当前位置:文档之家› 年产8万吨合成氨合成工艺设计毕业设计(论文)word格式

年产8万吨合成氨合成工艺设计毕业设计(论文)word格式

年产8万吨合成氨合成工艺设计毕业设计(论文)word格式
年产8万吨合成氨合成工艺设计毕业设计(论文)word格式

宁夏大学

本科生毕业设计fdfsafh

工艺设计

姓名:王康洲

指导教师:陈学文

院系:化工学院

专业:化学工程与工艺

提交日期:

目录

中文摘要 (2)

外文摘要 (3)

1.总论 (4)

1.1设计任务的依据 (4)

1.2概述……………………………………………………………………………

1.2.1设计题目 (7)

1.2.2 设计具体类容范围及设计阶段 (7)

1.2.3设计的产品的性能、用途及市场需要 (8)

1.2.4简述产品的几种生产方法及特点 (8)

1.3产品方案 (8)

1.4设计产品所需要的主要原料规格、来源 (8)

1.4.1设计产品所需要的主要原料来源 (8)

1.4.2涉及产品所需要的主要原料规格 (8)

1.5生产中产生有害物质和处理措施 (8)

1.5.1氨气和液氨 (8)

1.5.2合成氨废水 (8)

2.生产流程及生产方法的确定 (8)

3.生产流程简述 (14)

4.工艺计算 (16)

4.1原始条件 (16)

4.2物料衡算 (16)

4.2.1合成塔物料衡算 (18)

4.2.2氨分离器气液平衡计算 (19)

4.2.3冷交换器气液平衡计算 (19)

4.2.4液氨贮槽气液平衡计算 (25)

4.2.5液氨贮槽物料计算 (29)

4.2.6热交换器热量计算 (35)

4.2.7水冷器热量计算 (36)

4.2.8氨分离器热量核算 (39)

5. 主要设备选型 (39)

5.1废热锅炉设备工艺计算 (40)

5.1.1计算条件 (40)

5.1.2 官内给热系数α计算 (41)

5.1.3管内给热系数αi计算 (42)

5.1.4总传热系数K 计算 (43)

5.1.5平均传热温差m Δt 计算 (44)

5.1.6传热面积 (45)

5.2主要设备选型汇总 (46)

6. 环境保护与安全措施 (47)

6.1环境保护 (48)

6.1.1化学沉淀—A/ O 工艺处理合成氨废水 (49)

6.1.2 合成氨尾气的回 (50)

6.2安全措施 (51)

6.2.1防毒 (52)

6.2.2 防火 (53)

6.2.3防爆 (54)

6.2.4防烧伤 (55)

6.2.6防机械伤 (56)

6.2.5防触电 (57)

结束语 (40)

注释 (40)

参考文献 (42)

致谢 (43)

附录 (43)

年产8万吨合成氨合成工艺设计

指导老师:詹益民

(黄山学院化学系,黄山,安徽 245000)

摘要:介绍合成氨合成生产工艺流程,着重通过对此工艺流程的物料衡算,能量衡算确定主要设备选型。

关键词:氨合成;生产工艺;物料衡算;能量衡算;设备选型

PRODUCES 80,000 TONS OF AMMONIA SYNTHESIS PROCESS DESIGN

Director:XXX Associate Director:XXX

(Dept. of Chemistry,HuangShan College, China, 245000)

Abstract:Introduction of ammonia synthesis production process, highlighted by this process of material balance calculate, energy calculation confirming the main equipment selection.

Key Words:Ammonia synthesis, Production process, Material calculation, Energy calculation, Selection of equipment

1 总论

氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30%的比例,称之为“工业氨”。

世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发[1]。

(1) 大型化、集成化、自动化, 形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向。以Uhde公司的“双压法氨合成工艺”和Kellogg公司的“基于钌基催化剂KAAP工艺”,将会在氨合成工艺的大型化方面发挥重要的作用。氨合成工艺单元主要以增加氨合成转化率(提高氨净值) ,降低合成压力、减小合成回路压降、合理利用能量为主,开发气体分布更加均匀、阻力更小、结构更加合理的合成塔及其内件; 开发低压、高活性合成催化剂, 实现“等压合成”。

(2) 以“油改气”和“油改煤”为核心的原料结构调整和以“多联产和再加工”为核心的产品结构调整,是合成氨装置“改善经济性、增强竞争力”的有效途径。

实施与环境友好的清洁生产是未来合成氨装置的必然和惟一的选择。生产过程中不生成或很少生成副产物、废物,实现或接近“零排放”的清洁生产技术将日趋成熟和不断完善。

提高生产运转的可靠性,延长运行周期是未来合成氨装置“改善经济性、增强竞争力”的必要保证。有利于“提高装置生产运转率、延长运行周期”的技术,包括工艺优化技术、先进控制技术等将越来越受到重视。

1.1设计任务的依据

设计任务书是项目设计的目的和依据:

产量:80 kt/a液氨

放空气(惰性气Ar +CH

):17%

4

原料:新鲜补充气N2 24%,H2 74.5%,Ar 0.3%,CH4 1.2%

合成塔进出口氨浓度:2.5%,13.2%

放空气:(惰性气Ar +CH4)~17%

合成塔操作压力32 MPa(绝压)

精练气温度40℃

水冷器出口气体温度35℃

循环机进出口压差 1.47MPa

年工作日310 d

计算基准生产1t氨

1.2概述

1.2.1设计题目:年产8万吨合成氨合成工段设计

1.2.2 设计具体内容范围及设计阶段

本次设计的内容为合成氨合成工段的设计,具体包括以下几个设计阶段:

1. 进行方案设计,确定生产方法和生产工艺流程。

2. 进行化工计算,包括物料衡算、能量衡算以及设备选型和计算。

3. 绘制带控制点的工艺流程图(PID)。

4. 进行车间布置设计,并绘制设备平立面布置图。

5. 进行管路配置设计,并绘制管路布置图。

6. 撰写设计说明书。

1.2.3设计的产品的性能、用途及市场需要

(1) 氨的物化性能

合成氨的化学名称为氨,氮含量为82.3%。氨是一种无色具有强烈刺激性、催泪性和特殊臭气的无色气体,比空气轻,相对密度0.596,熔点-77.7℃;沸点-33.4℃。标准状况下,1米3气氨重0.771公斤;1米3液氨重638.6公斤。极易溶于水,常温(20℃)常压下,一个体积的水能溶解600个体积的氨;标准状况下,一个体积水能溶解1300个体积的氨氨的水溶液称为氨水,呈强碱性。因此,用水喷淋处理跑氨事故,能收到较好的效果[2]。

氨与酸或酸酐可以直接作用,生成各种铵盐;氨与二氧化碳作用可生成氨基甲铵,脱水成尿素;在铂催化剂存在的条件下,氨与氧作用生成一氧化氮,一氧化氮继

续氧化并与水作用,便能得到硝酸。氨在高温下(800℃以上)分解成氮和氢;

氨具有易燃易爆和有毒的性质。氨的自燃点为630℃,氨在氧中易燃烧,燃烧时生成蓝色火焰。氨与空气或氧按一定比例混合后,遇明火能引起爆炸。常温下氨在空气中的爆炸范围为15.5~28%,在氧气中为13.5~82%。液氨或干燥的气氨,对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等有腐蚀作用[3]。

(2) 氨的用途

氨是基本化工产品之一,用途很广。化肥是农业的主要肥料,而其中的氮肥又是农业上应用最广泛的一种化学肥料,其生产规模、技术装备水平、产品数量,都居于化肥工业之首,在国民经济中占有极其重要的地位。各种氮肥生产是以合成氨为主要原料的,因此,合成氨工业的发展标志着氮肥工业的水平。以氨为主要原料可以制造尿素、硝酸铵、碳酸氢铵、硫酸铵、氯化铵等氮素肥料。还可以将氨加工制成各种含氮复合肥料。此外,液氨本身就是一种高效氮素肥料,可以直接施用,一些国家已大量使用液氨。可见,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。

氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业部门。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。现代国防工业和尖端技术也都与氨合成工业有密切关系,如生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷冻剂。

