当前位置:文档之家› 吹脱塔设计参数

吹脱塔设计参数

吹脱塔设计参数
吹脱塔设计参数

氨吹脱塔的设计参数

吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。

水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下:

NH4++OH- NH3+H2O (1)

NH3+H2O→NH4++OH-

氨与氨离子之间的百分分配率可用下式进行计算:

Ka=Kw /Kb=(CNH3?CH+)/CNH4+ (2)

式中:Ka———氨离子的电离常数;

Kw———水的电离常数;

Kb———氨水的电离常数;

C———物质浓度。

(1)不同pH、温度下氨氮的离解率%

pH 20℃ 30℃ 35℃

9.0 25 50 58

9.5 60 80 83

10.0 80 90 93

11.0 98 98 98

(1)填料的选择及汽水比

吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填料塔的塔顶,并分布到填料的整个表面,通过填料往下流,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。

表3 气液比对吹脱效率的影响

气液比(m3/m3)进水NH3 N浓度(mg/L-)出水NH3 N浓度(mg/L)吹脱效率/% 1530 214 5.30 780.70 63.6

1850 201 1.25 700.02 65.2

2000 205 1.00 640.45 68.8

2340 214 1.28 602.90 71.8

2760 219 2.53 530.00 75.8

3000 2090.05 432.95 79.3

3460 202 5.25 390.50 80.7

4000 213 4.40 375.55 82.4

4380 2090.00 362.20 82.7

5130 2075.50 345.15 83.4

主要设计参数整理如下

原水的PH值:10.5-11

气水比:3500

空塔流速:2m/s

吹脱时间:30-40min

填料:多面空心球

填料高度:1.4m

压力损失:1000-1200Pa

塔的主体材质:Q235-A内外衬玻璃钢或(PVC)

风管材质:Q235-A内外衬玻璃钢或(PVC)

风机类型:玻璃离心风机

现以本人最近做过的一个含氨废水方案为例:

原水为自来水吸收外溢的氨气所产生的含

氨氮:5000mg/L(MA标志检测部门检测结果)

工艺流程:吹脱+硫酸吸收

设计水量:6m3/h 气水比:3500 吹脱风量:21000m3/h 吹脱时间:40min 空塔流速:2m/s 填料为多面空心球吹脱塔截面积:A==2.92m2

直径:D=≈2.0m

填料高度为:h=2×=≈1.3m取1.5m

吹脱塔高度:H=5.5m(总高度)

则吹脱塔外观尺寸:Φ2.0m×5.5m

吹脱塔材质:Q235-A 7mm内衬玻璃钢

氨氮吹脱塔

氨氮吹脱吸收系统 技术方案

一、方案设计依据: 1、废水水量:3600m3/d,设计水量为150m3/h。 2、出水氨氮要求:去除率60%-70% 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH 值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的空气逆流接触,完成传质过程,使氨由液相转为气相,随空气排放,完成吹脱过程。

三、运行条件 进水pH值≥11 外界条件:气温24℃,水温:35℃ PH: 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时空气在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,出水流出。 具体工艺流程见下图: 原水 pH调节池氨氮吹脱塔氨氮吸收 风机 废水经吹脱塔吹脱后,氨氮去除率达到60%-70%,氨氮含量由700mg/L处理至200-230mg/L。 六、设备清单(第一方案)三台并联

含氨废水处理技术及工艺设计方案

含氨废水处理技术的试验研究及工艺设计 1 吹脱法除氨机理 当废水中含有可挥发性物质(如硫化氢、氨气)时,可以用向废水中通入蒸汽的方法将之提取出来,这就是”吹脱”,带出来的挥发性物质可以通过适当的方法加以回收利用. 水中的氨氮多数是以氨离子(NH4+)和游离氨(NH3)的状态存在,并且他们之间存在如下平衡关系: NH3+H20—NH4+ +OH- 很明显,游离氨的浓度与废水的pH值有关系,pH值越高,游离氨的浓度越高.同时反应是放热反应,温度升高会使反应平衡向左移动. 2. 河南某化肥厂的废水处理条件试验 2.1试验方法 氨吹脱工艺流程图: 针对该化肥厂的废水,我们做了如下试验.原废水中pH值为9.0,

