当前位置:文档之家› 细胞培养在分子生物学中的应用

细胞培养在分子生物学中的应用

细胞培养在分子生物学中的应用
细胞培养在分子生物学中的应用

细胞培养在分子生物学中的应用

随着社会的进步,科学的发展,生物技术已经得到了很大的改进,下面我就从心肌细胞培养,植物体细胞培养再生技术体系,马立克氏病病毒分子生物学诊断技术研究,三羟异黄酮诱导人肝癌细胞SMMC-7721凋亡的分子机制研究,细菌与放线菌的16S rDNA、真菌26S rDNA D1/D2区及ITS区的分子鉴定体系,载体构建技术体系及其基因靶点的定点诱变和靶序列缺失、改造技术体系6个方面来研究细胞培养在分子生物学中的应用,以阐述细胞培养的重要性。

1.心肌细胞培养

培养心肌细胞能提供单个细胞的同源集落,在记录腔内可视并容易控制。培养方便,定量、重复性好,均一性不受神经体液因素,在分子生物学技术研究成熟心肌细胞(如Ikur 分子基础的研究中应用广泛;

心肌细胞位于心肌内膜内。一般认为,正常成年心脏的心肌细胞不再分裂。因此,心肌细胞最初多采用动物或人的胚胎心脏以及刚出生动物的心脏,如乳鼠以及其他刚出生动物的心脏或动物、人的胚胎心脏,这就是ECM。但ECM与ACM相比,在功能和结构上均有差异:ECM用途存在一定的局限性,ACM更适宜做电生理和细胞膜离子通道的研究[1,2];ACM在进行单个因素干预实验方面更具有代表性[3-5]。

2.植物体细胞培养再生技术体系

棉花是重要的经济作物之一,棉花生产对于我国棉农收入和国民经济的发展具有重要的意义。随着基因工程和分子生物学的发展,转基因技术正广泛地应用于现代植物育种中。然而,建立高效而稳定的植物体细胞培养再生技术体系是植物遗传转化和植物基因工程的基础。此外,棉属野生种中具有陆地棉栽培种所缺少的许多优良性状,通过棉种间的体细胞杂交技术获取种间杂种转育野生棉的优良性状是一条行之有效的技术途径,而建立一套适合这些野生棉种的体细胞胚胎发生和植株再生体系是体细胞杂交创造种间杂种的基础和先决条件。本研究在前人工作的基础上,以四倍体野生棉种毛棉(G.tomentosum Nutt& Seem)为材料,四倍体陆地棉(G.hirsutum L.)珂字棉201为对照,研究野生棉种毛棉体细胞培养过程

中的影响因素,以建立适合于四倍体野生棉的体细胞培养体系[6]。

3.马立克氏病病毒分子生物学诊断技术研究

通过与SDS-蛋白酶K法、高纯度PCR模板提取试剂盒(宝灵曼公司产品)、NP<,40>-蛋白酶K法比较,研究小组建立了用TLS(三乙醇胺月桂酸硫酸盐)代替传统的SDS-蛋白酶K 提取DNA的方法,对细胞培养物、血液样品提取DNA,经琼脂糖凝胶电泳、PCR检测,结果表明,TLS法是一种快速、简便的提取高质量DNA的方法.利用地高辛标记马立克病病毒(MDV)GA 株BamHI-L及其六个亚片段制备核酸探针,与MDV1型(京-1、MD<,11/75c)、MDV2型(SB-1)、MDV3型(Fc-126)的核酸进行分子杂交,结果表明L片段是MDV1病毒特异的,与MDV2、MDV3的核酸无同源性,这与Ono等(1992)的报道:在非严格杂交条件下,MDV2 BamHI-F片段与MDV BamHI-L片段有同源性的结论不同.根据BamHI-L片段的核酸序列设计了针对pstI亚片段的寡核苷酸引物,建立了用0.3U Taq酶的10μl反应体系的微量PCR方法,通过对病毒感染细胞培养物DNA和京-1株接种鸡血液DNA的扩增,结果表明,该引物介导的微量PCR是MDV1特异的,MDV2(SB-1)、MDV3(Fc-126)及正常细胞DNA都没有任何扩增产物.敏感性试验表明微量PCR能从0.1pg京-1株感染细胞DNA中检测到MDV DNA,早期感染样品检测结果表明,微量PCR 能从京-1株接种鸡的血液中于第5天检出MDV DNA.PCR产物的RFLP结构表明:京-1株和MD<,11/75c>株的产物在 BgII、TaqI、xbaI酶切位点上没有变化.