合成氨工业的迅速发展,也促进和带动了许多科学技术部门的发展,如高压技术、低温技术、催化技术、特殊金属材料、固体燃料气化、烃类燃料的合理利用等。同时,尿素和甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门[4]。

市场需要

据资料统计:1997年世界合成氨年产量达103.9Mt。2000 年产量将达111.8Mt。其化肥用氨分别占氨产量的81.7%和82.6%。我国1996年合成氨产量已达30.64Mt,2000 年将达36Mt,2020年将增加至45Mt。即今后20 年间将增加到现在的1.5倍。因而合成氨的持续健康发展还有相当长的路要走。未来我国合成氨氮肥的实物产量将会超过石油和钢铁。合成氨工业在国民经济中举足轻重。农业生产,“有收无收在于水,收多收少在于肥”。所以,合成氨工业是农业的基础。它的发展将对国民经济的发展产生重大影响。因此,我国现有众多的化肥生产装置应成为改造扩建增产的基础。我国七十至九十年代先后重复引进30多套大化肥

装置,耗费巨额资金,在提高了化肥生产技术水平的同时,也受到国外的制约。今后应利用国内开发和消化吸收引进的工艺技术,自力更生,立足国内,走出一条具有中国特色的社会主义民族工业的发展道路。过去引进建设一套大型化肥装置,耗资数十亿元。当今走老厂改造扩建的道路,可使投资节省1/2—2/3。节省的巨额资金,用作农田水利建设和农产品深加工,将在加速农村经济发展,提高农民生活水平,缩小城乡差距起着重要用。

1.2.4简述产品的几种生产方法及特点

氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。对于合成系统来说,液体氨即是它的产品。工业上合成氨的各种工艺流程一般以压力的高低来分类[3]。

(1)高压法

操作压力70~100MPa,温度为550~650℃。这种方法的主要优点是氨合成效率高,混合气中的氨易被分离。故流程、设备都比较紧凑。但因为合成效率高,放出的热量多,催化剂温度高,易过热而失去活性,所以催化剂的使用寿命较短。又因为是高温高压操作,对设备制造、材质要求都较高,投资费用大。目前工业上很少采用此法生产。

(2)中压法

操作压力为20~60MPa,温度450~550℃,其优缺点介于高压法与低压法之间,目前此法技术比较成熟,经济性比较好。因为合成压力的确定,不外乎从设备投资和压缩功耗这两方面来考虑。从动力消耗看,合成系统的功耗占全厂总功耗的比重最大。但功耗决不但取决于压力一项,还要看其它工艺指标和流程的布置情况。总的来看,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。因此,本次设计选用32MPa压力的合成氨流程。

(3)低压法

操作压力10MPa左右,温度400~450℃。由于操作压力和温度都比较低,故对设备要求低,容易管理,且催化剂的活性较高,这是此法的优点。但此法所用催化剂对毒物很敏感,易中毒,使用寿命短,因此对原料气的精制纯度要求严格。又因操作压力低,氨的合成效率低,分离较困难,流程复杂。实际工业生产上此法已不采用了。

1.3 产品方案

产品的名称:氨(NH3);

产品的质量规格:液体纯氨;

产品的规模:80 kt/a 液氨;

产品的包装方式:氨为高压低温液体,合成后直接送到下一工段作为原料继续生产,多余部分设立氨储槽储存起来。

1.4设计产品所需的主要原料规格、来源

1.4.1主要原料来源

生产合成氨,首先必须制备氢、氮原料气。

氮气来源于空气,可以在低温下将空气液化、分离而得,或者在制氢过程中直接加入空气来解决。

氢气来源于水或含有烃类的各种燃料,它取决于用什么方法制取。最简便的方法是将水电解,但此法由于电能消耗大、成本高而受到限制。现在工业上普遍采用以焦炭、煤、天然气、重油等原料与水蒸汽作用的气化方法。

1.4.2 主要原料规格

(1) 合成塔进口气体组成

合成塔进口气体组成包括氢氮比、惰性气体含量与初始氨含量。当氢氢比为3时,对于氨合成反应,可得最大平衡氨含量,但从动力学角度分析,最适宜氢氨比随氨含量的不同而变化。如果略去氢及氨在液氨中溶解损失的少量差异,氨合成反应氢与氮总是按3:1消耗,新鲜气氢氮比应控制为3,否则循环系统中多余的氢或氮就会积累起来,造成循环气中氢氮比的失调。

惰性气体(CH4、Ar)来源于新鲜原料气,它们不参与反应因而在系统中积累。惰性气体的存在,无论从化学平衡还是动力学上考虑均属有弊。但是,维持过低的惰气含量又需大量排放循环气导致原料气消耗量增加。如果循环气中惰性气体含量一定,新鲜气中惰性气体含量增加,根据物料平衡关系,新鲜气消耗随之增大。因此,循环气中惰性气体含量应根据新鲜气惰性气体含量、操作压力、催化剂活性等条件而定。由于原料气制备与净化方法不同,新鲜气中惰性气体含量也各个相同,循环气中所控制的惰性气体含量也有差异。

当其它条件一定时,进塔气体中氨含量越高,氨净值越小,生产能力越低。初始氨含量的高低取决于氨分离的方法。对于冷冻法分离氨,初始氨含量与冷凝

温度和系统压力有关。为过分降低冷凝温度而过多地增加氨冷负荷在经济上也并不可取。操作压力300atm时,一般进塔氨含量控制在3.2~3.8%;150atm时,为2.0~3.2%。

(2) 硫化物和碳氧化物含量

无论那一种原料所得原料气,都含有一定数量的硫化物。虽然原料气中硫化物含量不高,但对合成氨生产危害却很大。硫化物是各种催化剂的毒物,硫化氢能腐蚀设备管道。以烃类为原料的蒸汽转化法制取原料气,镍催化剂对硫含量限制十分严格,要求烃原料中总硫含量为0.5PPm(重量)以下。

为防止CO和CO2对催化剂的毒害,规定CO和CO2总含量不得多余20ppm[5]。

1.5生产中产生有害物质和处理措施

中小型合成氨厂在生产过程中,常见的有毒有害物质种类很多,多以气体、蒸气、雾、粉尘等状态存在,其中有毒有害气体是合成氨生产中最常见的。

1.5.1 氨气和液氨

氨气是一种具有强烈刺激臭味的无色气体, 易被液化成蓝色液体。车间空气中氨的最高容许浓度为30毫克/米3。它对人的眼睛和呼吸器官有较大的伤害作用。氨中毒的症状首先是服粘膜和呼吸道粘膜受到刺激、胸感抑郁、胃痛、打喷嚏、流口水、周身有不舒服感。如在氨气浓度不大的环境中,停留时间不长,而且能及时离开环境,到空气新鲜的地方去,上述的症状可渐渐消失。中毒严重时,会引起肺部肿胀导致死亡。氨气刺激眼睛能引起角膜炎。因氨有气味,故较好预防。

合成氨生产中合成工段经常接触的液体毒物有液氨、氨水等。液氨或氨水溅入眼内,可造成眼睛严重损伤,出现眼睑水肿,眼结膜迅速充血水肿,眼剧痛,角膜混浊,甚至因角膜溃疡、穿孔而失明。接触液氨和高浓度气氨,可使皮肤引起类似强碱的严重灼伤,出现红斑、水泡,甚至因吸收水分,使皮肤脂肪皂化而坏死。

无法回收,通过放空火炬燃烧掉在正常生产过程中,有很少一部份气态NH

3

就不会对环境造成影响。对于成品氨罐放空的气态NH3可引入冰机中进行加压冷凝,不仅回收了NH3,同时也不会造成环境的污染[3]。

1.5.2 合成氨废水

合成氨生产过程中产生的废水是COD的主要来源。比如,隔油池中废水就

含有COD。如果含有COD的废水排放出去就会繁衍菌类、藻类,污染水源和土壤,更严重的是会造成污染滋生源,对环境造成更大的破坏。

要减少废水和工艺冷凝液中的COD的排放,可改进生产工艺,使废水排放减少,建设特生化处理装置,进行废水处理,使废水中的COD含量达到国家控制标准[6]。

2 生产流程及生产方法的确定

2.1合成氨生产的特点

氨的合成工段,其主要任务是在适宜的温度、压力和有触媒催化的条件下,将经过精制的氢氮混合气体,在合成塔内直接合成为氨。然后将所得的气氨,从氢氮混合气中经冷却冷凝成为液态氨分离出来。液氨由氨罐进入氨冷器蒸发为气氨,送碳化岗位制取碳酸氢铵;或送硝酸车间制取硝酸和硝铵;或送硫铵车间制取硫酸铵;或将液氨送尿素车间制取尿素等。未合成为氨的氢氮混合气体继续在合成系统内循环使用。