氨氮总的含量为2000mg/L,本试验的反应器设计为2L. 其影响因素为溶液pH值、温度、气水比和吹脱时间等因素.本试验分别以40%NaOH溶液40%NaOH溶液和CaO调整pH值后进行吹脱,比较不同碱源的吹脱效果;先以40%NaOH溶液为碱源,调整pH值为9.8、10.3、10.7、11.2、11.7、12.0和原水的pH值为9.0共7个pH 值条件,进行吹脱试验,比较其氨氮去除率. 在吹脱反应器内加入以调整好pH值的废水,然后用气泵进行吹脱,鼓气采用曝气头进行分散,分别在1、2、3、4、6、7、10h,取样测定水样中氨氮浓度. 本次试验原设计采用蒸汽对氨氮废水进行加热,但考虑到实验室现有装置制备蒸汽有一定难度,所以在氨吹脱反应器的底部放置电炉对氨氮废水进行加热,通过温度控制装置对废水加热温度进行控制。考查温度对吹脱效率的影响. 2.2试验步骤 (1)准备试验所需的各种装置,安装试验装置,配置试验所需药剂; (2)取水样,加入碱源调整溶液符合的pH值; (3)将调整好的pH值的氨氮废水通入反应器,打开反应器底部的电炉开始加热,该反应严格控制反应温度; (4)达到预计的反应温度后,打开气泵开始运行,同时严格计算时间; (5)从取样口取水样进行监测氨氮的浓度,考查吹脱效率; (6)整理分析数据,得出氨氮废水的试验最佳条件. 2.3试验结果与讨论

氨氮吹脱塔方案

氨氮吹脱系统 技术方案 2013年4月18日 一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH 4+)和游离氨(NH 3 )状态存在,其平衡 关系如下所示:NH 3+H 2 O—NH 4 ++OH-这个关系受pH值的影响,当pH值高时, 平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%)

当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

氨氮吹脱塔方案

氨氮吹脱塔方案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

氨氮吹脱系统 技术方案 2013年4月18日 一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。

调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

氨氮废水处理系统设计方案百度文库

应平化肥有限责任公司 30T/h氨氮废水处理系统 宜兴市裕泰华环保有限公司 二00八年五月 一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质

序号项目数据(mg/L 1 氨氮846.3 2 化学需氧 量 737 3 环状有机 物(Ar-OH 9.095mg/L 4 总磷0.467 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知

11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建的单位 序号项目标准(mg/L 1 氨氮70 2 化学需氧 量 150 3 氰化物 1.0 4 SS 100 5 石油类 5 6 挥发酚0.1

7 硫化物0.50 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在0.3以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约0.35左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收 废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机 →三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器 自动加酸加还原剂

氨氮吹脱塔方案

氨氮吹脱系统技术方案 2013年4月18日

一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

氨氮吹脱方案精品

【关键字】设计、方案、情况、道路、条件、领域、文件、质量、运行、认识、问题、系统、有效、主动、充分、平稳、平衡、良好、健康、快速、配合、执行、保持、提升、建设、建立、发现、了解、措施、特点、位置、支撑、安全、理想、基础、需要、环境、工程、项目、重点、体系、需求、载体、方式、标准、结构、方针、水平、任务、速度、关系、设置、检验、倾斜、履行、调节、形成、保护、满足、严格、坚持、保证、服务、指导、支持、调整、改善 废水氨氮吹脱装置 技 术 方 案 第一部分:概论 1、项目概述 由于环境质量对社会生产和社会生活的诸多领域产生着重要的影响,环境 的质量与保护已越来越受到人们的关注与重视。在工业生产过程中产生的氨氮 废水对环境的污染、对人的健康的危害日趋为人们所认识,废水处理技术与系 统的开发运用及工程项目的实施能有效地遏止污染扩大与蔓延的趋势,改善环 境的质量。 根据业主资料,废水处理量:20m3/h; 氨氮含量:1800ppm; Ph值>7; 含少量SS; 2、工程名称 氨氮废水处理装置