4.三羟异黄酮诱导人肝癌细胞SMMC-7721凋亡的分子机制研究

三羟异黄酮对肝癌的抑制作用研究,通过细胞培养发现其可诱导肝癌细胞凋亡。通过体外细胞培养和分子生物学技术,检测人肝癌细胞SMMC-7721凋亡过程中相关蛋白基因的表达,可以探讨三羟异黄酮诱导肝癌细胞凋亡的分子机制.

方法:应用体外人肝癌细胞系SMMC-7721细胞培养技术,采用MTT法观察三羟异黄酮对肝癌细胞的增殖抑制作用,选择合适的实验剂量.HE染色观察凋亡细胞的形态学表现,琼脂糖凝胶电泳观察凋亡细胞的DNA Ladder.采用细胞免疫组化检测三羟异黄酮诱导人肝癌细胞凋亡过程中相关蛋白p53、Caspase-3、Survivin的表达,采用RT-PCR法检测Caspase-3、Survivin在基因水平的表达[7]。

5.细菌与放线菌的16S rDNA、真菌26S rDNA D1/D2区及ITS区的分

子鉴定体系

细菌(包含放线菌)基因组有5S、16S和23S三种rDNA.16S rDNA大小在1500bp左右,其所代表的信息量适中,是进行分类研究的理想靶位。利用16S rDNA两端的引物PCR扩增未知菌株的16S rDNA把序列,并进行后续的DNA测序,与Genbank中已知序列进行同源性比较后判定细菌种类,可将细菌划分到属或种。真菌基因组中编码核糖体RNA的基因为26S rDNA、5S rDNA、18S rDNA和5.8S rDNA。利用rDNA的保守序列设计引物,对未知真菌的26S rDNA D1/D2区域序列或ITS区进行PCR扩增,测序后与Genbank中已知序列进行同源性比较,可将真菌划分到属或种。我公司具备完整的细菌和真菌分子鉴定成熟方案和技术操作体系,已顺利完成近万株海洋细菌与放线菌、霉菌、酵母和来源于土壤的微生物、植株体内生菌的分子鉴定工作。

6.载体构建技术体系及其基因靶点的定点诱变和靶序列缺失、改造技术体系

载体是外源基因导入宿主菌的必需媒介。依据目的基因的来源,灵活选择不同的克隆方法,包括从基因组中分离目的基因,由特定mRNA逆转录合成cDNA后再进行克隆和PCR 体外扩增目的片段进行克隆等。同时,根据需要对特定的基因靶点进行定点诱变和靶序列缺失、改造。

【参考文献】

[1] Feng JL,Wible B,Li GR,et a1.Antisense oligodeoxynucleotides directed against Kvl.5 mRNA specifically inhibit ultrarapid delayed rectifier current in cultured adult human atrial myocytes.Grc Res,1997,80:572—579.

[2] Davidoff AJ,Maki TM,Ellingsen O,et a1.Expression of calcium channels in adult cardiac myocytes is regulated by calcium.J Mol Cell Caroliol,1997,29:1791-1803.[3] Pinsky DJ,Aji W,Szaboks M,et a1.Nitric oxide triggers programmed cell death(apoptosis)of adult rat ventricular myocytes in culture.Am J physiol,1999,277(3 Pt 2):H 1189一1199.

[4] Schluter KD,Goldberg Y,Taimor G,et a1.Role of phosphatidylinositol 3-Kinase activation in the hypertrophic grouth of adult ventricular cardiomyocytes.Cardiovasc Res,1998,40:174-181.

[5] Clark WA,Decker ML,Behnke—Barclay M,et a1.Cell coutact as an independent factor modulating cardiac my-ocytes hypertrophy and surrival in Long-term primary culture.J Mol cell cardiol,1998,30:139—155.

[6] 张巧,四倍体野生棉种毛棉的体细胞胚胎发生和植株再生研究[J].浙江大学农业与生物

技术学院,2009.

[7] 魏思枕,三羟异黄酮诱导人肝癌细胞SMMC-7721凋亡的分子机制研究[J].河北医科大学,2005.