合成氨生产的特点,概括起来有如下几方面[7]:

(1)工艺流程长、设备管道多;(2)生产过程有高度的连续性;(3)各工序生产操作相互影响;(4)生产是在高温、高压、易燃、易爆、易中毒、易灼伤的情况下进行的。

在整个合成氨生产过程中,合成氨生产比较复杂,始终存在着高温、高压、易燃、易爆、易中毒等危险因素,各种控制条件比较严格,稍有疏忽就可能发生事故。同时,因生产工艺流程长、连续性强,设备长期承受高温和高压,还有内部介质的冲刷、渗透和外部环境的腐蚀等,各类事故发生率比较高,尤其是火灾、爆炸和重大设备事故经常发生。但是,只要我们能充分认识这一客观规律并掌握这一客观规律就能做到安全生产,实现稳产、高产。

因此,合成氨生产必须满足高温、高压、高纯度要求。在生产过程中有一系列化学反应、传热、燃烧、分离等过程,温度、压力、浓度等因素都影响反应的进行,这些因素又受到设备质量、水质、煤质、季节、气候、操作水平、调度与管理的影响,这样就形成了合成氨生产工艺过程、设备结构、操作管理与生产技术的复杂性。

2.2 氨合成过程的基本工艺步骤

实现氨合成的循环,必须包括如下几个步骤[4]:氮氢原料气的压缩并补入循

环系统;循环气的预热与氨的合成;氨的分离;热能的回收利用;对未反应气体补充压力并循环使用,排放部分循环气以维持循环气中惰性气体的平衡等。

由于采用压缩机的型式、氨分冷凝级数、热能回收形式以及各部分相对位置的差异,而形成不同的工业生产流程,但实现氨合成过程的基本工艺步骤是相同的。

(1)气体的压缩和除油

为了将新鲜原料气和循环气压缩到氨合成所要求的操作压力,就需要在流程中设置压缩机。当使用往复式压缩机时,在压缩过程中气体夹带的润滑油和水蒸汽混合在一起,呈细雾状悬浮在气流中。气体中所含的油不仅会使氨合成催化剂中毒、而且附着在热交换器壁上,降低传热效率,因此必须清除干净。除油的方法是压缩机每段出口处设置油分离器,并在氨合成系统设置滤油器。若采用离心式压缩机或采用无油润滑的往复式压缩机,气体中不含油水,可以取消滤油设备,简化了流程。

(2)气体的预热和合成

压缩后的氢氮混合气需加热到催化剂的起始活性温度,才能送入催化剂层进行氨合成反应。在正常操作的情况下,加热气体的热源主要是利用氨合成时放出的反应热,即在换热器中反应前的氢氮混合气被反应后的高温气体预热到反应温度。在开工或反应不能自热时,可利用塔内电加热炉或塔外加热炉供给热量。

(3)氨的分离

进入氨合成塔催化层的氢氮混合气,只有少部分起反应生成氨,合成塔出口气体氨含量一般为10~20%,因此需要将氨分离出来。氨分离的方法有两种,一是水吸收法;二是冷凝法,将合成后气体降温,使其中的气氮冷凝成液氨,然后在氨分离器中,从不凝气体中分离出来。

目前工业上主要采用冷凝法分离循环气中的氨。以水和氨冷却气体的过程是在水冷器和氨冷器中进行的。在水冷器和氨冷器之后设置氨分离器,把冷凝下来的液氨从气相中分离出来,经减压后送至液氮贮槽。在氨冷凝过程,部分氢氮气及惰性气体溶解在液氨中。当液氨在贮槽内减压后,溶解的气体大部分释放出来,通常称为“贮罐气”。

(4)气体的循环

氢氮混合气经过氨合成塔以后,只有一小部分合成为氨。分离氨后剩余的氢

氮气,除为降低情性气体含量而少量放空以外,与新鲜原料气混合后,重新返回合成塔,再进行氨的合成,从而构成了循环法生产流程。由于气体在设备、管道中流动时,产生了压力损失。为补偿这一损失,流程中必须设置循环压缩机。循环机进出口压差约为20~30大气压,它表示了整个合成循环系统阻力降的大小。

(5)惰性气体的排除

氨合成循环系统的情性气体通过以下三个途径带出:(1)一小部分从系统中漏损;(2)一小部分溶解在液氨中被带走;(3)大部分采用放空的办法,即间断或连续地从系统中排放。

在氨合成循环系统中,流程中各部位的惰性气体含量是不同的,放空位置应该选择在惰性气体含量最大而氨含量最小的地方,这样放空的损失最小。由此可见,放空的位置应该在氨已大部分分离之后,而又在新鲜气加入之前。放空气中的氨可用水吸收法或冷凝法加以回收,其余的气体一股可用作燃料。也可采用冷凝法将放空气中的甲烷分离出来,得到氢、氮气,然后将甲烷转化为氢,回收利用,从而降低原料气的消耗。

有些工厂设置二循环合成系统,合成系统放空气进入二循环系统的合成塔,继续进行合成反应,分离氨后部分情性气体放空,其余部分在二循环系统继续循环。这样,提高了放空气中惰性气体含量,从而减少了氢氮气损失。

(6)反应热的回收利用

氨的合成反应是放热反应,必须回收利用这部分反应热。目前回收利用反应热的方法主要有以下几种:

(1) 预热反应前的氢氮混合气。在塔内设置换热器,用反应后的高温气体预热反应前的氢氮混合气,使其达到催化剂的活性温度。这种方法简单,但热量回收不完全。目前小型氨厂及部分中型氨厂采用此法回收利用反应热。

(2) 预热反应前的氢氮混合气和副产蒸汽。既在塔内设置换热器预热反应前的氢氮混合气,又利用余热副产蒸汽。按副产蒸汽锅炉安装位置的不同,可分为塔内副产蒸汽合成塔(内置式)和塔外副产蒸汽合成塔(外置式)两类。目前一般采用外置式,该法热量回收比较完全,同时得到了副产蒸汽,目前中型氮厂应用较多。

(3)预热反应前的氢氮混合气和预热高压锅炉给水。反应后的高温气体首先通过塔内侧换热器预热反应前的氢氮混合气,然后再通过塔外的换热器预热高压锅炉给水。此法的优点是减少了塔内换器的面积,从而减小了塔的体积,同时热

能回收完全。目前大型合成氨厂一般采用这种方法回收热量。用副产蒸汽及预热高压锅炉给水方式回收反应热时,生产一吨氨一般可回收0.5~0.9吨蒸汽。

2.3氨合产工艺的选择

考虑氨合成工段的工艺和设备问题时,必须遵循三个原则:一是有利于氨的合成和分离;二是有利于保护催化剂,尽量延长使用寿命;三是有利于余热回收降低能耗。

氨合成工艺选择主要考虑合成压力、合成塔结构型式及热回收方法。氨合成压力高对合成反应有利, 但能耗高。中压法技术比较成熟,经济性比较好,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。一般中小氮肥厂多为32MPa , 大型厂压力较低,为10~20MPa。由于近来低温氨催化剂的出现, 可使合成压力降低。

合成反应热回收是必需的, 是节能的主要方式之一。除尽可能提高热回收率,多产蒸汽外, 应考虑提高回收热的位能, 即提高回收蒸汽的压力及过热度。高压过热蒸汽的价值较高, 当然投资要多, 根据整体流程统一考虑。