3、工程地点 4、设计依据 本工程设计方案的编制,主要技术依据如下: 业主提供的废水水量、水质等资料文件; 《废水综合排放标准》(GB8978-96); 《室外排水设计规范》(GBJ14-87); 《城市区域环境噪声标准》(GB3096-93); 《低压电气电控设备》(GB/T4720-1984); 《低压配电装置及线路设计规范》(GB50054-95); 《通用电器设备配电设计规范》(GB50055-93); 《给水排水管道工程施工及验收规范》(GB50268-2008); 《给水排水工程管道结构设计规范》(GB50332-2002); 《给水排水工程结构设计规范》(GBJ69-84); 《工业自动化仪表工程施工及验收规范》(GBJ93-86); 《焊接标准》(GB9850-80)中的有关规定; 给水排水工程和废水处理工程建设中其它有关技术规范; 本公司所完成同类工程所取得的实际经验和实际工程技术参数。 第二部分:设备概述废水处理量:20m3/h;氨氮含量:1800ppm;Ph值>7;含少量SS; 出水氨氮含量:300-350 ppm; 一、工艺流程

氨吹脱塔单元设计示例

4.4.1氨吹脱塔单元 4.4.1.1设计说明 设计采用循环空气吹脱,气液比可取1500-3000,取3000。 4.4.1.2设计尺寸 (1)吹脱塔的计算 已知沼液中NH3-N约为2.5g/kg(2.5g/L),即摩尔分率为0.0026。入吹脱塔的沼液流量为5.6m3,即为311.11kmol/h,设定回收率为90%。同时在101.3kPa 和30℃时,该氨水稀溶液的氨分压为0.2kPa,故亨利系数E为76.923kPa, m=(0.2/101.3)/0.0026=0.7592。 30℃空气的分子量为29,密度1.165kg/m3。 ①实际气液比 (G/L)min=(X1-X2)/(Y2e-Y1)=(0.0026×90%)/(0.0026×0.7592)=1.186 (G/L)=(1.1-2)×(G/L)min=1.8×1.186=2.135 (取系数为2) 所以G=2.135×311.11×29/1.165=16534.23m3,即为664.22kmol/h。 故实际气液比(体积比)为: (G/L)v=16534.23/5.6=2952.54 ②理论板数确定 吸收因子A=L/mG=0.617,即脱吸因子S=A-1=1.62 N理论:X1-X2/X1-0=S N+1-S/S N+1-1 0.0026×90%/0.0026=(1.62N+1-1.62)/(1.62N+1-1) 所以N=3.09,取N=4 气相中氨的摩尔分率Y2=(X1-X2)/(G/L)=1.096×10-3; ③塔的有效高度Z 根据Drickanmer-Bradfood法:E T =0.17-0.616lgμ 30℃,进料液体的摩尔粘度μ为0.8007cp(设计应选取最恶劣的条件,故中温35℃发酵,考虑到冬季热损失,选用20℃的进料,此时进料液体的摩尔粘度为1.005cp) 故E T=0.17-0.616lgμ=0.169 实际板数N=N T/E T=23.66 取24 同时取板间距为450mm

T氨氮废水处理系统设计方案

应平化肥有限责任公司30T/h氨氮废水处理系统 诸城市清泉环保工程有限公司 二00九年五月

一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质 序号项目数据(mg/L) 1 氨氮 2 化学需氧量737 3 环状有机物(Ar-OH) L 4 总磷 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知 11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999

中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建)的单位) 序号项目标准(mg/L) 1 氨氮70 2 化学需氧量150 3 氰化物 4 SS 100 5 石油类 5 6 挥发酚 7 硫化物 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机→三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器自动加酸加还原剂 →水解酸化池→生物滤池→排放水池→进入厂区管网

