不可能传播很远,所以波导呈现高通滤波器的特性,只有工作频率高于截止频率f c 时电磁波才能通过。具有最低截止频率的模式,成为最低模式,也称为主模,其他模式都成为高次模式。在矩形波导内传输 的所有模型中,TE 10模为主模。 2. 实验步骤: 设置矩形波导宽边a =22.86mm ,窄边b =10.16mm ,波导内媒质为空气,当工作频率f 为9.84GHz 时,波导中只能传输TE 10模。 利用Matlab 显示矩形波导TE10模的电磁场分布的程序设计过程: (1)根据已知参数m ,n ,a ,b 和f 编程计算kc ,β和ω角频率等参数。 Matlab 中代码实现: a=22.86*1e-3; b=10.16*1e-3; f=9.84*1e9; m=1; n=0; miu=4*pi*1e-7; eps=8.854*1e-12; %E=2.71828; kc=((m*pi/a)^2+(n*pi/b)^2)^0.5; w=2*pi*f; beta=(miu*eps*w^2-kc^2)^0.5; (2)根据式1-6定义的各场强变量,以电场强度、磁场强度各分量为因变量,以时间t 为自变量。 Matlab 中代码实现: ngrid=20; x=[0:a/ngrid:a];y=[0:b/2:b]; z=[0:0.04/ngrid:0.04];%定义x ,y ,z 坐标空间矩阵 %公式表示 for p=0:ngrid%执行循环p 赋初值0,循环步长为1,总步长ngrid for q=0:2 for r=0:ngrid%三层循环,赋值ex 、ey 、ez 、hx 、hy 、hz 空间上的数值 ex(p,q,r)=j*(w*miu/kc^2)*(n*pi/b)*cos((m*pi/a)*x(p))*sin((n*pi/b)*y(q))*exp(j*(

矩形波导中传播模式的研究

矩形波导中传播模式的研究 矩形介质光波导作为波导光学系统最基本的单元之一,是研究光电器件以及波导传播技术等课题的核心内容。为研究矩形介质波导中的传播模式,本文将从平板介质波导入手,运用电磁场基本理论,结合边界条件求解麦克斯韦方程组,得到光场传播模式的表达式,模的传播常数以及截止条件等相关参数。再以此为基础,分别以马卡蒂里理论、库玛尔理论以及有效折射率法在不同电磁波模式下分析比较矩形介质波导,并结合MMI耦合器分析单模和多模中的模场分布。最后使用Matlab绘制传播曲线并且基于BPM算法对不同条件的矩形波导进行模拟,分析并比较其传播模式。 1.1 引言 随着为微纳加工工艺技术的不断提高,晶体管的特征尺寸越来越小,单片集成的晶体管数目越来越多,由此带来的金属互联问题、漏电流问题以及散热问题难以解决。紧靠减小晶体管尺寸、提高工作频率的手段提高处理器性能的方式已遇到瓶颈[1]。光具有高传播速度、高宽带、并行性等本征的特质,使得光非常适用于海量数据传输处理等领域,研究并开发以此为核心的新型信息处理技术已成为普遍共识。而随着光通讯正在朝着高速率大容量的方向发展,在SOI材料上制备光波导是技术发展的必然趋势。在此背景下,研究矩形光波导中的传播模式是尤为重要的[2]。 本课题中的矩形波导是指由半导体材料制成的,具有矩形的波导芯层以及包围着芯层但折射率更低的包层结构,可以使光限制在芯层内传播的器件。本课题主要分析矩形光波导中存在的传播模式以及各种模式的传播特性。在第二章中,首先对平板波导理论进行推导,分析了平板波导中单模和多模条件。第三章中运用第二章中的关于平板波导的相关知识,分别在马卡蒂里理论、库玛尔理论以及有效折射率法下对矩形波导进行计算。前两者给出了不同区域内的两种光场分布重点讨论在有效折射率法矩形波导中可以存在的模式同波导横向长度和材料的折射率之间的关系以及不同模式下的场分布,并结合MMI(多模干涉)耦合器对单模和多模的模场分布进行具体分析。为了验证理论的正确性,我们拟基于BPM 算法对上述各种情况进行模拟绘图。