本次设计选用中压法(压力为32MPa)合成氨流程,采用预热反应前的氢氮混合气和副产蒸汽的方法回收反应热,塔型选择见设备选型部分。

3 生产流程简述

气体从冷交换器出口分二路、一路作为近路、一路进入合成塔一次入口,气体沿内件与外筒环隙向下冷却塔壁后从一次出口出塔,出塔后与合成塔近路的冷气体混合,进入气气换热器冷气入口,通过管间并与壳内热气体换热。升温后从冷气出口出来分五路进入合成塔、其中三路作为冷激线分别调节合成塔。二、三、四层(触媒)温度,一路作为塔底副线调节一层温度,另一路为二入主线气体,通过下部换热器管间与反应后的热气体换热、预热后沿中心管进入触媒层顶端,经过四层触媒的反应后进入下部换热器管内,从二次出口出塔、出塔后进入废热锅炉进口,在废热锅炉中副产25MPa 蒸气送去管网,从废热锅炉出来后分成二股,一股进入气气换热器管内与管间的冷气体换热,另一股气体进入锅炉给水预热器在管内与管间的脱盐,脱氧水换热,换热后与气气换热器出口气体会合,一起进入水冷器。在水冷器内管被管外的循环水冷却后出水冷器,进入氨分离器,部分液氨被分离出来,气体出氨分离器,进入透平循环机入口,经加压后进入循环气滤油器出来后进入冷交换器热气进口。在冷交换器管内被管间的冷气体换热,冷却后出冷交换器与压缩送来经过新鲜气滤油器的新鲜气氢气、氮气会合进入氨冷

器,被液氨蒸发冷凝到-5~-10℃,被冷凝的气体再次进入冷交,在冷交下部气液分离,液氨送往氨库气体与热气体换热后再次出塔,进入合成塔再次循环。

图3-1 工艺流程图

4 工艺计算 4.1 原始条件

(1)年产量80kt ,年生产时间扣除检修时间后按310天计,则产量为:10.7527t/h

(2)新鲜补充气组成

表4-1 新鲜补充气组成

组分

H 2

N 2

CH 4

Ar

总计

合成塔 水冷器

热交换器

废热锅炉

放空

油分离器

循环机

冷交换器 氨分离器

新鲜气

弛放

液氨储槽

氨冷器

含量(%)74.5 24 1.2 0.3 100

(3)合成塔入口中氨含量:NH3

入=2.5%

=13.2%

(4)合成塔出口中氨含量:NH3

(5)合成塔入口惰性气体含量:CH4 +Ar=17%

(6)合成塔操作压力:32Mpa

(7)精练气温度:35℃

???????

4.2 物料衡算

4.2.1 合成塔物料衡算

(1)合成塔入口气组分:

入塔氨含量: y5NH3=2.5%;

入塔甲烷含量:y5CH4=17.00%×1.2/(1.2+0.3)×100%=13.6%;

入塔氢含量:y5H2=[100-(2.5+17)]×3/4×100%=60.375%;

入塔氩含量:y5Ar=17%-13.6%=3.4%;

入塔氮含量:y5N2=[100 -(2.5+17)]×1/4×100%=20.125%

表4-2 入塔气组分含量(%)

NH3CH4Ar H2N2小计

2.5 1

3.6 3.4 60.375 20.125 100

(2)合成塔出口气组分:

以1000kmol入塔气作为基准求出塔气组分,

由下式计算塔内生成氨含量:M NH3=M5 (y8NH3-y5NH3)/ (1+y8NH3) =1000(0.132- 0.025)/ (1+0.132) =94.523kmol

出塔气量: M8=入塔气量—生成氨含量=1000-94.523=905.477kmol

出塔氨含量:y8NH3=13.2%

出塔甲烷含量:y8CH4=(M5/M8)×y5CH4=(1000/905.477)×13.6%=15.2%

出塔氩含量:y8Ar=(M5/M8)×y5Ar=1000/905.477×3.4%=3.754%

出塔氢含量:y8H2=3/4(1-y8NH3-y8CH4-y8Ar)×100%

=3/4(1-0.132-0.152-0.03754)×100%=50.8845%

出塔氮含量:y8N2=1/4(1-0.132-0.152-0.03754)×100%=16.9615%

表4-3 出塔气体组分含量(%)

NH3CH4Ar H2N2小计

13.2 15.2 3.754 50.8845 16.9615 100

(3)合成率:

合成率=2M NH3/[M5(1-y5NH3-y5CH4-y5Ar)]×100%

=2×94.523/[1000×(1-0.025-0.17)]×100%=23.484%

4.2.2氨分离器气液平衡计算

表4-5 已知氨分离器入口混合物组分m(i)

NH3CH4Ar H2N2小计

0.132 0.152 0.03754 0.50885 0.16961 1.00000

查t=35℃,P=29.1MPa时各组分平衡常数:

表4-6 各组分平衡常数

K NH3K CH4K Ar K H2K N2

0.098 8.2 28.200 27.500 34.500

设(V/L)=11.1时,带入L×(i)=m(i)/[1+(V/L)×K(i)]=L(i):

L NH3=m NH3/[1+(V/L)×K NH3]=0.07903Kmol

L CH4= m CH4/[1+(V/L)×K CH4]=0.00143 Kmol

L Ar=m Ar/[1+(V/L)×K Ar]=0.00013 Kmol

L H2=m H2/[1+(V/L)×K H2]=0.0163Kmol

L H2=m N2)/[1+(V/L)×K N2]=0.00043 Kmol

L总= L(NH3)+ L(CH4)+ L(Ar)+ L(Ar)+ L(H2)+ L(N2)=0.08264 Kmol

分离气体量:V=1-L=1-0.08264=0.91736 Kmol

计算气液比:(V/L)'=0.91739/0.08261=11.1005

误差[(V/L)-(V/L)']/(V/L)=(11.10-11.1005)/11.10×100%=0.0047%,结果合理。

从而可计算出液体中各组分含量:

液体中氨含量:x NH3=L NH3/L=0.07899/0.08261×100%=95.631%

液体中氩含量:x Ar=L Ar/L=0.000013/0.08261×IOO%=0.152%

液体中甲烷含量:x CH4=L CH4/L=0.00143/0.08261×100%=1.725%

液体中氢含量: x H2=L H2/L=0.00163/0.08261×100%=1.969%

液体中氮含量:x N2=L H2/L=0.00043/0.08261×100%=0.524%

表4-7 氨分离器出口液体含量NH3CH4Ar H2N2小计

95.631 1.725 0.152 1.969 0.524 100.00

分离气体组分含量:

气体氨含量:y NH3=[m NH3-L NH3]/V=8.23%

气体甲烷含量:y CH4=[m CH4-L CH4]/V=15.86%

气体氩含量:y Ar=[m Ar-L Ar]/V=3.93%

气体氢含量:y H2=[m H2-L H2]/V=53.93%

气体氮含量:y N2=[m N2-L N2]/V=18.06%

表4-8 氨分离器出口气体含量(%)NH3CH4Ar H2N2小计

8.23 15.86 3.93 53.93 18.06 100.00 4.2.3冷交换器气液平衡计算

查t=-10℃,p=28.3MPa的平衡常数:

表4-9 各组分的平衡常数

K NH3K CH4K Ar K H2K N2

0.0254 27 51 75 80

冷交换器出口液体组分含量:

出口液体甲烷含量:x CH4=y CH4/ K CH4=0.427%

出口液体氨含量:x NH3=y NH3/ K NH3=98.425%

出口液体氩含量: x Ar=y Ar/ K Ar=0.068%

我国农民工职业病文献综述

我国农民工职业病文献综述 安全工程专业学生:金霄 摘要:近年来随着经济的发展,职业病已经成为威胁我国广大农民工作者身心健康,制约劳动力资源可持续发展的重要因素,引起了广大学者的关注,而对于职业病的研究,已经成为包括医学,社会保障学等学科研究的一个新的重心,本文通过阅读2000年以来发表在学术期刊上的197篇关于职业病的文献,对职业病的现状,危害以及职业病防治三个方面进行了梳理和整合,并做了简要评述。关键词:职业病,危害,防治。 前言 职业病是指企业、事业单位和个体经济组织的劳动者在职业活动中,因接触粉尘、放射性物质和其他有毒、有害物质等因素而引起的疾病。各国法律都有对于职业病预防方面的规定,一般来说,凡是符合法律规定的疾病才能称为职业病。职业病的诊断,一般由卫生行政部门授权的,具有一定专门条件的单位进行。最常见的职业病有尘肺、职业中毒、职业性皮肤病等。 一,职业病现状 在我国关于就业问题一直是我国国策中的重中之重,对于就业中无论是国家还是个人都存在着许多问题,而个人问题也是占其中大多数。首先,对于许多在职人员都或多或少的存在着一些职业病,例如:生物因素所致职业病、职业性哮喘、职业性肿瘤、职业性耳鼻喉口腔疾病、职业性眼病、物理因素所致职业病等,这一系列的病状都显示了我国劳动人民面临着巨大的生理和心理的问题,然而许多人对自己的工作的危险性并不了解,这也更导致了职业病在我国多发以及扩大。 对于现如今的我国再就业问题中,不仅要保证就业率,而且还应该保证劳动者的生命健康问题,这也使得我国就业压力的更多的扩大了。 职业病现状让人揪心,从2009年河南农民工张海超“开胸验肺”事件到今年的苹果中国供应商员工中毒事件,职业病诊断难、鉴定难、监管难、获赔难、维权难等问题一直备受社会关注。古浪县是甘肃省中部的一个国家级贫困县,该县很多农村青壮年都选择去邻近矿藏丰富的肃北县务工。据报道,近几年,在肃北县务工的古浪农民工中,暴发了大规模的尘肺病。“偶尔矿长会发口罩,干活碍事,我们也不爱用,并且觉得也没什么用,戴上口罩嘴和鼻子里照样都是灰。”工人这样描述他们的劳动状况。 在职业病患者中,尘肺病患者最为普遍。卫生部《2009年全国职业病报告情况》显示,截至2009年底,全国累计报告职业病72万余例,其中尘肺病65.3万例。近年来,平均每年报告新发病例1万多例,每年因尘肺病给国家造成的直接经济损失达80亿元。然而,如此严重的情况却无法有效地维权,卫生部提供的数据显示,我国现有存在有毒有害作业场所的企业约1600万家,其中在从事劳动过程中遭受不同程度职业病危害的劳动者高达2亿人,而37.8%的职业病患者未获赔偿。

合成氨毕业设计任务书

本科毕业设计 任务书 题目年产20万吨合成氨变换工段及换热器的设计 学院化学与材料工程专业化学工程与工艺班级06化工学号0611401110学生姓名范重泰指导教师乔迁 温州大学教务处制

温州大学本科毕业设计任务书 一、设计的主要任务与目标: 主要任务: 1.阅读资料,了解国内外合成气和CO变换工艺 2.根据实习地—巨化集团合成氨厂的资料,确定CO变换工艺 3.完成设计说明书及相应的图纸 主要目标: 年产20万吨合成氨变换工段工艺以及换热器的设计 1.完成带控制点的工艺流程图 2.完成换热器的设备图 二、设计的主要内容与基本要求: 主要内容: 1.确定合成氨变换工段的工艺路线,生产方法的论证 2.根据规定的年产量准确的进行车间的物料和热量衡算。 3.根据确定的生产工艺条件并结合物料横算对换热器进行衡算。 4.计算换热器设备的体积、主要尺寸和进出口管径及材质规格。在设计中,记录各个过程的详细计算过程。 5.设计图纸的绘制,工段工艺流程图和设备图.

基本要求: 1.完成对生产工艺的设计及工艺流程图 2.完成换热器的设计及相应的设备图 三、计划进度: 1、2010.2.14-2010.2.19 查阅相关资料、确定论文的题目、资料收集并整 理。 2、2010.2.20-2010.2.27 确定设计方案,并做开题报告、任务书。 3、2010.2.28-2010.5.10 进行设计 4、2010.5.11-2010.5.19 进行总结、撰写论文并上交 5、2010.5.20-2010.5.27 导师审阅论文及修改 6、2010.5.28 准备论文答辩

四、主要参考文献: [1] 陈声宗. 化工设计[M] .北京: 化学工业出版社, 2001: 15-81. [2] 胡建生,江会保. 化工制图[M].北京:化学工业出版社 [3] 贺匡国.化工容器及设备简明设计手册[M].北京:化学工艺出版社. [4] 赵军,张有忱,段成红.化工设备机械基础[M].北京:化学工业出版社. [5] 陈英南,刘玉兰. 常用化工单元设备的设计[M].上海:华东理工大学出版社. [6] 董大勤. 化工设备机械基础[M].北京: 化学工业出版社, 2002: 164-202, 247-308. [7] 贾绍义, 柴诚敬. 化工原理课程设计[M].天津: 天津大学出版社, 2002(2007.重印): 101-134. [8] 谢端绶, 苏元复. 化工工艺算图(第一册)[M].北京: 化学工业出版社, 1982(1985.重印): 1-158. [9] 胡建生,江会保. 化工制图[M].北京:化学工业出版社. [10] 陈声宗.化工过程开发与设计[M].北京:化学工业出版社,2005 [11] 茅晓东,李建伟.典型化工设备机械设计知道[M].上海:华东理工大学出版社. [12] 崔小明. 国外聚丙烯生产工艺及催化剂技术进展[J].科技经纬.2005年第一期. [13] 崔小明聚丙烯的供需现状及发展前景[J].化学工业.2008年5月第26卷第5期. [14] 孙涛,张宝森,刘田库. 聚丙烯生产工艺进展[J].辽宁化工.2007年6月第36卷第6期 指导教师(签名): 年月日学院审核意见: 签名: 年月日注:任务书必须由指导教师和学生互相交流后,由指导老师下达并交学院本科毕业设计领导小组审核后发给学生,最后同学生毕业论文等其它材料一起存档。

毕业设计任务书及范本

2008级毕业设计任务书 专业名称:模具设计与制造 指导老师: 班级名称: 教研室:模具教研室 系(部):机械制造工程系 二O 一O 年十月日

一、目的与要求: 毕业设计是在模具设计与制造专业理论教学之后进行的实践性教学环节。是对所学知识的综合应用能力检验: 1.培养学生认真负责、实事求是的科学态度和严谨求实作风。 2.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能。 3.培养学生调查研究,收集资料,熟悉有关技术文件,运用国家标准、手册、资料等工具书进行模具相关设计计算的能力、编写技术文件等独立工作能力。 4.培养学生熟悉工厂设计流程,为从事相关工作奠定基础。 二、选题: 1.选题要求 设计题目一般由指导老师根据教学计划、教学大纲和专业培养目标确定。机械制造与自动化专业选题原则: (1)课题要具有真实性; (2)围绕模具设计与制造的培养,可以选择典型零件模具设计。 (3)对已从事专业相关岗位的学生,设计的题目可结合从事的工作考虑。 (4)每1-2人为一课题组,每人课题设计的内容不允许雷同。允许一大课题下分若干小课题,但必须说明每人所承担的部分。多人合写一份论文应为不合格; (8)毕业设计课题一经确认,不得更改。 2.自主选题 根据学生本人实践实习所在单位的具体情况,尽可能结合生产实际,学生可自主选题,自主选题必须通过指导教师审查认可。 3、参考选题 根据企业生产实际情况、专业培养目标和专业教学计划特点,拟定以下课题作为毕业设计参考课题: 冲压模具设计课题如下: (1)压线卡冲压模具设计(2)保护罩冲压模具设计 (3)支架冲压模具设计(4)电极板冲压模具设计 (5)托架冲压模具设计(6)靠板冲压模具设计