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

第十章 分子生物学在临床上的应用

第十章分子生物学在临床上的应用 一、什么是分子诊断 就是应用分子生物学技术对临床标本进行检验获得信息服务于临床疾病的诊断、治疗以及预后判断。 二、试述分子诊断的对象、原理和途径 1、分子诊断的检测对象: 遗传性疾病和传染性疾病 2、分子诊断的原理: 基因的结构及其表达功能是否正常? 3、分子诊断的途径: 基因突变检测:遗传性疾病的诊断 基因连锁分析:易感或抑制基因的研究 mRNA检测:表达功能是否正常 三、简述分子诊断的常用技术及其临床应用 1、聚合酶链反应(PCR):对遗传性疾病和感染性疾病进行诊断及治疗监控。 2、DNA测序(DNA sequencing):是了解基因结构(序列)的金标准。 3、荧光原位杂交技术(FISH):用于肿瘤诊断,染色体变异的检测。 4、DNA印迹技术( DNA printing):检测癌基因的存在,抑癌基因的杂合性丢失。 5、单核苷酸多态性(SNP): ⑴第三代遗传标记 ⑵与疾病易感性和药物敏感性关系密切 6、连接酶链反应(LCR):检测单碱基突变遗传病。 7、基因芯片技术(gene chip):用于优生优育、疾病诊断、基因配型、法医学等 四、核酸标本的如何收集和保存 真空采血管抽空腹静脉血3ml。 RNA检测的全血标本必须在2h内分离血清,DNA检测的全血标本必须在4h

内分离血清,-20℃贮存; EDTA抗凝血标本也可以。 五、如何理解免疫诊断与分子诊断的不一致 因为PCR检测的是病毒核酸水平,而血清学指标是病毒蛋白,两者不在一个水平上,也就是说二者测定的不是同一物体,理论上允许有差异。如大三阳患者可能出现PCR阴性,如何对待抗病毒治疗,必须综合分析,动态观察结果,不能只依靠一个指标来诊断。

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

临床分子生物学检验试题

临床分子生物学检验试题 一填空题 1. 核酸的最大紫外吸收波长在,蛋白质的最大吸收波长在。 2. 双链DNA 中的碱基对有,。 3. 根据分子和结构不同,RNA 可以分为,,,。 4. 核酸变性过程中,紫外光吸收达到最大值50%时温度称为,其主要与核酸 的最终含量有关. 5. DNA 水解后主要产物是, , 。 6. 核酸(DNA 和RNA )分子除含 有,,,四种元素外,还含有大量的元素。 7. PCR 技术是当今分子生物学使用最多的技术之一,它一般都有,,三 个基本反应步骤构成。 8. 核酸水解后首先得到核苷酸,核苷酸可以继续水解得到和。 9. 通用遗传密码中代表终止密码的三种密码 是UAA 、和。 10. P CR 方法扩增DNA 片段是,在反应中除了用该DNA 片段作为模板外,尚需加入、 和。 11. 在DNA 分子中还有大量的磷(P),P 的含量大约为。 二.判断题 1. 核酸变性时,碱基对之间的氢键断开,堆积力也受到破坏,共价键断裂. () 2. 核酸杂交原理就是根据核酸分子间互补.() 3. 在中性或碱性溶液中,核酸主要带正电 荷.() 4. 核酸分子质量很大,因此核酸溶液具有很大粘性.() 5. 分子杂交可以发生在任何只有互补核苷酸顺序两条单股核酸单链之间,如DNA/DNA 、DNA/RNA 、RNA/RNA 等.() 6. 核酸水解后首先得到核苷酸,核苷酸可以继续水解得到核苷和磷酸() 7. 在高分子溶液中一般球形分子比线形分子的具有较大的粘度。() 8?核酸的最大吸收波长在280nm,而蛋白质的最大吸收波长在260nm。() 9?酚一氯仿提取法是我们在提取DNA时所用的经典方法,现在仍然被许多实验室所采用。()10. 组成RNA的四种碱基是腺嘌呤(A )、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)。() 11. PCR技术是以DNA或RNA为模板进行核酸的体外扩增技术。() 12. PCR技术是现在常用的一种扩增技术,它的基本步骤的顺序是退火、变性、延伸。 () 13. 免疫印漬技术及Southern Blotting是一种印漬技术和抗原抗体反应结合的技术() 14. 在临床基因扩增检验诊断实验室工作的实验操作人员必须经过业务培训并取得上岗证书() 15. 无论是DNA还是RNA,在多核苷酸链 内既有酸性的磷酸基又有碱性的含氮杂环碱,因此核酸是两性电解质。() 16. 在PCR 实验中,退火是指在极端的PH 和受热条件下,核酸分子中的氢键断裂, DNA 双螺旋解开的一个过程。() 17. 临床基因扩增诊断实验室的设置必须遵 循一定的原则,而这些基本原则制定的主要依据就是使建立的基因扩增诊断实验室结果的准确性能够得到保证,能忠实的反映被检的临床样本的真实情况。( ) 二选择题 1. 核酸在波长为260nm 光吸收强度大小排列正确的是() A. G>A>T>C B.A>T>G>C C.C>G>T>A D.G>C>A>T 2.鉴别RNA 靶分子的杂交是() A Southern Blot B Northern Blot C Western Blot D 斑点杂交 3. 在做RNA 检测时,我们对全血抗凝最好用下列哪种抗凝剂() A. 肝素 B. EDTA-K2 C. EDTA-Na2 D. 草酸钾