矩形波导的设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

矩形波导

微波技术基础考察小论文 请讨论矩形波导TE 10模的截止波长、相速、波导波长、波阻抗;其外形结构尺寸的确定遵循什么原则? 一、理论依据 1) 通常将由金属材料制成的、矩形截面的、内充空气介质的规则金属波导称为矩形波导, 它是微波技术中最常用的传输系统之一 矩形波导TE 波的截止波数: 2 2 ?? ? ??+??? ??=b n a m K c ππ 它与波导尺寸、传输波型有关。m 和n 分别代表TE 波沿x 方向和y 方向分布的半波个数, 一组m 、n, 对应一种TE 波, 称作TE mn 模; 但m 和n 不能同时为零, 否则场分量全部为零。因此,矩形波导能够存在TE m0模和TE 0n 模及TE mn (m,n ≠0)模; 其中TE 10模是最低次模(主模), 其余称为高次模。 2)单模传输 在传输过程中,如若我们需要传输TE 10模,我们需要抑制高次模的传输。因此工作波长应该满足: 10 20 TE TE λλλ<< 1001TE TE λλλ<< 二、问题解答 对于TE 10模即m = 1, n = 0 1)TE 10模的截止波数c K 为: a K c π= 2) 截止波长c λ: a a K c c 222=== πππλ 3)相速p v 表示波的等相位面沿波导的轴向(z )传播的速度, 其值:

2 2 211?? ? ??-= ??? ? ??-= = a v v w v c p λλλβ 4)波导波长g λ表示波导内沿其轴向传播的电磁波,它的相邻的两个同相位点之间的距离, 其值: 2 1???? ??-= = c p g f v λλλ λ 将截止波长代入,则: 波导波长: 2 2 211?? ? ??-= ??? ? ??-= = a f v c p g λλ λλλ λ 5)在不计损耗的情况下,在行波状态下,电场的横向分量Et 和磁场的横向分量Ht 不仅构成了沿波导轴正Z 方向传播的波,而且对于同一波形而言,t E 和 t H 的比值在波导横截面内处处相等,它与坐标Z 无关,并具有阻抗的量纲。我们称这个比值为波型阻抗Zw 。 其值: 2 211?? ? ??-= == a w H E Z t t w λε μ β μ 6)外形结构尺寸的确定: 1.为使单模TE 10传输,而抑制TE 01和TE 20。我们需要其工作波长大于TE 01和TE 20的截止波长,小于TE 10的截止波长(如图1)。 而通过计算有:a TE 210=λ a TE =20λ b TE 201=λ 则: a a 2<<λ b 2>λ