废热锅炉文献综述资料

废热锅炉 1.废热锅炉概论 废热锅炉是利用工业生产过程中的余热来生产蒸汽的锅炉。它属于一种 高温、高压的换热器。废热锅炉较早是用来产生一些低压蒸汽,回收的热量有限,只 是作为生产的一般辅助性设备。随着生产技术的发展,废热锅炉的参数逐渐提高,废 热锅炉由生产低压蒸汽的工艺锅炉转变为生产高压蒸汽的动力锅炉。废热研究 的新成果不断涌现研究的新成果不断涌现得在废热锅炉设计、制造、使用、安 全管理等领域的研究的新成果不断涌现 。 1.1 废热锅炉的特点 废热锅炉与普通动力锅炉一样, 都是生产动力蒸汽的一种高温高压设备, 所不同的是热源不同。它不是采用煤油、天然气、煤等燃料, 而是利用化工生 产工艺气中的废热。因此, 它既是一种能量回收装置, 也是一种化工介质工艺 设备。废热锅炉的共同特点是: 操作条件比较恶劣( 如高温、高压、热流强度 大, 锅炉受压元件的热应力大等) , 并要求连续、稳定地安全运行, 对高温工 艺气的温度和冷却速度的控制要求十分严格。废热锅炉的运行比常规锅炉更复 杂, 废热锅炉利用的是余热, 不仅是高温气体的显热, 而且还利用某些废气中 所含少量的可燃物质( 如一氧化碳、氢气、甲烷) 等化学热能。例如, 催化裂 解装置中再生器排出的再生气体, 其温度可达550 ℃~750 ℃ 。另外催化裂 解装置再生器排出的高温烟气中含有很多粉状催化剂。烟气中灰分含量高, 不 但对流受热面的磨损加剧, 而且因为受热面积灰严重, 需要经常除灰和定期停 炉清扫, 给生产带来一定困难。有些高温烟气中含有较多的二氧化硫和三氧化 硫,使得烟气露点升高, 受热面的低温腐蚀严重, 检修工作量增加。 1.2 废热锅炉的分类 在废热锅炉中进行的是热量传递的过程,因此废热锅炉的基本结构也是一具 有一定传热表面的换热设备。但是由于化工生产中,各种工艺条件和要求差别很 大,因此化工用的废热锅炉结构类型也是多种多样的。 1.2. 1 按照炉管是水平还是垂直放置,废热锅炉可以分为卧式(大都采用火管式,即 管内走高温工艺气体,而管外走饱和水或水蒸气) 和立式(比卧式锅炉水循环速 度快,传热速率较高,蒸汽空间也较大,因此这种锅炉蒸发量大) 两大类。 1.2. 2 按照锅炉操作压力的大小,废热锅炉可以分为低压(蒸汽压力在1. 3MPa 以下) 、中压(蒸汽压力在1. 4 —3. 9MPa 范围内) 、高压(蒸汽力在4. 0 — [1] [2]

合成氨文献综述

攀枝花学院 Panzhihua University 本科毕业设计(论文) 文献综述 院(系):生物与化学工程学院 专业:化学工程与工艺 班级: 2007级化工(2)班 学生姓名:陈有源学号: 200710901006 2011 年 3 月 13 日

本科生毕业设计(论文)文献综述评价表

文献综述: 合成氨工业综述 1.氨的性质 合成氨的化学名称为氨,氮含量为82.3%。氨是一种无色具有强烈刺激性、催泪性和特殊臭气的无色气体,比空气轻,相对密度0.596,熔点-77.7℃,沸点-33.4℃。标准状况下,1米3气氨重0.771公斤;1米3液氨重638.6公斤。极易溶于水,常温(20℃)常压下,一体积的水能溶解600个体积的氨; 标准状况下,一体积水能溶解1300体积的氨的水溶液称为氨水,呈强碱性。因此,用水喷淋处理跑氨事故,能收到较好的效果【1】。 氨与酸或酸酐可以直接作用,生成各种铵盐;氨与二氧化碳作用可生成氨基甲铵,脱水成尿素;在铂催化剂存在的条件下,氨与氧作用生成一氧化氮,一氧化氮继续氧化并与水作用,便能得到硝酸。氨在高温下(800℃以上)分解成氮和氢;氨具有易燃易爆和有毒的性质。氨的自燃点为630℃,氨在氧中易燃烧,燃烧时生成蓝色火焰。氨与空气或氧按一定比例混合后,遇明火能引起爆炸。常温下氨在空气中的爆炸范围为15.5~28%,在氧气中为13.5~82%。液氨或干燥的气氨,对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等有腐蚀作用【2】。 2.合成氨工艺 2.1依据合成条件—压力的不同的几种合成方法 氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。对于合成系统来说,液体氨即是它的产品。20世纪初先后实现了电弧法、氰化法和直接合成法生产合成氨的工业方法。工业上合成氨的各种工艺流程一般以压力的高低来分类【2】。 (1)高压法 操作压力70~100MPa,温度为550~650℃,这种方法的主要优点是氨合成效率高,混合气中的氨易被分离。故流程、设备都比较紧凑。但因为合成效率高,放出的热量多,催化剂温度高,易过热而失去活性,所以催化剂的使用寿命较短。又因为是高温高压操作,对设备制造、材质要求都较高,投资费用大。目前工业上很少采用此法生产。 (2)中压法

合成氨循环气分离工艺设计

文献综述 1.氨的性质及主要用途 氨是一种无色、有刺激性气味的气体,极易溶于水(1:700),密度比空气小,易液化(在常压下冷却至-33.5℃或常温下加压至70-80bar)。氨是制造化肥、硝酸、炸药的重要原料。氨对地球上的生物相当重要,它是许多食物和肥料的重要成分。氨也是所有药物直接或间接的组成。氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。 2.世界(或国内)合成氨的生产现状及发展前景 2.1合成氨的生产现状 国际肥料工业协会在第七十七届年会上发布《全球肥料和原材料供需展望》报告,预期全球合成氨产量将由2008年的1.809亿吨(实物量NH3,下同)增长至2013年的2.178亿吨,届时全球合成氨海运贸易总量将达到2060万吨。其中,全球新建合成氨装置中有三分之一来自中国,其余来自阿尔及利亚、特立尼达、委内瑞拉、沙特、巴基斯坦、印度等国家。随着新建合成氨装置的投产,区域合成氨贸易将继续增加,全球合成氨生产和海运贸易都将迎来新的增长期。 据IFA对全球合成氨产量的调查显示,2008年全球合成氨产量接近1.528亿吨,比2007年减少了1%。中国、澳大利亚、欧洲、俄罗斯、特立尼达和多巴哥、印度、沙特等国均由于市场需求疲软而减少,伊朗、加拿大、印度尼西亚、墨西哥、委内瑞拉等需求继续增加。2008年全球合成氨产能达到1.809亿吨,比2007年增加500万吨,主要来自于中国、非洲、西亚等地区。 目前,约有80%的合成氨用来生产化学肥料,其余作为生产其他化工产品的原料。除了生产尿素,硝酸及硝酸铵等产品间接用于工业生产外,合成氨还直接用于丙烯腈、己内酰胺等产品的生产。同时,在其他工业领域也有十分广泛的应用,如用作制冰箱、空调、冷藏系统的制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属、在医药和生物化学方面用作生产磺胺类药物、维生素、蛋氨酸和其他氨基酸等[1]。 2.2我国合成氨及下游产品工业消费现状与预测 我国是世界上最大的合成氨生产国,产量约占世界总产量的1/3。“十一五”期间,合成

(完整版)合成氨生产工艺及其意义

论文名称合成氨生产工艺及其意义

氨是重要的无机化工产品之一,合成氨工业在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。 合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。 合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。 关键字合成氨农业化学肥料意义

摘要 (2) 关键字 (2) 目录 (3) 正文 (4) 一前言 (4) 1.1 物理性质 (4) 1.2化学性质 (4) 二合成氨工业产品的用途 (5) 2.1氨气用途 (5) 2.2氨水用途 (5) 三合成氨的生产工艺及影响因素 (5) 3.1 原料气制备 (5) 3.1.1 一氧化碳变换过程 (6) 3.1.2 脱硫脱碳过程 (6) 3.1.3 气体精制过程 (6) 3.1.4 氨合成 (7) 3.2 影响合成氨的因素 (7) 3.2.1 温度对氨合成反应的影响 (7) 3.2.2 压力对氨合成反应的影响 (7) 3.2.3 空速对氨合成反应的影响 (7) 3.2.4 氢氮比对氨合成反应的影响 (8) 四.合成氨工艺流程图 (8) 五.研究现状 (8) 六.发展趋势 (9) 6.1原料路线的变化方向 (9) 6.2节能和降耗 (10) 6.3产品联合生产 (10) 7.1合成氨对农业的意义 (10) 7.1.1提高粮食产量 (10) 7.1.2提高土壤肥力 (10) 7.1.3发挥良种潜力 (11) 7.1.4补偿耕地不足 (11) 7.2合成氨对工业生产的意义 (11) 7.3合成氨对其他行业的意义 (12) 致谢 (13) 参考文献 (14)