动物细胞培养及无血清培养研究进展

动物细胞培养及无血清培养研究进展 摘要:细胞培养是生物学中一项重要技术,应用较为广泛,目前已渗透到细胞生物学、生物化学、临床检验学等多个领域。其中动物细胞培养是动物细胞工程中最常用的技术手段,而且动物细胞培养技术是其他动物细胞工程技术的基础。本文主要介绍了动物细胞培养和其中发展较快的无血清培养技术的研究应用进展。为未来实际的研究和生产作一些总结和展望。 关键词:动物细胞;细胞培养;无血清培养基 1 引言 组织培养技术创建于18世纪末,之后于1907 年美国生物学家Harrison在无菌条件下,以淋巴液为培养基在试管中培养蛙胚神经组织宣告成功后,才逐渐发展成为一种从机体获取细胞,模拟体内生存环境,在无菌、适当温度及酸碱度和一定营养条件下,使其生长繁殖并维持结构和功能的实验技术。这种技术为细胞学、遗传学、病毒学、免疫学的研究和应用做出了重要贡献。近年来生命科学迅速发展,各种在分子水平的实验如核移植、细胞杂交、DNA 介导的基因转移等,都是借助细胞培养技术而得以实现的。然而各领域的动物细胞培养技术发展并不平衡,存在许多的局限性,使用范围有限,还未出现适合整个生命科学研究领域的培养体系。因此本文对细胞培养及大规模培养、无血清培养做一些总结。 2动物细胞培养 动物细胞培养方式包括原代和传代培养。培养方式有贴壁、悬浮以及固定化培养等方式。 2.1动物细胞培养的基本概念 细胞培养指的是从体内组织取出细胞,并为其提供一个无菌、具有适当温度及酸碱度的环境,给予充分营养,使其生长繁殖并维持其结构和功能的一种培养技术。从体内取出的细胞进行的首次培养式细胞培养最初的阶段,也称为原代培养。原代培养式细胞培养当中重要的必经环节。原代培养细胞生长到一定时候后,由于受群体环境影响,需要转移到另一个容器,这种培养称为传代培养。传代后的动物细胞与原代培物形状一致的话,则表示传代成功,这些细胞称为细胞系或细胞株。 2.2动物细胞培养技术的内容

分子生物学地研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

(完整版)动物细胞培养及应用发展史

细胞培养技术

细胞培养发展史及其应用 (一)前言 20世纪初,人们不知道神经纤维是由神经细胞的细胞质向外突出形成的,还是由神经细胞周围的其他细胞融合而成的。生物学家们就这个问题展开了激烈的争论。1907年,美国生物学家哈里森(Harriso n)从蝌蚪的脊索中分离出神经组织,把它放在青蛙的凝固的淋巴液中培养。蝌蚪的神经组织存活了好几周,并且从神经细胞中长出了神经纤维。哈里森的实验不仅解决了神经纤维的起源问题,而且开创了动物组织培养的先河。此后,在许多科学家的不懈努力下,动物组织培养不断改进并逐渐发展成为动物细胞培养。 所谓动物细胞培养(亦称组织培养)既有别于植物细胞培养,又与微生物的培养完全不同。所谓动物细胞培养是指离散的动物活细胞在体外人工条件下的生长、增殖过程,在此过程中细胞不再形成组织。 由于动物细胞培养是在人工条件下进行的,便于调控和观察,因而成为现今研究动物的物质代谢过程、染色体的形态变化、以及遗传物质的表达调控等高难领域的既便利而又有效的新方法。同时,随着现代生物化学、分子生物学、分子遗传学、以及现代医学的发展,细胞培养也在许多应用领域充分展示了其巨大的发展潜力,并已为世人所关注。尽管如此,动物细胞培养仍是一门年轻的新学科,在发展之初被混淆于动物组织培养之中。 (二)细胞培养技术及其历史 细胞培养的历史最早可追溯到19 世纪末,据可考证的资料记载W ilhelm Roux是第一个进行动物组织培养实验的人。 1885年Wilhelm Roux 将鸡胚髓板放置于温热盐水中使之维持存活了数天,是有记录的第一个体外移植成功的例子。 1887年Arnold把恺木的木髓碎片接种到蛙的身上。当白细胞侵入这些木髓碎片后,他把这些白细胞收集在盛将盐水的小碟中,接下来观察到这些白细胞在运动,并存活了一个短的时间。