高浓度氨氮废水处理方案

高浓度氨氮废水处理项目 设 计 方 案 ******设备有限公司

目录 第一章工程概况 (3) 1.1概述 (3) 1.2项目名称 (3) 第二章设计依据、设计原则及设计范围 (3) 2.1设计依据 (3) 2.2设计原则 (4) 2.3设计范围 (4) 第三章污水来源、设计规模、排放标准及出口 (4) 3.1设计规模的确定 (4) 3.2设计进水水质及排放要求 (4) 第四章设计处理工艺 (5) 4.1废水的水质特性 (5) 4.2废水处理工艺方案的选择原则 (5) 4.3工艺流程 (6) 4.4工艺说明 (7) 4.5工艺设施 (7) 4.6工艺特点 (16) 4.7工艺设备介绍 (17) 第五章、各单元设施处理效果分析表 (21) 第六章、项目投资 .................................................... 错误!未定义书签。

第一章工程概况 1.1概述 该废水排放量为100m3/d,氨氮浓度高,达5000mg/L,废水PH 值6-7,呈中性。COD值较低,≤40mg/L,废水SS含量低,≤20mg/L。 现单独对该股废水进行处理,设计处理水量120m3/d,24小时运行,小时处理水量5M3/H。经处理降低氨氮浓度后(设计氨氮废水排放浓度NH3-N≤80mg/L),与厂区其他废水混合后达标排放。(NH3-N ≤15mg/L) 在本方案编制过程中存在一些不足之处,请评审领导提出宝贵意见和建议。 1.2项目名称 120m3/d高浓度氨氮废水处理项目 第二章设计依据、设计原则及设计范围 2.1设计依据 《污水综合排放标准》 GB8978-1996 《地表水环境质量标准》 GB3838-2002 《室外排水设计规范》 GB50014-2006 《给水排水工程构筑物结构设计规范》 GB50069-2002 《给水排水工程结构设计规范》 GB50069-2002 《供配电系统设计规范》 GB50052-95 《低压配电设计规范》 GB50054-95 业主提供的废水水质、水量以及出水要求 我公司所完成同类工程所取得的实际经验和实际工程参数。

氨氮吹脱塔实施方案.docx

氨氮吹脱系统技术方案 2013年 4月 18日

一、方案设计依据: 1、废水水量:每小时额定处理量50 立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求: 15mg/L 二、氨氮吹脱原理介绍 + 氨氮在废水中主要以铵离子(NH4)和游离氨( NH3)状态存在,其 平衡关系如下所示: +- NH3+H2O—NH4+OH 这个关系受 pH 值的影响,当 pH 值高时,平衡向左移动,游离氨的比例增大。常温时,当pH 值为 7左右时氨氮大多数以铵离子状态存在,而pH 为 11 左右时,游离氨大致占 98%。不同 pH、温度下氨氮的离解率详见表。 不同 pH、温度下氨氮的离解率(%) pH20℃30℃35℃ 9.0255058 9.5608083 10.0809093 11.0989898 当水的 pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气 等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。 吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提 高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴, 顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完 成吹脱过程。 三、运行条件 进水 pH值≥ 11 进水温度≥ 30℃ SS含量≤ 50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到 11 左右 , 然后泵入吹脱塔的液体分布器 , 同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口, 并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽 将游离状态的氨吹出 , 由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到 90%,氨氮含量≤ 280mg/L. 经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4 (两台)平米,考 虑附属设备占地及设备间距,总占地面积约50 平米。 精选

氨氮吹脱方案

废水氨氮吹脱装置 技 术 方 案

第一部分:概论 1、项目概述 由于环境质量对社会生产和社会生活的诸多领域产生着重要的影响,环境的质量与保护已越来越受到人们的关注与重视。在工业生产过程中产生的氨氮废水对环境的污染、对人的健康的危害日趋为人们所认识,废水处理技术与系统的开发运用及工程项目的实施能有效地遏止污染扩大与蔓延的趋势,改善环境的质量。 根据业主资料,废水处理量:20m3/h; 氨氮含量:1800ppm; Ph值>7; 含少量SS; 2、工程名称 氨氮废水处理装置 3、工程地点 4、设计依据 本工程设计方案的编制,主要技术依据如下: 业主提供的废水水量、水质等资料文件; 《废水综合排放标准》(GB8978-96); 《室外排水设计规范》(GBJ14-87); 《城市区域环境噪声标准》(GB3096-93); 《低压电气电控设备》(GB/T4720-1984); 《低压配电装置及线路设计规范》(GB50054-95); 《通用电器设备配电设计规范》(GB50055-93); 《给水排水管道工程施工及验收规范》(GB50268-2008);