年产10万吨合成氨合成工段设计_毕业设计

年产10万吨合成氨合成工段设计毕业设计 年产10万吨合成氨合成工段设计 1引言 氮是植物营养的重要成分之一,大多数的植物不能直接吸收存在于空气中的游离氮,只有当氮与其他元素化合以后,才能被植物吸收利用。将空气中的游离氮转变为化合态氮的过程称为“固定氮”。 20世纪初,经过人们的不懈探索,终于成功的开发了三种固定氮的方法:电弧法、氰氨法、和合成氨法。其中合成氨法的能耗最低。1913年工业上实现了氨合成以后,合成氨法发展迅速,30年代以后,合成氨法已成为人工固氮的主要方法。 1.1氨的性质 氨化学式为NH3常温下为无色有刺激性辛辣味的恶臭气体,会灼伤皮肤、眼睛,刺激呼吸道器官粘膜,空气中氨的质量分数占0.5% ~ 1.0%就会使人在几分钟内窒息。氨的主要物理性质见表0-1。氨在常温加压易液化,称为液氨。氨易溶于水,与水反应形成水合氨(NH3 + H2O=NH3·H2O)简称氨水,呈弱碱性,氨水极不稳定,受热分解为氨气和水,氨含量为1%的水溶液PH为11.7。浓氨水氨含量为28% ~ 29%。氨的化学性质比较活泼,能与酸反应生成盐,如与盐酸反应生成氯化铵;与磷酸反应生成磷酸铵;与硝酸反应生成硝酸铵;与二氧化碳反应生成甲基甲酸铵,脱水后生成尿素等等。 表1-1氨的主要物理性质[1]

年产10万吨合成氨合成工段设计 1.2氨的用途 氨主要用于制造化学肥料,如农业上使用的所有氮肥、含氮混合肥和复合肥等;也作为生产其他化工产品的原料,如基本化学工业中的硝酸、纯碱、含氮无机盐,有机化学工业的含氮中间体,制药工业中磺胺类药物、维生素,化纤和塑料工业中的己酰胺、己二胺、甲苯二异氰酸酯、人造丝、丙烯腈、酚醛树脂等都需要直接或间接地以氨为原料。另外在国防工业尖端技术中,作为制造三硝基甲苯、三硝基苯酚、硝化甘油、硝化纤维等多种炸药的原料。氨还可以做冷冻,冷藏系统的制冷剂。 1.3合成氨的发展历史 1.3.1氨气的发现 十七世纪30年代末英国的牧师、化学家S.哈尔斯(HaLes,1677~1761),用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出,1774年化学家普利斯德里重做该实验,用汞代替水来密封,制得了碱空气(氨),并且他还研究发现了氨的性质,发现氨极易溶于水、可以燃烧,还发现该气体通以电火花时其容积增加,而且分解为两种气体:H2和N2,其后H.戴维(Davy,1778~1829)等化学家继续研究,进一步证明了2体积的氨通过电火花放电后,分解为1体积的氮气和3体积的氢气[2]。 1.3.2合成氨的发现及其发展 19世纪以前农业上所需的氮肥来源主要来自于有机物的副产物和动植物的废物,如粪便、腐烂动植物等等,随着农业和军工生产的发展的需要,迫切的需要建立规模巨大的探索性的研究,化学家们设想,能不能把空气中大量的氮气固定下来,从而开始设计以氮和氢为原料的合成氨流程。19世纪,大量的化学家开始试图合成氨,他们试图利用高温、高压、电弧、催化剂等手段试验直接合成氨,均未成功。19世纪末,随着化学热力学、动力学和催化剂等领域取得一定进展后,对合成氨反应的研究有了新的进展。1901年法国物理化学家吕·查得利开创性地提出氨合成的条件是高温、高压,催化剂存在。1912

本科毕业设计任务书(范本)

(说明:请把红色字体部分根据个人题目的不同进行更改) 广州大学华软软件学院 本科毕业设计任务书 设计题目浅析计算机病 毒的免杀技术 系别网络技术系 专业网络工程 班级10网络设计与管理(1)班 学号1040217901 学生姓名郑天骄 指导教师田宏政 下发时间:2014年10月28日

毕业设计须知 1、认真学习和执行广州大学华软软件学院学生毕业论文(设计)工作管理规程; 2、努力学习、勤于实践、勇于创新,保质保量地完成任务书规定的任务; 3、遵守纪律,保证出勤,因事、因病离岗,应事先向指导教师请假,否则作为缺席处理。凡随机抽查三次不到,总分降低10分。累计缺席时间达到全过程l/4者,取消答辩资格,成绩按不及格处理; 4、独立完成规定的工作任务,不弄虚作假,不抄袭和拷贝别人的工作内容。否则毕业设计成绩按不及格处理; 5、毕业设计必须符合《广州大学华软软件学院普通本科生毕业论文(设计)规范化要求》,否则不能取得参加答辩的资格; 6、实验时,爱护仪器设备,节约材料,严格遵守操作规程及实验室有关制度。 7、妥善保存《广州大学华软软件学院本科毕业设计任务书》。 8、定期打扫卫生,保持良好的学习和工作环境。 9、毕业设计成果、资料按规定要求装订好后交指导教师。凡涉及到国家机密、知识产权、技术专利、商业利益的成果,学生不得擅自带离学校。如需发表,必须在保守国家秘密的前提下,经指导教师推荐和院领导批准。

课题名称浅析计算机病毒的免杀技术 完成日期:2015年4月30日 一、题目来源及原始数据资料: 随着计算机技术的飞速发展,信息网络已经成为社会发展的重要保证。有很多是敏感信息,甚至是国家机密。所以难免会吸引来自世界各地的各种人为攻击,窃取、篡改、删添等。随着时代的发展,网络已经成为了一个我们生活的必需品。而Web站点已经随处可见,其应用也是遍及各个领域,并已和我们日常生活息息相关。但是针对站点的渗透攻击也是缕缕出现,给我们带来了很大的危胁。因此我们必须展开对Web站点渗透技术的研究。 教师根据学生对站点的内部结构研究结果,分析可能成功的渗透技术,通过模拟攻击过程展示渗透成功之后的效果并寻求解决办法,进而提出一套行之有效的防护措施,顺利完成本次毕业设计任务。 二、毕业设计要求: 要求:详细的Web站点渗透技术的研究。大致可分为以下七部分: 1、网络安全现状的分析; 2、常见的站点结构组成; 3、常见的渗透技术分析; 4、模拟主要的攻击技术; 5、提出防范思路并设计解决方案; 6、必要的实现过程展示; 7、总结与未来工作的展望; 具体要求如下: 1、分析国内、国外的网络安全现状,了解网络安全方面主要存在的问题。 2、了解常见的Web站点结构、机制和原理。 3、了解针对站点的渗透技术。 4、分析主流的渗透攻击技术; a、文件与内存特征码定位; b、压缩整容,加壳免杀;

年产合成氨30万吨

目录 一、绪论 (1) 、概述 (3) 、设计任务的依据 (1) 二、装置流程及说明 (2) 、生产工艺流程说明 (2) 、粗苯洗涤 (4) 、粗苯蒸馏 (4) 三、吸收工段工艺计算 (7) 、物料衡算 (7) 、气液平衡曲线 (8) 、吸收剂的用量 (9) 、塔底吸收液 (10) 、操作线 (10) 、塔径计算 (10) 、填料层高度计算 (13) 、填料层压降计算 (16) 四、脱苯工段工艺计算 (17) 、管式炉 (17) 、物料衡算 (18) 、热量衡算 (22)

五、主要符号说明 (25) 六、设计心得 (26) 七、参考文献 (27)