微波技术在矩形波导中传输特性实验讲稿

微波技术实验 微波技术是从20世纪初开始发展起来的一门新兴科学技术,1940年前处于实验室研究阶段,1940~1945年处于实际应用阶段,1945年以后形成了一系列以微波为基础的新兴科学,如微波波谱学,射电天文学,射电气象学等;1965年以后,向固体化、小形化方向发展,并逐步得到了实际应用。特别在天体物理、射电天文、宇宙通讯等领域,具有别的方法和技术无法取代的特殊功能。 [实验目的] 1、学习用物理学的理论探究微波的特点及微波发射和传输的原理, 2、掌握观测速调管的工作特性,描绘工作特性曲线(振荡膜)和频率特性曲线; 3、观测波导管的工作状态,用直接法,等指示度法,功率衰减法测量大、中、小驻波比,测量波导波长g ,测频率f ,并计算光速C 和群速u ,相速g V ; 4、观测体效应管的振荡特性,I -V 曲线、P -V 曲线、f -V 曲线。 [实验原理] 一、微波基本知识 1、微波及其特点 微波是波长很短(频率很高)的电磁波。一般把波长1m ~0.1mm ,频率在300MHz ~3000GHz 范围内的电磁波称为微波。根据波长的差异还可以将微波分为分米波、厘米波、毫米波、亚毫米波。不同范围的电磁波既有其相同的特性,又有各自不同的特点,本实验所产生的微波频率在8600MHz ~9600MHz 范围内。微波具有以下特性: 1)似光性。由于微波波长短,其数量级可达到毫米(10-3m ),与光波的数量级(10-6 m )可相比拟,因此微波具有光的传播特性,在一般物体面前呈直线传播状态。利用这个特点可制成方向性极强的天线、雷达等。 2)频率高,振荡周期短。微波的振荡周期10-9~10-13 s ,已经和电子管中电子的飞越时间(10-9 s )可相比拟。作为一种高频率的电磁辐射,由于趋肤效应,辐射耗损相当严重。因此,一般的电子管、集中参数元件,一般的电流传输线已不能在微波器件中使用,而必须用分布参数元件,如波导管、谐振腔、测量线等来代替,其测量的量是驻波比、特性阻抗、频率等。 3)能穿透电离层。微波可以畅通无阻地穿过地球周围的电离层,是进行卫星通讯,宇航通讯和射电天文研究的有效手段。 4)量子特性。在微波波段,电磁波每个量子的能量范围约为10-6~10-3ev 。许多原子和分子发射和吸收的电磁波能量正好处于微波波段内,人们正是利用这一特点研究分子和原子结构,发展了微波波谱学、量子电子学等新兴学科,并研制了量子放大器、分子钟和原子钟。 2、常用的微波振荡器 2.1 反射式速调管振荡器 反射式速调管振荡器由反射速调管、稳压电源和高频结构三部分组成,核心部分是反射速调管。 反射速调管的结构如图1所示,它由阴极(灯丝)、反射极和栅极(谐振腔)三部分组成。灯丝(阴极)的作用是发射热电子;谐振腔相对阴极成正电位,用来加速电子,并激励微波振荡;反射极电压可在一定范围(0~-200V )调节,反射极的作用是与谐振腔形成反射空间,使电子群聚并反射到谐振腔,提供微波功率。实验室所用的速调管型号通常有K-27,

有效折射率法求矩形波导色散曲线(附Matlab程序)知识讲解

有效折射率法求矩形波导色散曲线(附 M a t l a b程序)

光波导理论与技术第二次作业 题目:条形波导设计 姓名:王燕 学号: 201321010126 指导老师:陈开鑫 完成日期: 2014 年 03 月 19 日

一、题目 根据条形光波导折射率数据,条形波导结构如图1所示,分别针对宽高比d a :为1:1与1:2两种情形,设计: (1)满足单模与双模传输的波导尺寸范围;(需要给出色散曲线) (2)针对两种情况,选取你认为最佳的波导尺寸,计算对应的模折射率。(计算时假设上、下包层均很厚) 图1 条形波导横截面示意图 二、步骤 依题意知,条形波导参数为:5370.11=TE n ,5100.12=TE n ,444.13=TE n ; 5360.11=TM n ,5095.12=TM n ,444.13=TM n 。其中321n n n 、、分别代表芯心、 上包层、下包层相对于nm 1550=λ光波的折射率。 本设计采用有效折射率法作条形波导的归一化色散曲线,条形波导的横截面区域分割情况如图2所示:

图2 条形波导横截面分割图 对于x mn E 模式,x E 满足如下波动方程: [] 0),(2 2202 222=-+??+??eff x x n y x n k y E x E 由于导波模式在x 与y 方向上是非相干的,采用分离变量法后再引入)(220x N k 得到如下两个独立的波动方程: 0)()](),([) (22202 2=-+??y Y x N y x n k y y Y 0)(])([)(2 2202 2=-+??x X n x N k x x X eff 可以将条形波导等效成y 方向和x 方向受限的平板波导,先求y 方向受限平板波导的TE 模式,求得x N 后将其作为x 方向受限的平板波导的芯层折射率并求其TM 模式,得到的有效折射率eff n 就是整个条形波导的有效折射率。y 方向受限平板波导的TE 模式的色散方程为: 2 2124 222122222 1 0arctan arctan x x x x x N n n N N n n N n N n d k --+--+=-π (...2,1,0=n ) 其中1n 、2n 、4n 都是TE 模式的有效折射率从而x 方向受限平板波导的TM 模式的色散方程为: ??? ? ??--+???? ??--+=-2225 22522223 22 32 2 20arctan arctan eff x eff x eff x eff x eff x n N n n n N n N n n n N m n N a k π(...2,1,0=m )