《给水排水工程管道结构设计规范》(GB50332-2002); 《给水排水工程结构设计规范》(GBJ69-84); 《工业自动化仪表工程施工及验收规范》(GBJ93-86); 《焊接标准》(GB9850-80)中的有关规定; 给水排水工程和废水处理工程建设中其它有关技术规范; 本公司所完成同类工程所取得的实际经验和实际工程技术参数。

第二部分:设备概述 废水处理量:20m3/h;氨氮含量:1800ppm;Ph值>7;含少量SS; 出水氨氮含量:300-350 ppm; 一、工艺流程 二、工艺流程简述: 调节池内的污水通过提升泵进入PH调整池,池内加入石灰,把污水的PH值调到10左右,如果冬季的水温较低,则污水需加热至20℃以上,否则吹脱效果不理想。 调整好的污水用污水泵由顶部送入吹脱塔,同时鼓风机从吹脱塔底部鼓入空气,污水落到到填料顶部,并分布到填料的整个表面,通过填料往下流,与底部上去空气逆向流动,空气中氨的分压随氨的去除程度增加而增加,污水内的氨氮随之减少。 通过吹脱塔的一/二级吸收后,污水流入PH回调池,把PH回调至7左右。 最终达标污水排入环境。 1)、PH调整池 PH调整池是池上有搅拌机,旁边有加药装置及PH测定仪。污水进入调整池后,根据PH测定仪的指数来确定加药量,同时搅拌机把污水搅匀。 2)、吹脱塔 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使

吹脱塔设计参数

氨吹脱塔的设计参数 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH- NH3+H2O (1) NH3+H2O→NH4++OH- 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /Kb=(CNH3?CH+)/CNH4+ (2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。 (1)不同pH、温度下氨氮的离解率% pH 20℃ 30℃ 35℃ 9.0 25 50 58 9.5 60 80 83 10.0 80 90 93 11.0 98 98 98 (1)填料的选择及汽水比

吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填料塔的塔顶,并分布到填料的整个表面,通过填料往下流,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。 表3 气液比对吹脱效率的影响 气液比(m3/m3)进水NH3 N浓度(mg/L-)出水NH3 N浓度(mg/L)吹脱效率/% 1530 214 5.30 780.70 63.6 1850 201 1.25 700.02 65.2 2000 205 1.00 640.45 68.8 2340 214 1.28 602.90 71.8 2760 219 2.53 530.00 75.8 3000 2090.05 432.95 79.3 3460 202 5.25 390.50 80.7 4000 213 4.40 375.55 82.4 4380 2090.00 362.20 82.7 5130 2075.50 345.15 83.4 主要设计参数整理如下 原水的PH值:10.5-11 气水比:3500 空塔流速:2m/s

最新氨吹脱塔单元设计示例

4.4.1 氨吹脱塔单元 4.4.1.1 设计说明 设计采用循环空气吹脱,气液比可取1500-3000,取3000。 4.4.1.2设计尺寸 (1)吹脱塔的计算 已知沼液中NH3-N约为2.5g/kg (2.5g/L),即摩尔分率为0.0026o入吹脱塔的沼液流量为5.6m3,即为311.11kmol/h,设定回收率为90%。同时在101.3kPa 和30E时,该氨水稀溶液的氨分压为0.2kPa,故亨利系数E为76.923kPa m=(0.2/101.3)/0.0026=0.7592。 30E空气的分子量为29,密度1.165kg/m3。 ①实际气液比 (G/L) min=(X1-X2)/(Y2e-Y1)=(0.0026 X 90%)/(0.0026X 0.7592)=1.186 (G/L) =(1.1-2)X( G/L) min=1.8X 1.186=2.135 取系数为2) 所以G=2.135X 311.11X 29/1.165=16534.23m3,即为664.22kmol/h。 故实际气液比(体积比)为: (G/L) v=16534.23/5.6=2952.54 ②理论板数确定 吸收因子A=L/mG=0.617,即脱吸因子S=A-1=1.62 N 理论:X1-X2/X1-0=S N+1-S/S N+1-1 0.0026X90%/0.0026=(1.62N+1-1.62)/(1.62N+1-1) 所以N=3.09,取N=4 气相中氨的摩尔分率Y2=(X1-X2)/(G/L)=1.096 X10-3; ③塔的有效高度Z 根据Drickanmer-Bradfood 法:E T =0.17-0.616lg 卩 30E,进料液体的摩尔粘度卩为0.8007cp(设计应选取最恶劣的条件,故中温35E 发酵,考虑到冬季热损失,选用20 E的进料,此时进料液体的摩尔粘度为1.005cp) 故E T=0.17-0.616lg^ =0.169 实际板数N=N T/E T=23.66 取24 同时取板间距为450mm