研究生-分子生物学Ⅱ笔记整理版

分子生物学Ⅱ 专题一细胞通讯与细胞信号转导(一)名词解释 (1)信号分子(signal molecule):是指在细胞间或细胞内进行信息传递的化学物质。 (2)受体(receptor):是指细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。 (3)蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。 (二)简答分析 (1)细胞通讯的方式及每种作用方式的特点。 答: (2)膜受体介导的信息传递途径的基本规律。

答:配体→膜受体→第二信使→效应蛋白→效应。(3)试以肾上腺素、干扰素、胰岛素、心纳素为例,阐述其信息转导过程。 答:①肾上腺素:cAMP-PKA途径; 过程:首先肾上腺素与其受体结合,使G蛋白被激活;然后G蛋白与膜上的腺苷酸环化酶相互作用,后者将ATP转化为cAMP;最后cAMP磷酸化PKA,从而产生一系列生物学效应。 ②胰岛素:受体型TPK途径; 过程:胰岛素与其靶细胞上的受体结合后,可使其受体中的TPK激活,随后通过下游的Ras途径继续传递信号,直至发生相应的生物学效应。 ③干扰素:Jak-STAT途径; 过程:首先干扰素与受体结合导致受体二聚化,然后受体使JAK(细胞内TPK)激活,接着JAK将下游的STAT磷酸化形成二聚体,暴露出入核信号,最后STAT进入核内,调节基因表达,产生生物学效应。 ④心钠素:cGMP-PKG途径; 过程:心钠素与其受体结合,由于该受体属于GC型酶偶联受体,具有鸟苷酸环化酶的的活性,因此结合后可直接将GTP转化为cGMP,进而激活下游的PKG,最终产生一系列的生物学效应。

(4)类固醇激素是如何调控基因表达的? 答:类固醇激素穿膜后与细胞内(或核内)受体结合,使受体变构形成激素受体活性复合物并进入细胞核中,然后以TF的形式作用于特异的DNA序列,从而调控基因表达。 专题二基因分析的策略 (一)名词解释 (1)分子杂交(molecular hybridization):是指具有一定同源序列的两条核酸单链(DNA或RNA)在一定条件下,按碱基互补配对原则经退火处理,形成异质双链的过程。(2)核酸分子杂交技术:是指采用杂交的手段(方式),用一已知序列的DNA或RNA片段(探针)来测检样品中未知核苷酸顺序。 (3)探针(Probe):是指用来检测某特定核苷酸序列的标记DNA或RNA片段。 (4)增色效应:是指DNA变性时260nm紫外吸收值增加的现象。 (5)解链温度(Tm):是指加热DNA溶液,使其对260nm 紫外光的吸光度达到其最大值一半时的温度,即50%DNA 分子发生变性的温度。 (6)转基因:是指是借助基因工程将确定的外源基因导入

完整word版,分子生物学总结完整版,推荐文档

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学检验完整版

1病原生物基因组在医学上有何应用?详见书P3 a菌种鉴定b确定病毒感染和病毒载量c病毒分析d细菌耐药监测和分子流行病学调查 2什么是原癌基因,原癌基因有什么特性,原癌基因可以分为哪些种类以及原癌基因常见的激活机制有哪些? 原癌基因是指人类或其他动物细胞(以及致癌病毒)固有的一类基因,能诱导细胞正常转化并使之获得新生物特征的基因总称。 特性:进化上高度保守,负责调控正常细胞生命活动,可以转化为癌基因。 功能分类:生长因子,生长因子受体,信号转导蛋白,核调节蛋白,细胞周期调节蛋白,抑制凋亡蛋白激活机制:插入激活,基因重排,基因点突变,基因扩增,基因转录改变 3试述Down综合征(21三体综合征)的主要临床特征及核型。 临床特征:生长发育障碍,智力低。呆滞面容,又称伸舌样痴呆。40%患者有先天性心脏畸形。肌张力低,50%患者有贯通手,男患者无生育能力,女患者少数有生育能力,遗传风险高。 核型:92.5%患者游离型:核型为47,XX(XY),+21 2.5%患者为嵌合型:46,XX(XY)/47,XX(XY),+21 5%患者为易位型:46,XX(XY),-14,+t(14q21q) 4简述淋球菌感染的主要传统实验室诊断方法及其主要特点,对比分析分子生物学方法的优势 1直接涂片染镜检:敏感度和特异性差,不能用于确诊。 2分离培养法:诊断NG感染的金标准,但是其对标本和培养及营养要求高,培养周期长,出报告慢,难以满足临床要求。 3免疫学法:分泌物标本中的非特异性反应严重以及抗体法间的稳定性和条件限制,推广受限。 分子生物学的优点:敏感,特异,可直接从了临床标本中检出含量很低的病原菌,适应于快速检测 5、在单基因遗传病的分子生物学检验中,点突变检测常用方法有哪些? 1异源双链分析法(HA)2突变体富集PCR法3变性梯度凝胶电泳法4化学切割错配法5等位基因特异性寡核苷酸分析法6DNA芯片技术7连接酶链反应8等位基因特异性扩增法9RNA酶A切割法10染色体原位杂交11荧光原位杂交技术 6、简述白假丝酵母菌的分子生物学检验方法 白假丝酵母菌分子生物学检验主要包括白假丝酵母菌特异性核酸(DNA RNA)的检测、基因分型和耐药基因分析等。 1PCR技术:选择高度特异性的天冬氨酸蛋白酶基因设计引物 PCR—斑点杂交技术:正向杂交和反向杂交,后者可一次检测多种真菌 DNA指纹技术:RFLPRAPD电泳核型分析 AP—PCR技术:定义方法简便,快速,特别适合临床应用 DNA序列分析:可测定rDNA序列也适用于基因突变引起的耐药 基因芯片技术:适用于病原体的耐药研究 7、F VIII基因倒位导致血友病A,DMD基因外显子缺失导致与杜氏肌营养不良,珠蛋白基因突变导致与珠蛋白合成障碍性贫血。 (第11章,P197,P203,P207。窝觉得大家把题目读三遍就可以了) 答:F VIII基因倒位是导致的血友病A的主要原因(占50%)其它基因突变,如点突变,缺失,插入也会导致血友病A。 同理DMD基因外显子缺失是迪谢内肌营养不良(杜氏肌营养不良)发生的主要原因(60%-70%)。