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要]人类进入21世纪的信息时代,电子与信息科学技术在飞速发展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。?矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作,所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导TM波TE波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银,它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们 将波导的良导电体壁近似为理想导电壁。 由前面的讨论我们知道,矩形波导中不能 传输TEM 波,只能传输TE波和TM波。 设矩形波导宽为a,高为b, (a>b)沿Z轴 放置,如图(1)所示。下面分别求解矩形波 导中传输的TE波和TM波 仃M波 对于TM波,H z=O, E z可以表示为; E z(x, y,z) = E°(x, y)e*z(1) 式中E o(x,y)满足齐次亥姆霍兹方程,故有 ' 2E o(x,y) k C?°(x,y) = O ⑵ 采用分离变量法解此方程,在直角坐标系中,令 E°(x,y)=X(x)Y(y) ⑶

将(3)式代入(2)式中,并在等式两边同除以 X(χ)Y(y)得: XW Xiy) k 2 C x(χ) Y(y) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的 常数,要使上式对任何 X 、Y 都成立,第一和第二项也应分别是常数,记为: X ''(X) k χJ X(X^ 0 ⑸ Y ''(y) k :Y(y 「0 ⑹ 2 2 2 k c = kχ + ky ⑺ 常微分方程(5)和(6)的通解为 Y(X)=C i cos(k χX) C 2Sin(k χX) Y(y) =C 3C0s(k y y) C 4Sin(k y y) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到 E z 的通解为 E z (x, y, z) - C 1 cos(k χX) C 2 sin( k χX) IC 3 cos( k y y) C 4 sin( k y y) ^jkZZ 由矩形波导理想导电壁的边界条件 E = 0,确定上式中的几个常数,在4个理想 导电壁上,E Z 是切向分量,因此有: (1) 在X "的波导壁上,由E Z (X =O,y,z)=0得C 1 =0 ; (2) 在Y=0的波导壁上,由E z (x,y =0,z) =0得C^0; (3) 在X = a 的波导壁上,要使E z (x = a, y, z) = 0有Sin(k x a) = 0,从而必须有 k χa =m 二,其中m =1.,2,3^为整数,由此得 (4) 在 X = b 的波导壁上,要使 E z (x,y =b, z) =0有,Sin(k y b) =0 从而必定有 k y b = n 二,其中n =1.,2,3…也为整数,由此得 x ''(χ) X(χ) -k 这样就得到两个常微分议程和 Y ''(y) _ Y (y) 3个常数所满足的方程: (8) (9) k χ m? (10)

矩形波导地设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面

矩形波导TE10的仿真设计与电磁场分析

实验一、 矩形波导TE10的仿真设计与电磁场分析 班级: 学号: 姓名: 报告日期:2012.6.29 一、 实验目的: 1. 熟悉HFSS 软件的使用; 2. 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3. 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、 实验原理(略) 2.1基本导波理论 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式1 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。以电场为例子,将上式代入亥姆霍兹方程22 0E k E ?+= ,并在直角坐标内展开, 即有由麦克斯韦方程组的两个旋度式,可以得到场的横向分量和纵向分量的关系式: 2222()() 2 ()() z z x c z z y c z z x c z z y c H E j E k y x H E j E k x y H E j H k x y H E j H k y x ωμβωμββωεβωε???=- +? ??? ??? =-? ??? ???? =-+? ??? ???=-+????式 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 222 c x y k k k =+;k 为自由空间中同频率的电磁波的波数。 根据两个纵向场分量Ez 和Hz 的存在与否,对波导中的电磁波进行分类。可将波导中的电磁波分成三类:

矩形波导

仿真分析

矩形波导(无探针激励) 1.建立三维模型 坐标轴 外截面(单位mm) 内截面(单位mm) X 轴(a) 25.4 22.86 Y 轴(b) 12.7 10.16 Z 轴 50 2.设置材料:copper 3.设置激励:在Z=0和Z=50mm 的矩形面上设置波端口 一、设置频率:fmin 9GHz fmax 11GHz 中心频率10GHz 仿真结果与分析 理论计算: 工作波长:m m m GHz s m f c 3003.01010100.39 8==??== λ mm mm a cTE 3072.4586.222210 >=?==λ mm mm a cTE 3086.2220 <==λ mm mm b cTE 3032.2016.102201 <=?==λ 因此,可以判断在工作频率为10GHz 时,只能传输10TE 模。 10TE 模的相位常数m rad a 05.1582122 =?? ? ??-=λλ π β 波导波长mm m a g 75.3903975.02122 ==?? ? ??-= = λλ β π λ 10TE 模的相速s m a p 82 10975.321?=??? ??-== λυ β ωυ 10TE 模的波阻抗Ω=?? ? ??-= 58.49921120210a Z TE λπ

图1.1电场矢量分布图 图1.2电场幅度沿Y方向分布图 图1.3磁场矢量分布图 图1.4磁场幅度沿X方向分布图

图1.5磁场幅度沿Z方向分布图 S参数图1.6波导仿真 11 S参数图1.7波导仿真 12 图1.8回波损耗

矩形波导中电磁波截止波长的计算

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。 2 电磁波基本原理 2.1建立麦克斯韦方程组的历史背景 麦克斯韦首先从论述力线着手,初步建立起电与磁之间的基本关系。1855年,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,用数学语言表述了法拉第

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。 2 电磁波基本原理 2.1建立麦克斯韦方程组的历史背景

微波技术在矩形波导中传输特性实验讲稿汇总

微波技术在矩形波导中传输特性实验讲稿汇总

微波技术实验 微波技术是从20世纪初开始发展起来的一门新兴科学技术,1940年前处于实验室研究阶段,1940~1945年处于实际应用阶段,1945年以后形成了一系列以微波为基础的新兴科学,如微波波谱学,射电天文学,射电气象学等;1965年以后,向固体化、小形化方向发展,并逐步得到了实际应用。特别在天体物理、射电天文、宇宙通讯等领域,具有别的方法和技术无法取代的特殊功能。 [实验目的] 1、学习用物理学的理论探究微波的特点及微波发射和传输的原理, 2、掌握观测速调管的工作特性,描绘工作特性曲线(振荡膜)和频率特性曲线; 3、观测波导管的工作状态,用直接法,等指示度法,功率衰减法测量大、中、小驻波比,测量波导波长 ,测频率f,并计算光速C和群速u, g 相速 V; g 4、观测体效应管的振荡特性,I-V曲线、P-V 曲线、f-V曲线。 [实验原理]

一、微波基本知识 1、微波及其特点 微波是波长很短(频率很高)的电磁波。一般把波长1m~0.1mm,频率在300MHz~3000GHz范围内的电磁波称为微波。根据波长的差异还可以将微波分为分米波、厘米波、毫米波、亚毫米波。不同范围的电磁波既有其相同的特性,又有各自不同的特点,本实验所产生的微波频率在8600MHz~9600MHz范围内。微波具有以下特性:1)似光性。由于微波波长短,其数量级可达到毫米(10-3m),与光波的数量级(10-6m)可相比拟,因此微波具有光的传播特性,在一般物体面前呈直线传播状态。利用这个特点可制成方向性极强的天线、雷达等。 2)频率高,振荡周期短。微波的振荡周期10-9~10-13s,已经和电子管中电子的飞越时间(10-9s)可相比拟。作为一种高频率的电磁辐射,由于趋肤效应,辐射耗损相当严重。因此,一般的电子管、集中参数元件,一般的电流传输线已不能在微波器件中使用,而必须用分布参数元件,如波导管、谐振腔、测量线等来代替,其测量的量是驻波比、特性阻抗、频率等。 3)能穿透电离层。微波可以畅通无阻地穿过

相关主题
文本预览
相关文档 最新文档