水处理工程设计方案

第一章企业概况 一、企业简介 河北省藁城市化肥总厂位于河北省藁城市工业路,主要产品为合成氨、尿素与甲醇。现已形成年产总氨10万吨,其中甲醇3万吨,尿素14万吨。 二、污水来源 该公司是一家合成氨生产企业,主要产品为合成氨、尿素与甲醇。在不同工段产生的废水水质有较大不同,废水的特点如下:气化工序产生的造气含氰废水、脱硫工序产生的脱硫废水、压缩工段由压缩机等大型机械产生的少量含油废水以与铜洗阶段产生的含氨废水等等,各有其特点,产生量也不相同。其中冬季造气水偶尔会有涨水现象。废水水质水量也会随生产情况产生一定波动。 由上述废水汇流形成的综合废水特点是含氨浓度高、成分复杂。

第二章设计原则、标准和规范 一、设计原则 1、全面规划、统一考虑,根据处理工程的水质特点,选用先进高效的工艺技术使处理出水和污泥达到排放标准和要求; 2、选择合适的工程标准、单元、工艺技术和设备,尽量减少工程投资和占地面积; 3、在力求工艺稳妥可靠的基础上,选择先进的节能技术和设备,方便运行管理,并尽量降低运行费用; 4、总体布置以功能区划为主,要求简洁便利,合理布置系统流程,减少废水提升次数,节省动力消耗。 二、设计采用的标准与规范 《建筑给水排水设计规范》(50015-2003); 《室外排水设计规范》(50014-2006); 《混凝土结构设计规范》(50010-2002); 《砌体结构设计规范》(50003-2001); 《建筑地基基础设计规范》(50007-2002); 《建筑设计防火规范》(50016-2006); 《建筑抗震设计规范》(50011-2001); 《建筑灭火器配置设计规范》(140-90,97修订版); 《工业企业总平面设计规范》(50187-93); 《通用用电设备配电设计规范》(50055-93); 《供配电系统设计规范》(50052-95);

氨氮吹脱塔方案

氨氮吹脱塔方案

氨氮吹脱系统 技术方案 4月18日一、方案设计依据:

1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或

水平方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,而且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤ 280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

氨氮吹脱塔方案.docx

氨氮吹脱技 系统 术方案 2013年 4月 18日 一、方案设计依据: 1、废水水量:每小时额定处理量50 立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求: 15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨( NH3)状态存在,其平衡关系如下 +- 所示: NH3+H2O—NH4 +OH 这个关系受 pH 值的影响,当 pH值高时,平衡向左移动,游离氨的比例增大。常温时,当 pH值为 7 左右时氨氮大多数以铵离子状态存在,而 pH 为 11 左右时,游离氨大致占 98%。不同 pH、温度下氨氮的离解率详见表。不同 pH、温度下氨氮的离解率(%) pH20℃30℃35℃ 255058 608083 809093 989898 当水的 pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更 可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液 接触装置,在塔的内部填充材料,用以提高接触面积。调节pH 值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平 方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完 成吹脱过程。