分子生物学笔记完全版

分子生物学笔记 第一章基因的结构 第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene).Ψa1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1.功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构, 2.结构基因中没有内含子,也无重叠现象。 3.细菌DNA大部分为编码序列。 二、病毒基因组的特点 1.每种病毒只有一种核酸,或者DNA,或者RNA; 2.病毒核酸大小差别很大,3X103一3X106bp; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4.大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5.真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6.有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone):一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere):真核生物线状染色体分子末端的DNA区域 端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

分子生物学在医学检验中的临床应用及前景word精品

分子生物学在医学检验中的临床应用及前景 班级:2013 级科硕 6 班专业:临床检验诊断 学姓名:姜世涛 学号:2013203030024 评分: 导师签名: 分子生物学是一门正在蓬勃发展的学科,新技术和应用条件的不断出现,为检验医学的发展提供了崭新的时代并提供新的机遇和挑战。分子生物学是以核酸、蛋白质等生物大分子为研究对象的学科,分子生物学技术即建立在核酸生化基础上的一类研究手段,现已广泛应用于医学检验中,同时也逐渐渗入数理科学、结构基因组学、功能基因组学和环境基因组学,研究内容也从DNA 鉴定、扩展到核酸及表达产物分析,技术不断进步为微生物检验、肿瘤诊断及评估、遗传病诊断、兔疫系统疾病诊断提供重要依据和创新思路。在结构基因组学、功能基因组学和环境基因组学蓬勃发展形势下,分子诊断学技术将会取得突破性进展。一.利用分子生物学技术检测样品中核酸水平 PCR[1]技术是目前应用较广泛和成熟的临床检测方法,在法医学、常见传染病、性病、寄生虫和优生优育等领域有很高的应用价值,尤其对肝炎病毒的早期诊断。 1.核酸分子杂交技术和基因芯片技术核酸分子杂交技术也称为基因探针技术,利

用核酸的变性、复性和碱基互补配对的原理,用已知的探针序列检测样本中是否含有与之配对的核苷酸序列的技术,是印迹杂交、基因芯片等技术的基础。目前基因芯片技术可广泛应用在肿瘤基因表达谱差异研究、基因突变、基因测序、基因多态性分析、微生物筛选鉴定、遗传病产前诊断等方面。另外,现已获得一些微生物的全基因序列,包括百余种病毒,多种细菌(流感嗜血杆菌、产甲烷球菌及实验室常用的大肠杆菌等)和一些酵母等。因此,将一种或多种病原微生物的全部或部分特异的保守序列集成在一块基因芯片上,可快速、简便地检测出病原体,判断侵入机体引起感染性疾病的病原微生物(病毒、细菌或寄生虫等),从而对疾病作出诊断及鉴别诊断。 2.单核苷酸多态性分析(SNP) 技术 在人群中,个体基因的核苷酸序列存在差异性,称为基因多态性。基因多态性位点普遍存在于人的基因组中。如果在某个家庭中,某一致病基因与特定的多态性片段紧密连锁,就可以用这一多态性片段作为一种” 遗传标记” 来判断家庭成员或胎儿是否携带有致病基因。目前认为基因多态性是个体的”身份证”,因此,基因多态性分析技术已经广泛应用于群体遗传学研究、疾病连锁分析和关联分析、疾病遗传机制研究、肿瘤易感性研究、个性化用药等诸多方面。单核苷酸多态性(single nucleotide polymorphism ,SNP) 分析技术为临床检测提供了依据。SNP是一种最常见的遗传变异,在人类DNA多态性中,SNP约占90%。SNP是指在基因组内特定核苷酸位置上存在两种不同的碱基。SNP与RFLP和STR等DNA标记的主要不同在于:它不再以”长度”的差异作为检测手段,而是直接以序列的差异作为标记。由于SNP 是二态的,易于自动化批量检测,易于计算机分析结果,因此SNP检测已广泛地应用于疾病的连锁分析及关联分析、肿瘤的杂合性缺失研