一、绪论 概述 氨是重要的化工产品之一,用途很广。在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。液氨本身就是一种高效氮素肥料,可以直接施用。目前,世界上氨产量的85%—90%用于生产各和氮肥。因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。 氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷嘲热讽冻剂。 合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。 在合成氨工业中,脱硫倍受重视。合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。其中硫化氢属于无机化合物,常称为“无机硫”。 合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。 ①腐蚀设备、管道。含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。其腐蚀程度随原料气中S H 2的含量增高而加剧。 ②使催化剂中毒、失活。当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂

合成氨

兰州交通大学 毕业设计题目 系别 专业 指导教师 教研室主任 学生姓名 接受任务日期 完成任务日期

兰州交通大学 毕业论文任务书 系专业班 题目 起止日期年月日起至年月日止指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期年月日 接受任务日期年月日 完成任务日期年月日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册),《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于合成氨的其他相关杂志。

日产600吨化为800吨合成氨塔的设计 摘要:介绍了合成氨各种原料制造气工艺路线,比较各种工艺路线及技术经济指标,提出合理的合成氨改造建议。 关键词:合成氨原料改造 Nissan 600 tons of 800 tonstower design of Synthetic Ammonia Wangshengyin A BSTRACT Introduced all kinds of material of Synthetic Ammonia, craft line with all kinds of craft line and economic indicators, reasonable reform proposals of Synthetic Ammonia. KEYWORDS synthetic ammonia raw material reform 前言 氨是一种重要的化工产品,主要用于化学肥料的生产。合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。合成氨的生产主要分为:原料气的制取;原料气的净化与合成。粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其 转化为易于清除的CO 2和氨合成所需要的H 2 。因此,CO变换既是原料气的净化过 程,又是原料气造气的继续。最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。 变换工段是指CO与水蒸气反应生成二氧化碳和氢气的过程。在合成氨工艺流程中起着非常重要的作用。 目前,变换工段主要采用中变串低变的工艺流程,这是从80年代中期发展起来的。所谓中变串低变流程,就是在B107等Fe-Cr系催化剂之后串入Co-Mo 系宽温变换催化剂。在中变串低变流程中,由于宽变催化剂的串入,操作条件发生了较大的变化。一方面入炉的蒸汽比有了较大幅度的降低;另一方面变换气中的CO含量也大幅度降低。由于中变后串了宽变催化剂,使操作系统的操作弹性大大增加,使变换系统便于操作,也大幅度降低了能耗。 工艺原理: 一氧化碳变换反应式为: CO+H 2O=CO 2 +H 2 +Q (1-1)

万吨年合成氨合成工段工艺设计毕业设计

万吨年合成氨合成工段工艺设计毕业设计

四川理工学院毕业设计 9万吨/年合成氨合成工段工艺设计 四川理工学院材料与化学工程学院

摘要 氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位。氨主要用于农业,合成氨是氮肥工业的基础。氨的合成主要有脱硫、转化、净化、合成几个工段。合成氨合成工段的设计,原料采用氮气和氢气,以合成塔为主要设备,在氨冷器、水冷器、气—气交换器、循环机、分离器、冷凝塔等辅助设备的作用下制得液氨,工艺条件为:A201为催化剂,480℃,31Mpa。本设计进行了物料衡算,热量衡算,设备选型计算。 关键词:合成工艺参数衡算设备计算

-Ⅰ- ABSTR Ammonia is one of the most important basic chemical products in the world,Its output of various kinds of chemicals rank first in the world. Ammonia mainly used in agriculture and synthetic ammonia is the basis of nitrogen fertilizer industry. Ammonia synthesis is mainly from the four sections of desulphurization, conversion, decontamination, and synthesis. With using nitrogen and hydrogen as materials and synthesis converter as main equipment, under the action of the auxiliary equipments of ammonia air conditioning, water-cooling device, gas to gas exchanger, circulator, separator, and condenser and so on, in the end, the design of the ammonia synthesis section makes ammoniacalliquor, The process conditions are determined as following:A201 as catalyst, 480℃,31Mpa .The design is be designed to material balance, heat balance and calculation of Devices type. KEY WORDS:synthesis process parameter balance calculation of Devices

年产40万吨合成氨合成工段工艺设计

目录 摘要 (3) ABSTRACT (4) 第一章总论 (5) 1.1 概述 (5) 1.2 氨的性质 (5) 1.2.1 氨的物理性质 (5) 1.2.2氨的化学性质 (6) 1.3 原料气来源 (6) 1.4 文献综述 (6) 1.4.1 合成氨工业的发展 (7) 1.4.2我国合成氨工业的现状 (7) 1.4.3合成氨工业的发展趋势 (7) 1.5 设计任务的项目来源 (8) 第二章流程方案的确定 (9) 2.1生产原理 (9) 2.2各生产方法及特点 (9) 2.3工艺条件的选择 (10) 2.4合成塔进口气的组成 (11) 第三章工艺流程简述 (13) 3.1 合成工段工艺流程简述 (13) 3.2 工艺流程方框图 (14) 第四章工艺计算 (15) 4.1 物料衡算 (15) 4.1.1设计要求 (15) 4.1.2计算物料点流程图 (16) 4.1.3合成塔入口气组分 (16) 4.1.4合成塔出口气组分 (17) 4.1.5合成率 (18)

4.1.6氨分离器气液平衡计算 (18) 4.1.7冷交换器气液平衡计算 (20) 4.1.8液氨贮槽气液平衡计算 (21) 4.1.9合成系统物料计算 (24) 4.1.10合成塔物料计算 (25) 4.1.11水冷器物料计算 (26) 4.1.12氨分离器物料计算 (27) 4.1.13冷交换器物料计算 (27) 4.1.15氨冷器物料计算 (30) 4.1.17液氨贮槽物料计算 (30) 4.2 热量衡算 (30) 4.2.1冷交换器热量计算 (30) 4.2.2 氨冷凝器热量衡算 (33) 4.2.3循环机热量计算 (33) 4.2.4合成塔热量衡算 (35) 4.2.5废热锅炉热量计算 (37) 4.2.6热交换器热量计算 (38) 4.2.7水冷器热量衡算 (39) 第五章设备选型及设计计算 (40) 5.1 合成塔催化剂层设计 (40) 5.2 废热锅炉设备工艺计算 (42) 5.2.1计算条件 (42) 5.2.2管内给热系数的计算 (42) 5.2.3管外给热系数 (46) 5.2.4传热总系数K (46) 5.2.5传热温差 (47) 5.2.6传热面积 (47) 参考文献 (50) 致谢 (51)

合成氨论文

论文写作与指导 姓名: 学号: 专业班级: 指导老师:

合成氨合成工艺的现状 The present status of synthetic ammonia process Wang 西北民族大学化工学院,甘肃兰州 730124 Northwest university for nationalities institute of chemical, lanzhou, gansu ,730124 摘要:合成氨是重要的化工原料, 在国民经济中占有重要地位,本文在文献调研的基础上综述了合成氨设备、催化剂、合成氨工艺三方面的现状和未来发展趋势。在设备方面,通过对冷管型合成塔和绝热型合成塔新技术的综述和两种设备的对比,阐述了国内外合成氨设备的不同之处,及国内外合成氨设备的优劣,提出了国内合成氨设备的发展建议。合成氨工艺方面,通过转化、变换、脱碳、合成四方面综合阐述了目前合成氨工艺技术的现状和发展趋势,介绍了近年来国内外合成氨工艺的新技术和工艺流程方面的新进展。 关键词:合成氨;新工艺;合成塔 Abstract:Ammonia is one of the most important chemical production,It has an important station in national economy. This article has summarized the ammonia synthesis by ammonia equipment, catalyze, and technology to describe the actuality and the future which based the literature disquisition. For the equipment through the difference of the cold tube compose tower and insulate compose tower, we can know which is better and it can also give some advice of the development for our country equipment.For the technology, through the transform, commutation, decarburization and compose which tell the technology at present and development in future .introduce the new technology and the new development in technology flow. Key words: ammonia synthesis; new technology; catalyst; reactor

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

相关主题
文本预览
相关文档 最新文档