三、运行条件 进水 pH值≥ 11 进水温度≥ 30℃ SS含量≤ 50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到 11 左右 , 然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口, 并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出, 由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤ 280mg/L. 经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4 (两台)平米,考虑附属设备占 地及设备间距,总占地面积约50 平米。 七、产品选型及参数 序号产品名称型号规格技术参数材质单位数量 塔体 :Q235B;防腐: 环氧树脂;布液管 ¢3800*12000, 风量 1氨氮吹脱塔150000m3/h和喷头 :PVC, 填台2 气液比: 1:3000 料:PP 鲍尔环,填 料高度: 4000mm 55KW, 风量 150000m3/h, 2离心风机4-72 № 9D壳体 : 玻璃钢台2 风压 980 PA 3填料鲍尔环PP立方80

氨氮吹脱塔方案

氨氮吹脱塔方案 SANY GROUP system office room 【SANYUA16H-

氨氮吹脱系统 技术方案 2013年4月18日 一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示:NH3+H2O—NH4++OH-这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%)

当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。

氨氮吹脱塔

. 氨氮吹脱吸收系统 技术方案

一、方案设计依据: 1、废水水量:3600m3/d,设计水量为150m3/h。 2、出水氨氮要求:去除率60%-70% 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示:NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的空气逆流接触,完成传质过程,使氨由液相转为气相,随空气排放,完成吹脱过程。

三、运行条件 进水pH值≥11 外界条件:气温24℃,水温:35℃PH:10.5 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时空气在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,出水流出。 具体工艺流程见下图: pH控制系统 原水调节池氨氮吹脱塔氨氮吸收 风机 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到60%-70%,氨氮含量由700mg/L处理至200-230mg/L。 六、设备清单(第一方案)三台并联

氨氮吹脱塔方案

氨氮吹脱塔方案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

氨氮吹脱系统 技术方案 2013年4月18日 一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH 4+)和游离氨(NH 3 )状态存在,其平衡关系 如下所示: NH 3+H 2 O—NH 4 + +OH- 这个关系受pH值的影响,当pH值高时,平衡向 左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从

塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。 七、产品选型及参数

水处理课程设计资料讲解

第一章设计任务及设计资料 1.课程设计任务 根据规划和所给的其它原始资料,设计污水处理厂,具体内容包括: (1)确定污水处理厂的工艺流程,选择处理构筑物并通过计算确定其尺寸(附必要的草图); (2)污水厂的工艺平面布置图,内容包括:标出水厂的范围、全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性(1#图); (3)污水厂工艺流程高程布置,表示原水、各处理构筑物的高程关系、水位高度以及污水厂排放口的标高(1#图); (4)按施工图标准画出主要生物处理构筑物(一个即可)的平面、立面和剖面图(1 #图); (5)按扩大初步设计的要求,画出沉淀池的工艺设计图,包括平面图、纵剖面及横剖面图(1#图); (6)编写设计说明书、计算书。 2.课程设计原始资料 2.1基本情况 城市生活垃圾卫生填埋场的渗滤液来自进场垃圾的含水和降雨。渗滤液的水质特点是随不同地区垃圾组成的不同而变化;随季节不同,降水量的大小而变化:随填埋场投入使用年限不同而变化(渗滤液的BOD5/COD 由0.6 降为0.1 左右;COD 值由20000mg/L 降为1000mg/L 左右;NH4+-N 由 1000m g/L 上升至 2000~2500mg/L 左右等)。 2.2设计依据 (1)废水水量及水质: 废水水量:500m 3 /d

COD=7000m g/L BOD5=2000 mg/L SS=6167mg/L NH4+-N:2000mg/L Cl - =2388mg/L pH:6.2 水温:20℃ 色度:2000 倍 重金属离子不超标 (2)气象水文资料: 风向:春季:南风(东南) 夏季:南风(东南、西南) 秋季:南风、北风 冬季:西北风 气温:年平均气温:7~8 ℃ 最高气温:34 ℃ 最低气温:-10 ℃ 冻土深度:60cm 地下水位:4~5m 地震裂度:6 级 地基承载力:各层均在 120kPa 以上(3)处理后出水水质要求 处理后水质要求: COD≤150mg/L BOD5≤60mg/L SS≤70mg/L NH4+ -N≤25mg/L pH:6~9 色度≤100 倍

相关主题
文本预览
相关文档 最新文档