(完整版)细胞生物学(翟中和完美版)笔记.

细胞生物学教案 . 第一章绪论 教学目的 1 掌握本学科的研究对象及内容; 2 了解本学科的来龙去脉(发展史及发展前景); 3 掌握与本学科有关的重大事件和名词。 教学重点本学科的研究对象及内容 第一节细胞生物学研究内容与现状 一、细胞生物学是现代生命科学的重要基础学科 1.细胞学(Cytology):是研究细胞的结构、功能和生活史的科学 2.细胞生物学(Cell Biology):运用近代物理学和化学的技术成就以及分子生物学的概念与方法,从显微水平、亚显微水平和分子水平三个层次上,研究细胞的结构、功能及各种生命活动规律。 二、细胞生物学的主要研究内容 1. 细胞核、染色体及基因表达基因表达与调控是目前细胞生物学、遗传学和发育生物学在细胞和分子水平相结合的最活跃领域。 2.生物膜与细胞器的研究膜及细胞器的结构与功能问题(“膜学”)。 3. 细胞骨架体系的研究胞质骨架、核骨架的装配调节问题和对细胞行使多种功能的重要.性。 4. 细胞增殖及调控控制生物生长和发育的机理是研究癌变发生和逆转的重要途径(“再教育细胞”)。 5. 细胞分化及调控一个受精卵如何发育为完整个体的问题。(细胞全能性) 6 .细胞衰老、凋亡及寿命问题。 7. 细胞的起源与进化。 8. 细胞工程改造利用细胞的技术。生物技术是信息社会的四大技术之一,而细胞工程又是生物技术的一大领域。目前已利用该技术取得了重大成就(培育新品种,单克隆抗体等),所谓21世纪是生物学时代,将主要体现在细胞工程方面。 三、当前细胞生物学研究的总趋势与重点领域 1. 染色体DNA与蛋白质相互作用关系; 2. 细胞增殖、分化、凋亡的相互关系及其调控; 3 .细胞信号转导的研究; 4 .细胞结构体系的装配。 第二节细胞生物学发展简史 一细胞生物学研究简史 1.细胞学创立时期19世纪以及更前的时期(1665—1875),是以形态描述为主的生物科学时期; 2. 细胞学经典时期20世纪前半世纪(1875—1900),主要是实验细胞学时期; 3. 实验细胞学时期(1900—1953);

现代分子生物学笔记(基础理论部分)汇总

第二章染色体与DNA 第一节染色体 1、真核细胞的染色体具有如下性质:分子结构相对稳定;能够自我复制,使亲子代保持连 续性;能指导蛋白质的合成,从而控制生命过程;能产生可遗传的变异。 2、染色体上的蛋白质包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体。组蛋白分为H1、H2A、H2B、H 3、H4。 组蛋白:histones真和生物体细胞染色质中的碱性蛋白质含精氨酸和赖氨酸等碱性氨基酸特 别多,二者加起来约为所有氨基酸残基的四分之一。 3、组蛋白的一般特性: ○1进化上的极端保守:不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4 可能对稳定真核生物的染色体结构起重要作用。 ○2无组织特异性 ○3肽链上氨基酸分布的不对称性 ○4存在较普遍的修饰作用 ○5富含赖氨酸的组蛋白H5 4、非组蛋白:主要包括与复制和转录有关的酶类、与细胞分裂有关的蛋白等。 5、真核生物基因组DNA: 真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开。人们把一种生物单倍体基因组DNA的总值称为C值。在真核生物中C值一般是随生物进化而增加的,高等生物的C值一般大于低等生物,但某些两栖 类的C值甚至比哺乳类还大,这就是著名的“C值反常现象”。 6、真核细胞DNA序列可分为三类: ○1不重复序列:在单倍体基因组里,一般只有一个或几个拷贝,占DNA总量的40%~80%。结构基因基本上属于不重复序列。 ○2中度重复序列:重复次数在10~104之间,占DNA总量的10%~40%,各种rRNA、tRNA 以及某些结构基因(如组蛋白基因)都属于此类。 ○3高度重复序列:如卫星DNA。只在真核生物中出现占基因组的10%~60%,由10~60个碱基组成,在DNA链上串联重复高达数百万次,这类DNA高度浓缩,是异染色质的组成部分,可能与染色体的稳定性有关。 7、染色质与核小体:染色质纤维细丝是由DNA和组蛋白构成,DNA和组蛋白构成核小体,核小体连成念珠状构成染色质。 ○1核小体的装配过程: 两分子的H3和两分子的H4先形成四聚体,然后由H2A和H2B构成的异二聚体在该四聚体 的两侧分别结合而形成八聚体。长146bp的DNA按左手螺旋盘绕在八聚体上 1.8圈,形成核小体的核心颗粒,每圈约80bp。核心颗粒两端的DNA各有11bp与H1结合,形成完整的核小体。核小体的形成是染色体压缩的第一个阶段。 ○2染色体的压缩: DNA双链以左手螺旋盘绕在组蛋白形成的八聚体核心上即核小体------念珠状结构-----核小体结构进一步盘绕折叠形成染色质丝----组成突环----玫瑰花结------螺线圈-----由螺线圈组成染色单体。 8、真核生物基因组的特点: ○1真核基因组庞大,一般都远大于原核生物的基因组 ○2真核基因组存在大量的重复序列

临床分子生物学检验试题

临床分子生物学检验试题一填空题 1.核酸的最大紫外吸收波长在,蛋白 质的最大吸收波长在。 2.双链DNA中的碱基对 有,。 3.根据分子和结构不同,RNA可以分 为,,,。 4.核酸变性过程中,紫外光吸收达到最大值 50%时温度称为,其主要与核酸 的最终 含量有关. 5.DNA水解后主要产物 是,,。 6.核酸(DNA和RNA)分子除含 有,,,四种元素外, 还含有大量的元素。 7.PCR技术是当今分子生物学使用最多的 技术之一,它一般都有,,三 个基本反应步骤构成。 8.核酸水解后首先得到核苷酸,核苷酸可以

继续水解得到和。 9.通用遗传密码中代表终止密码的三种密码 是UAA、和。 10.PCR方法扩增DNA片段是,在反应中除 了用该DNA片段作为模板外,尚需加 入、 和。 11.在DNA分子中还有大量的磷(P),P的 含量大约为。 二.判断题 1.核酸变性时,碱基对之间的氢键断开,堆积 力也受到破坏,共价键断裂.() 2.核酸杂交原理就是根据核酸分子间互 补.() 3.在中性或碱性溶液中,核酸主要带正电 xx.() 4.核酸分子质量很大,因此核酸溶液具有很 大粘性.()5.分子杂交可以发生在任何只有互补核苷酸顺序两条单股核酸单链之间,如DNA/DNA、DNA/RNA、RNA/RNA等.() 6.核酸水解后首先得到核苷酸,核苷酸可以继续水解得到核苷和磷酸() 7.在高分子溶液中一般球形分子比线形分子的具有较大的粘度。()

8.核酸的最大吸收波长在280nm,而蛋白质的最大吸收波长在260nm。 () 9.酚—氯仿提取法是我们在提取DNA时所用的经典方法,现在仍然被许多实验室所采用。() 10.组成RNA的四种碱基是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)。() 11.PCR技术是以DNA或RNA为模板进行核酸的体外扩增技术。() 12.PCR技术是现在常用的一种扩增技术,它的基本步骤的顺序是退火、变性、延伸。 () 13.免疫印漬技术及SouthernBlotting是一种印漬技术和抗原抗体反应结合的技术() 14.在临床基因扩增检验诊断实验室工作的实验操作人员必须经过业务培训并取得上岗证书() 15.无论是DNA还是RNA,在多核苷酸链内既有酸性的磷酸基又有碱性的含氮杂环碱,因此核酸是两性电解质。() 16.在PCR实验中,退火是指在极端的PH和受热条件下,核酸分子中的氢键断裂,DNA双螺旋解开的一个过程。() 17.临床基因扩增诊断实验室的设置必须遵循一定的原则,而这些基本原则制定的主要依据就是使建立的基因扩增诊断实验室结果的准确性能够得到保证,能忠实的反映被检的临床样本的真实情况。()二选择题 1.核酸在波长为260nm光吸收强度大小排列正确的是() A. G>A>T>CB.A>T>G>CC.C>G>T>A

相关主题
文本预览
相关文档 最新文档